Какое действие на растения оказывает радиация. Воздействие радиации на растения. ионизирующей частицы в

Введение

Список литературы

ВВЕДЕНИЕ

Во время радиоактивного распада ядер испускаются α-, β- и γ- лучи, обладающие ионизационной способностью. Облучаемая среда частично ионизируется поглощаемыми лучами. Эти лучи взаимодействуют с атомами облучаемого вещества, что приводит к возбуждению атомов и вырыванию отдельных электронов из их электронных оболочек. В результате атом превращается в положительно заряженный ион (первичная ионизация). Выбитые электроны, в свою очередь, сами взаимодействуют со встречными атомами, вызывая вторичную ионизацию. Электроны, затратившие всю энергию, «прилипают» к нейтральным атомам, образуя отрицательно заряженные ионы. Число пар ионов, создаваемых в веществе ионизирующими лучами на единице длины пробега, называется удельной ионизацией, а расстояние, пройденное ионизирующей частицей от места ее образования до места потери энергии движения, называется длиной пробега.

Ионизирующая способность различных лучей неодинакова. Она наиболее высока у альфа-лучей. Бета-лучи вызывают меньшую ионизацию вещества. Самой низкой ионизационной способностьюобладают гамма-лучи. Проникающая же способность наивысшая у гамма-лучей, а наинизшая - у альфа-лучей.

Не все вещества одинаково поглощают лучи. Высокой поглощающей способностью обладают свинец, бетон и вода, которые чаще всего и используют для защиты от ионизирующих излучений.

1 Факторы, определяющие реакцию растений на облучение

Степень поражения тканей и растительного организма в целом зависит от множества факторов, которые можно разделить на три основные группы: генетические, физиологические и условия внешней среды. К генетическим факторам относятся видовые и сортовые особенности растительного организма, которые в основной определяются цитогенетическими показателями (размером ядра, хромосом и количеством ДНК). Цитогенетические характеристики - размеры ядер, число и строение хромосом - определяют радиоустойчивость растений, которая находится в тесной зависимости от объема клеточных ядер. К физиологическим факторам относят фазы и стадии развития растений в момент начала облучения, скорость роста и обмен веществ растительного организма. К факторам внешней среды относят погодно-климатические условия в период облучения, условия минерального питания растений и т. д.

Объем клеточного ядра отражает содержание в нем ДНК, существует связь между чувствительностью растений к облучению и количеством ДНК в ядрах их клеток. Поскольку число ионизации внутри ядра пропорционально его объему, то чем больше объем ядра, тем больше повреждений хромосом будет приходиться на единицу дозы. Однако обратной пропорциональной зависимости между величиной летальной дозы и объемом ядра не наблюдается. Это обусловлено тем, что число и строение хромосом в клетках растений различных видов неодинаково. Поэтому более верным показателем радиочувствительности служит величина объема ядра в расчете на одну хромосому, т. е. отношение объема ядра в интерфазе к числу хромосом в соматических клетках (кратко называют объемом хромосом). В логарифмическом масштабе эта зависимость выражается прямой с тангенсом угла наклона, равным 1, т. е. между указанными характеристиками существует линейная связь (рис.).

Радиочувствительность различных растений при хроническом облучении (по А. Спэрроу)

Зависимость радиочувствительности древесных (а) и травянистых (б) растений от объема интерфазных хромосом (по Спэрроу, 1965): 1-острое облучение (экспозиция в Р); 2 - хроническое об» лучение (экспозиция в Р/сут)

Из этого следует, что произведение двух величин - дозы (или мощности дозы) и объема хромосомы при данной степени лучевого повреждения - величина постоянная, т. е. при постоянном среднем числе ионизации в каждой хромосоме появляется одинаковая вероятность повреждения генетического материала клетки. Это означает, что для лучевого поражения клеток растений существенна не столько величина удельной поглощенной дозы (например, на 1 г ткани), сколько величина энергии излучения, поглощенной ядерным аппаратом. Обратная пропорциональность изоэффективных доз размерам хромосомного аппарата означает, что среднее количество энергии, адсорбированной хромосомами при экспозициях, необходимых для вызывания данного эффекта, примерно постоянно в пределах каждой растительной группы, т. е. для деревьев и трав. Изоэффективная доза - доза, оказывающая такой же (подобный) эффект.

На устойчивость растений к облучению влияет и степень плоидности растительных организмов. Более чувствительны диплоидные виды. Дозы, повреждающие полиплоидные виды, выше. Полиплоидные виды устойчивы к радиационному поражению и к действию других неблагоприятных факторов, поскольку обладают избытком ДНК.

Из физиологических факторов на радиочувствительность растений влияет скорость роста, т. е. скорость клеточного деления. При остром облучении зависимость радиочувствительности от скорости деления подчиняется закону Бергонье - Трибондо: растения обладают большей радиочувствительностью в стадии наиболее интенсивного роста, медленно растущие растения или их отдельные ткани устойчивее к действию облучения, чем растения или ткани с ускоренным ростом. Прихроническом облучении проявляется обратная зависимость: чем выше скорость роста, тем меньше угнетаются растения. Это обусловлено интенсивностью деления клеток. Быстро делящиеся клетки накапливают за время одного акта клеточного цикла меньшую дозу и, следовательно, повреждаются слабее. Такие клетки имеют больше возможностей перенести облучение без существенного нарушения функций. Поэтому при облучении в сублетальных дозах любой фактор, увеличивающий продолжительность митоза или мейоза, должен усиливать радиационное повреждение, вызывая увеличение частоты наведенных излучением хромосомных перестроек и более сильное торможение скорости роста.

Критерий действия ионизирующих излучений на растения. Поскольку радиочувствительность - явление сложное, комплексное, определяющееся многими факторами, следует остановиться на тех методах оценки и критериях, по которым судят о степени радиочувствительности растений. Обычно в качестве таких критериев используют: подавление митотической активности при клеточном делении, процент поврежденных клеток в первом митозе, число хромосомных аберраций на одну клетку, процент всхожести семян, депрессии в росте и развитии растений, радиоморфозы, процент хлорофильных мутаций, выживаемость растений и в конечном результате урожай семян. Для практической оценки снижения продуктивности растений от воздействия радиации обычно используют два последних критерия: выживаемость растений и их урожай.

Количественная оценка радиочувствительности растений по критерию выживаемости устанавливается по показателю ЛД50 (или ЛД50, ЛД100). Это величина дозы, при которой погибает 50 % (или 70, 100 %) из числа всех облученных особей. Показатель ЛД50 может быть использован также и при оценке потерь урожая в результате радиационного поражения растений. В этом случае он показывает, при какой дозе облучения растений их урожай снижается на 50 %.

Радиочувствительность растений в разные периоды их развития. В процессе роста и развития радиочувствительность растений существенно изменяется. Это обусловлено тем, что в различные периоды онтогенеза растения отличаются не только морфологическим строением, но и разнокачественностью клеток, тканей, а также характерными для каждого периода физиолого-био-химическими процессами.

При остром облучении растений в различные периоды онтогенеза они реагируют по-разному в зависимости от этапа органогенеза в момент начала облучения (рис.). Радиация вызывает у растений поражение тех органов и смещение тех процессов, которые формируются и протекают в период воздействия. В зависимости от величины дозы облучения эти изменения могут носить либо стимулирующий, либо повреждающий характер.

Радиационное поражение растений в той или иной степени затрагивает все органы и все функциональные системы организма. Наиболее чувствительными «критическими органами», повреждение которых определяет развитие и результат радиационного поражения растений, являются меристематические и эмбриональные ткани. Качественный характер реакции растений на их облучение зависит от биологической специфичности морфофизиологического состояния растений в период накопления основной дозы облучения.

Колебания радиоустойчивости растений в онтогенезе (Батыгин, Потапова, 1969)

По поражению основного побега все культуры проявляют наибольшую чувствительность к действию радиации в первый период вегетации (I и III этапы органогенеза). Облучение растений в эти периоды тормозит ростовые процессы и нарушает взаимосогласованность физиологических функций, определяющих формообразовательные процессы. При дозах облучения, превышающих их критические значения для определенной культуры (ЛД70), во всех случаях наблюдается гибель основного побега злаковых растений.

Если растения подвергаются облучению на ранних этапах органогенеза (I и V), образуются дополнительные побеги, которые при благоприятных условиях сезона успевают дойти до созревания и дать урожай, компенсирующий в той или иной мере потери, связанные с гибелью главного побега. Облучение растений на VI этапе органогенеза - в период формирования материнских клеток пыльцы (мейоз) - может привести к значительной стерильности и потере урожая зерна. Критическая доза облучения (например, 3 кР для пшеницы, ячменя и гороха) в этот период вызывает полную стерильность соцветий основных побегов. Дополнительные побеги кущения или ветвления, развивающиеся у этих растений в сравнительно позднее время, не успевают завершить свой цикл развития и не могут компенсировать потери урожая с основных побегов.

При облучении растений на том же VI этапе органогенеза в период формирования одноядерных пыльцевых зерен устойчивость к действию ионизирующей радиации у растений значительно повышается. Например, при облучении пшеницы дозой 3 кР в период мейоза урожай зерна практически равен нулю, тогда как при облучении растений в период формирования одноядерной пыльцы наблюдается снижение урожая на 50%. На последующих этапах органогенеза устойчивость растений к действию радиации возрастает еще сильнее. Облучение растений в период цветения, эмбриогенеза и налива зерна при одних и тех же дозах не вызывает заметного снижения их продуктивности. Следовательно, к наиболее чувствительным периодам относятся прорастание семян и переход растений от вегетативного состояния к генеративному, когда закладываются органы плодоношения. Эти периоды характеризуются повышенной метаболической активностью и высокой интенсивностью клеточного деления. Наиболее устойчивы растения к радиации в период созревания и в период физиологического покоя семян (табл.). Злаковые культуры более радиочувствительны в фазы выхода в трубку, кущения и колошения.

Выживание озимых культур при их облучении в осенне-зимне-весенний период заметно повышается при посеве озимых культур в наиболее ранние из установленных сроков. Это объясняется, очевидно, тем, что облученные растения, уходя под зиму более окрепшими, в состоянии полного кущения, оказываются более устойчивыми к последствиям действия радиации.

Аналогичная закономерность снижения урожая зерна при облучении растений в разные фазы развития получена и на других культурах. Зерновые бобовые культуры обладают наибольшей радиочувствительностью в период бутонизации. Самое резкое снижение урожая овощных культур (капуста, свекла, морковь) и картофеля наблюдается при воздействии ионизирующего облучения в период всходов.

Все зерновые культуры обладают максимальной радиочувствительностью в фазе выхода в трубку. В зависимости от биологических особенностей растений наблюдается некоторое различие. Так, овес проявляет максимальную радиочувствительность в конце фазы выхода в трубку и в период выметывания метелки.

Снижение урожая зерна озимых зерновых культур (пшеница, рожь, ячмень) в зависимости от облучения растений γ-лучами в разные фазы развития растений, % к необлученному контролю

Отрицательное действие внешнего γ-облучения меньше сказывается на продуктивности зерновых культур при их облучении в фазе кущения. При частичном повреждении растений происходит усиленное кущение и в целом снижение урожая компенсируется за счет формирования вторичных побегов кущения. Облучение зерновых культур в период молочной спелости не вызывает заметного повышения стерильности колосьев.

2 Действие внешнего ионизирующего излучения на организм

2.1 Варианты возможного радиационного воздействия

Источники ионизирующего излучения (радионуклиды) могут находиться вне организма и (или) внутри его. Если животные подвергаются воздействию излучения извне, то говорят о внешнем облучении, а воздействие ионизирующих излучений на органы и ткани от инкорпорированных радионуклидов называют внутренним облучением. В реальных условиях чаще всего возможны различные варианты и внешнего, и внутреннего облучения. Такие варианты воздействия называются сочетанными радиационными поражениями.

Доза внешнего облучения формируется главным образом за счет воздействия γ-излучения; α- и β-излучения не вносят существенного вклада в общее внешнее облучение животных, так как они в основном поглощаются воздухом или эпидермисом кожи. Радиационное поражение кожных покровов β-частицами возможно в основном при содержании скота на открытой местности в момент выпадения радиоактивных продуктов ядерного взрыва или других радиоактивных осадков.

Характер внешнего облучения животных во времени может быть различным. Возможны разные варианты однократного облучения, когда животные подвергаются радиационному воздействию в течение короткого промежутка времени. В радиобиологии принято считать однократным облучением воздействие радиации на протяжении не более 4 сут. Во всех случаях, когда животные подвергаются внешнему облучению с перерывами (они могут быть различными по продолжительности), имеет место фракционированное (прерывистое) облучение. При непрерывном длительном воздействии ионизирующего излучения на организм животных говорят о пролонгированном облучении.

Выделяют общее (тотальное) облучение, при котором радиационному воздействию подвергается все тело. Этот вид облучения имеет место, например, при обитании животных на территории, загрязненной радиоактивными веществами. Кроме того, в условиях специальных радиобиологических исследований может осуществляться местное облучение, когда радиационномувоздействию подвергается та или иная часть тела! При одной и той же дозе облучения наиболее тяжелые последствия наблюдаются при общем облучении. Например, при облучении всего тела животных в дозе 1500 Р отмечается практически 100%-ная их гибель, тогда как облучение ограниченного участка тела (головы, конечностей, щитовидной железы и т. д.) каких-либо серьезных последствий не вызывает. В дальнейшем рассматриваются последствия только общего внешнего облучения животных.

2.2 Влияние ионизирующей радиации на иммунитет

Малые дозы радиации, по-видимому, не оказывают заметного влияния на иммунитет. При облучении животных сублетальными и летальными дозами происходит резкое снижение резистентности организма к инфекции, что обусловлено рядом факторов, среди которых важнейшую роль играют: резкое повышение проницаемости биологических барьеров (кожи, дыхательных путей, желудочно-кишечного тракта и др.), угнетение бактерицидных свойств кожи, сыворотки крови и тканей, снижение концентрации лизоцима в слюне и крови, резкое уменьшение числа лейкоцитов в кровеносном русле, угнетение фагоцитарной системы, неблагоприятные изменения биологических свойств микробов, постоянно обитающих в организме, - увеличение их биохимической активности, усиление патогенных свойств, повышение резистентности и др.

Облучение животных в сублетальных и летальных дозах приводит к тому, что из крупных микробных резервуаров (кишечник, дыхательные пути, кожа) в кровь и ткани поступает огромное количество бактерий.! При этом условно выделяют период стерильности (его продолжительность одни сутки), в течение которого микробов в тканях практически не обнаруживается; период обсемененности регионарных лимфатических узлов (обычно совпадает с латентным периодом); бактериемический период (длительность его 4-7 дней), который характеризуется появлением микробов в крови и тканях, и, наконец, период декомпенсации защитных механизмов, в течение которого отмечается резкое возрастание количества микробов в органах, тканях и крови (этот период наступает за несколько дней до гибели животных).

Под действием больших доз радиации, вызывающих частичную или полную гибель всех облученных животных, организм оказывается безоружным как к эндогенной (сапрофитной) микрофлоре, так и к экзогенным инфекциям. Считают, что в период разгара острой лучевой болезни и естественный, и искусственный иммунитет сильно ослаблен. Однако имеются данные, указывающие на более благоприятный исход течения острой лучевой болезни у животных, подвергшихся иммунизации до воздействия ионизирующего излучения. Вместе с тем экспериментально установлено, что вакцинация облученных животных отягощает течение острой лучевой болезни, и по этой причине она противопоказана до разрешения болезни. Напротив, через несколько недель после облучения в сублетальных дозах выработка антител постепенно восстанавливается, и поэтому уже через 1-2 мес после радиационного воздействия вакцинация вполне допустима.

2.3 Сроки гибели животных после воздействия радиации в летальных дозах

При однократном облучении сельскохозяйственных животных в дозах, вызывающих крайне тяжелую степень острой лучевой болезни (более 1000 Р), обычно они погибают в течение первой недели после радиационного воздействия. Во всех других случаях летальные исходы острой лучевой болезни наблюдаются чаще всего на протяжении 30 дней после облучения.1! Причем после однократного облучения большая часть животных погибает между 15-м и 28-м днями (рис.); при фракционированном облучении летальными дозами гибель животных происходит в течение двух месяцев после радиационного воздействия (рис.).

Как правило, молодняк погибает в более ранние сроки после облучения в летальных дозах: смертность животных обычно отмечается на 13-18-й день. Для всех возрастных групп животных, облученных в летальных дозах, характерна более ранняя гибель при наиболее высоких дозах радиационного воздействия (рис.). Однако это явление можно расценивать скорее как тенденцию, чем закономерность, так как имеется достаточно много экспериментальных данных о ранних сроках гибели животных при облучении их сравнительно невысокими дозами радиации.

Смертность овец после внешнего γ -облучения летальными дозами (Пейч в др., 1968)

Смертность коз, подвергшихся фракционированному рентгеновскому облучению (Тайлор и др., 1971)

Следует иметь в виду, что при фракционированном облучении сроки гибели животных зависят прежде всего от мощности дозы. Так, при ежедневном облучении ослов в дозе 400 Р все животные погибали между 5-м и 10-м днями. В экспериментах, где доза ежедневного облучения составляла 50 и 25 Р, средняя продолжительность жизни после начала радиационного воздействия составляла соответственно 30 и 63 дня. Кроме того, на продолжительность жизни сильно влияют видовые особенности животных. При фракционированном ежедневном облучении свиней в дозе 50 Р средняя продолжительность жизни у них оказалась равной 205 дням, что в 6,4 раза превышало среднюю продолжительность жизни ослов при тех же условиях радиационного воздействия.

Смертность коров в различные сроки после γ-облучения (Броун и др., 1961)

2.4 Хозяйственно полезные качества животных, подвергшихся воздействию ионизирующей радиации

В принципе все сельскохозяйственные животные, подвергшиеся действию ионизирующих излучений, могут быть разделены на две категории. К первой категории относятся животные, получившие летальные дозы радиации. Срок их жизни от момента облучения сравнительно невелик, но в некоторых ситуациях продуктивность смертельно пораженных животных может представлять известный интерес.

Молочная продуктивность коров в первые 10- 12 дней после радиационного воздействия изменяется незначительно, а затем резко падает, и уже за 2 дня до гибели животных лактация полностью прекращается. Мясная продуктивность животных, которая обычно характеризуется динамикой живой массы, также изменяется незначительно: снижение массы тела у смертельно пораженных животных (если оно имеет место), как правило, не превышает 5-10%. Яйцекладка у кур-несушек, подвергшихся воздействию летальных доз радиации, прекращается в течение ближайших 5-7 дней. О шерстной продуктивности летально пораженных овец говорить не приходится, так как у них через 7-10 дней после радиационного воздействия наблюдается интенсивная эпиляция.

У животных, выживших после облучения в летальных или сублетальных дозах (вторая категория), продуктивность снижается ненадолго. Например, при облучении коров за 60 дней до отела в дозе 400 Р их молочная продуктивность на протяжении первых 10- 12 нед была ниже контроля на 5-10%. После повторного облучения в дозе 350 Р через 18 нед после начала лактации удой в течение первой недели после облучения снизился на 16%, к 5-й неделе -на 8%, а на 6-й неделе молочная
продуктивность облученных коров вернулась к норме. Ориентировочно можно считать, чтооблучение коров в дозах, которые могут вызвать частичную гибель дойного стада, приводит к снижению удоя в целом за лактацию в среднем на 5-8 %.

У выживших животных, подвергшихся воздействию радиации в полулетальных дозах (или близких к ним), отмечены также другие неблагоприятные последствия. Так, после двукратного облучения свиней (480 рад + 460 рад через 4 мес) отмечено снижение прироста массы: спустя 2 года после радиационного воздействия облученные животные имели массу тела на 45 кг ниже, чем контрольные свиньи. Продолжительность жизни свиней сокращается в среднем на 3 % на каждые 100 рад внешнего облучения животных (рис.). При облучении кур породы белый леггорн в дозе 800 Р (смертность кур составляла в среднем 20%) наблюдается заметное снижение яйцекладки (рис.).

Дозы облучения, вызывающие острую лучевую болезнь легкой или средней степени тяжести, обычно не отражаются заметным образом на продуктивности сельскохозяйственных животных. Например, после внешнего γ-облучения в дозе 240 Р в течение последующих 40 нед бычки имели прирост массы тела 131 кг (в контрольной группе 118 кг). Свиньи, подвергавшиеся хроническому облучению в дозах 360-610 Р (мощность дозы 1,4 Р/ч), в течение всего времени облучения и последующие 90 дней опыта имели достаточно высокий среднесуточный прирост (500-540 г) и по этому показателю не отличались от контрольных групп (примерно 470 г). Аналогичная картина наблюдалась и при фракционированном облучении свиней в дозе 50 Р/сут. Не было обнаружено снижения яйцекладки у кур после облучения их в дозе 400 Р, а при дозе 600 Р яйцекладка снижалась примерно на 20 % только в первой декаде после воздействия.

Таким образом, при облучении сельскохозяйственных животных в сублетальном диапазоне доз существенных изменений в их продуктивных качествах не отмечается (если, конечно, животным созданы нормальные условия содержания и они обеспечены соответствующими рационами). При облучении животных абсолютно летальными дозами продуктивность снижается, но качество животноводческой продукции остается достаточно высоким. При длительном скармливании животным продукции, полученной от смертельно пораженных радиацией овец и коров, не наблюдается каких-либо патологических изменений как у потребляющих эту продукцию, так и у их потомства. Однако при использовании для питания продукции от радиационно пораженных животных рекомендуется проводить особо тщательно бактериологические исследования и соответствующую кулинарную обработку.

2.5 Воспроизводительные способности животных

Половые железы животных отличаются высокой чувствительностью к действию ионизирующих излучений. При облучении самцов сублетальными дозами происходит лучевое поражение семяродного эпителия в семенных канальцах, а также сперматогониев и сперматоцитов; созревшие и сформированные сперматозоиды считаются радиорезистентными. Высокие дозы радиации вызывают почти полное уничтожение семяродного эпителия и последующее затухание спермопродукции, тогда как облучение самцов средними и низкими дозами вначале приводит к снижению сперматогенеза, а затем отмечается постепенное его восстановление (рис.). Весьма характерны уменьшение объема эякулята, снижение концентрации и подвижности спермиев в эякуляте, появление в большом количестве уродливых сперматозоидов, падение биологической полноценности спермы и ее оплодотворяющей способности. Кроме того, уменьшается масса семенников: при γ-облучении хряков в дозе 400 Р масса тестикулов снизилась на 30%, а при облучении петушков в дозе 500 Р она уменьшилась в 3 раза по сравнению с массой семенников у контрольных петушков.

Влияние внешнего γ -облучения кур в дозе 800 Р на яйценоскость выживших кур (Малоний, Мрац, 1969)

Спермопродукция хряков, подвергшихся воздействию внешнего γ-облучения в сублетальных дозах (Паке в др., 1962).

Облучение в дозе 400 Р у отдельных хряков вызывает длительное бесплодие (хряк № 5)

Если дозы облучения не слишком велики, то с течением времени наблюдается частичное или полное восстановление воспроизводительной функции у самцов. В опытах на баранах, например, было установлено, что при облучении в дозе 100 Р качество спермы восстанавливается уже через 4 мес, в дозе 430 Р - лишь через 12 мес. Заметим, что аналогичное восстановление качества спермы у облученных хряков и быков наблюдалось уже через 5-б мес, т. е. примерно вдвое быстрее, чем у баранов.

Ионизирующая радиация влияет и на репродуктивную функцию самок. У облученных животных повреждаются и частично гибнут все виды клеток функционирующего яичника (в особенности первичные и вторичные фолликулы, зрелые яйцеклетки), нарушаются астральные циклы. Следует, однако, иметь в виду, что вскоре после облучения (даже среднелетальными дозами) воспроизводительная функция у самок восстанавливается и они могут приносить жизнеспособное потомство. Например, не было отмечено снижения плодовитости у взрослых коров, подвергшихся двукратному (с перерывом в 2 года) радиационному воздействию в дозах 400 Р.

Наиболее тяжелые последствия наблюдаются при воздействии ионизирующей радиации на животных в период их внутриутробного развития. Большая часть зародышей погибает в предимплантационный период, т. е. в период, когда еще не произошло внедрения развивающегося оплодотворенного яйца в толщу слизистой оболочки матки (у овец и свиней - в первые 13, у коров - в первые 15 дней после оплодотворения), или подвергается резорбции (рассасыванию) сразу же после имплантации. При облучении беременных животных в период основного органогенеза (у овец - на 17- 19-й, у свиней - на 15-18-й, у коров - на 22-27-й день) даже при сравнительно невысоких дозах радиационного воздействия (200-300 Р) во многих случаях возможна резорбция эмбриона, а у выживших эмбрионов наблюдаются отставание в росте, появление пороков развития, увеличение смертности новорожденных, сокращение продолжительности жизни. Например, при облучении сукрольных самок на 12-14-й день беременности в дозе 400 Р наблюдали случаи сросшихся пальцев передних и задних конечностей у потомства. При облучении животных на более поздних стадиях беременности радиочувствительность плодов несколько снижается.

При исследовании последствий действия ионизирующих излучений на организм в период внутриутробного развития была обнаружена исключительно высокая чувствительность воспроизводительной системы плода к действию радиации. При хроническом облучении свиноматок в течение 108 дней беременности (дозы γ-облучения от 1 до 20 рад/сут, длительность ежесуточного облучения 22 ч) беременность у животных протекала нормально, общее состояние свиноматок, число живых поросят в помете и их послеродовая жизнеспособность не отличались от тех же показателей в контрольных группах животных. Вместе с тем даже при облучении супоросных свиноматок в дозе 1 рад/сут у новорожденных поросят обнаруживается существенное снижение общего числа зародышевых клеток (у животных обоих полов). Так, у боровков количество гоноцитов (первичных предшественников половых клеток) составляло всего 3 % контроля, а у самок число выживших ооцитов было равным 7 % ооцитов контрольных свинок. Облучение в утробный период развития было причиной снижения спермопродукции (на 83 %), увеличения числа дефектных сперматозоидов с 2,8 % (контроль) до 11,4 °/о, что повлекло за собой бесплодие у 4 из 10 хряков. Несмотря на существенное снижение количества первичных и растущих фолликулов у облученных свинок, их воспроизводительные способности в первом помете были такими же, как у контрольных животных, но при повторном спаривании у 4 из 23 свиноматок было установлено бесплодие. Облучение супоросных свиноматок в дозе 0,25 рад/сут практически не влияет на воспроизводительную функцию у потомства.

Список литературы

1. Анненков Б.Н., Юдиннева Е.В. Основы сельскохозяйственной радиологии.- М.: Агропромиздат, 1991. - 287 с: ил.

2. Старков В.Д., Мигунов В.И. Радиационная экология. Тюмень: ФГУ ИПП «Тюмень», 2003, 304 с.

ПОЛЕЗНАЯ РАДИАЦИЯ

Если бы Господь Бог сделал мне честь спросить

мое мнение при сотворении мира, то я бы ему

посоветовал сотворить его получше, а главное - попроще

КОРОЛЬ АЛЬФОНС КАСТИЛЬСКИЙ XIII ВЕК

Наверно, у каждого из нас неоднократно возникала мысль о том, насколько сложно и остроумно организована живая клетка. Кажется, она продумана до конца и так совершенна, что ее нельзя улучшить. В процессе эволюции миллионы раз были переработаны варианты оптимальных конструкций клетки И миллионы вариантов были забра­кованы Остались наиболее отработанные, законченные и совершенные образцы. Но за последние десятилетия уче­ные убедительно доказали возможность улучшения расте­ний и других организмов с помощью ионизирующей ра­диации и радиоактивных изотопов.

В Париже, в районе Жардеп до Плант, стоит неболь­шой дом Он - достояние Национального музея естествен­ной истории На его стене скромная доска, и на ней над­пись «В лаборатории прикладной физики Музея Анри Беккерель открыл радиоактивность 1 марта 1896 года». С тех пор прошло три четверти века Предполагал ли кто-нибудь даже из самых прозорли­вых соотечественников Беккереля, что семьдесят лет спу­стя радиоактивные изотопы станут широко использоваться в сельском хозяйстве, биологии, медицине? Что меченые атомы будут надежными помощниками человека при решении самых насущных задач? И что, наконец, с помощью проникающей радиации некоторых радиоактивных изото­пов можно будет повышать урожайность зерна?

Используя ионизирующую радиацию, действительно можно изменять в нужном для человека направлении жи­вые организмы

Несколько лет назад в Молдавии весной можно было встретить на дорогах автофургон с надписью на кузове" «Атом - миру» Это не простой грузовик, а передвижной облучатель для предпосевной обработки семян Его «атом- пое сердце» - большой контейнер с гамма-активным изо­топом цезия-137 Накануне сева автофургон выезжает в поле К нему подъезжает грузовик с семенами кукурузы Включается ленточпый транспортер Семена засыпаются в бункер с радиоактивным изотопом цезия Полностью изо- тарованные от непосредственного контакта с изотопом, се­мена в то же время облучаются гамма-лучами в нужной дозе Непрерывной струей бежит зерно через бункер По том оно попадает на другой транспортер и ссыпается в мешки на другой автомашине Предпосевное облучение се­мян закончено Семена можно высевать.

Для чего облучали семена кукурузы? Предпосевное об­учение семян - это метод повышения урожайности сель­скохозяйственных культур С его помощью можно уско­рить созревание растений и улучшить их полезные каче­ства.

На лабораторном столе стоят десять горшков с проро­стками кукурузы различной высоты Под крайним левым подпись: «Контроль», под каждым из остальных цифры- 100, 300, 500, 800.. И так до 40 000. В лабораторном жур­нале записано «Высота проростков кукурузы при разных дозах облучения на 13-й день вегетации».

При облучении семян в дозе 100 и 300 рентген высота проростков такая же, как в контрольной группе При дозе облучения 500 рентген растения выше контроля в полто­ра раза. Но потом, по мере увеличения дозы, величина проростков уменьшается При дозе 8000 рентген растения кажутся карликами При дозе 40 000 их еле видно.

Через несколько страниц в том же лабораторном жур­нале вклеена фотография Это корни тех же растений Почти такая же закономерность При определенной дозе гамма-лучей - резкое увеличение роста, а потом посте­пенное уменьшение При больших дозах рост корней резко затормаживается.

Сначала ставят опыты в лабораторных условиях Потом опыты повторяют в поле. Опыты в поле - это как гене­ральная репетиция в театре, как последний экзамен, после которого результаты экспериментальных исследований будут внедрены в практику Экспериментаторы облучали семена кукурузы сортов «Стерлинг» и «Воронежская-76», которые в Московской области выращивают для получения силосной массы Опыты в поле в течение трех лет показа­ли, что облучение семян в дозе 500 рентген увеличивает выход зеленой массы кукурузы на 10-28 процентов Си­лос, полученный из таких растений, содержит больше бел­ка, жиров, безазотистых веществ, клетчатки, углеводов

А если облучить семена редиса.

На столе экспериментатора два пучка редиса одного сорта. Количество редиса в каждом пучке одинаково Но редис слева значительно толще и мясистее По сравнению с ним редис справа кажется худосочным. А ведь правый пучок - это обычный, так сказать, «нормальный» редис Упитанный родственник слева - это редис, выращенный из облученных семян При облучении семян этого сорт,! гамма-лучами в дозе 500 рентген урожай повысился на 37 процентов! Собрать 100 или 137 кг редиса - существен­ная разница И это из одного количества семян, на одних землях и при одном и том же уходе А затраты на облуче­ние крайне невелики

У других сортов редиса - «Рубин», «Розовый с белым кончиком», «Сакс» - урожайность повышалась при облу­чении в дозе 1000 рентген А облученный «Сакс» был к то­му же и сочнее и вызревал раньше обычного на 5-6 дней Предпосевное облучение семян «Рубина» не только повы­шало урожай корнеплодов, но и увеличивало в них содер­жание витамина С. С помощью ионизирующей радиации в корнеплодах можно увеличить и содержание витамина А. Так, после облучения семян моркови сорта «Нантская» в дозе 4000 рентген урожайность корнеплодов по отношению к контролю увеличилась на 26 процентов, а запас кароти­на - растительного пигмента, который в организме чело­века превращается в витамин А,- на 56.

А кукуруза? Облучение семян в дозе 500 рентген уве­личивало урожай зеленой массы до 28 процентов

Стимулирующее действие предпосевного облучения се­мян доказано для огурцов, томатов, свеклы, капусты, са­люта, картофеля, хлопка, ржи, ячменя...

Ученые заметили одну особенность. Доза ионизирую­щей радиации, вызывающая эффект стимуляции, различ­на не только для разных видов растений, но даже для раз­ных сортов одного вида. Более того, она оказалась не оди­наковой для одного и того же сорта, высеваемого в разных географических зонах.

Так стимулирующая доза облучения для огурцов сорта «Нежинские», высеваемых в Московской области, равняет­ся 300 рентген, а для получения такого же результата в Азербайджане была необходима доза около 2000- 4000 рентген.

Возьмем семена кукурузы Много семян. Облучим их при одинаковых условиях дозой гамма-лучей, которая вы­зывает стимуляционный эффект. Разделим их на четыре равные группы - по 1000 штук в каждой Одну группу по­сеем сразу после облучения, вторую - через неделю, тре­тью - через две, четвертую - через месяц. Теперь будем терпеливо ждать Семена взошли, растения начали разви­ваться. Но что это? Быстрее других развиваются расте­ния, высеянные непосредственно после облучения. У семян, которые были высеяны через неделю после облуче­ния, стимуляционный эффект был выражен меньше. У се­мян, высеянных через 2 недели после лучевой обработки, ускорение развития почти не наблюдалось. Семена, выдер­жанные после облучения в течение месяца, прорастали, но стимуляционного эффекта не имели. Значит, при хра­нении какое-то таинственное вещество, какой-то стиму­лятор медленно исчезал.

В чем же дело?

Мы вступаем в область, где факты еще дружат с пред­положениями, где еще многое не исследовано. Установле­но, что после облучения в семенах образуются очень ак­тивные осколки молекул, называемые радикалами Опи способны вступать в необычные для здорового организма реакции. И вот оказалось, что после облучения семян ко­личество радикалов со временем постепенно убывает. Про­ходит несколько дней, и радикалы исчезают полностью. Чем выше температура и влажность, при которой хранят­ся семена, тем радикалы исчезают быстрее

Что же происходит, когда семена попадают во влаж­ную, прогретую солнцем почву? Питательные вещества, содержащиеся в семенах, начинают переходить в раство­римую форму и транспортируются к зародышу. В так на­зываемом алейроновом слое семени активизируются окис­лительные процессы, и начинается выработка соединений, богатых энергией Зародыш пробуждается, его клетки на­бухают и начинают делиться. Наступают процессы роста и развития проростков. Клетки начинают делиться, и им нужен строительный материал. Активность многих фер­ментов в результате облучения значительно возрастает. И вот при облучении семян окислительные процессы начи­нают протекать значительно интенсивнее. А это приводит к более быстрому развитию и ускорению всхожести семян, к их прорастанию. Растения становятся более мощными.

Не так давно в журнале «Курьер», который издается ООН, была напечатана статья. В ней говорилось, что каж­дый третий крестьянин в Африке работал фактически на птиц, грызунов, насекомых-вредителей и микропара­зитов.

За точность зтих цифр, естественно, поручиться труд­но, но то, что потери от вредителей огромны,- факт.

Специалисты подсчитали сельскохозяйственные вре­дители уничтожают за год столько зерна, что им можно было бы прокормить 100 миллионов человек.

Чем может помочь ионизирующая радиация сельскому хозяйству в борьбе с вредителями?

Вы уже знаете: различные виды растений обладают различной радиочувствительностью Некоторые - доволь­но высокой Насекомые, как правило, высокорадиоустойчивы. Среди них есть даже своеобразные чемпионы радио­устойчивости. Например, скорпионы. Но яйца и личинки насекомых оказались более радиочувствительными. И вос­производящие клетки насекомых тоже более чувствитель­ны к облучению.

Схема борьбы с насекомыми-вредителями проста Через бункер, заряженный радиоактивным изотопом, пропус­кается по конвейеру зерно За определенный промежуток времени оно получает необходимую для гибели вреди­телей дозу ионизирующей радиации Такое зерно, конеч­но, не используют как посадочный материал Но для пи­тания людей оно совершенно безвредно После облучения зерно поступает в хранилище - опасный вредитель ему уже не угрожает Этими же приемами можно бороться с вредителями сухих фруктов - насекомыми и их личинка­ми, облучая «будущие компоты» гамма-лучами в дозе до 50 ООО рентген А в Канаде предложили метод лучевой борьбы с сальмонеллами, заражающими яичный порошок Знаете ли вы о методе «стерильпых самцов»? Ученые разработали его сравнительно недавно Насекомые, облу­ченные понтирующей радиацией в определенный период ра шития, неспособны давать потомство «Стерильные сам­цы» спариваются с нормальными самками. Однако самка потомство не приносит Чем больше самцов будет стерили­зовано, тем больше возможностей, что самки не дадут по­томства Если стерилизованных насекомых будет много в течение нескольких поколений, то потомство резко сокра­тится В некоторых странах обитает опасный вредитель - так называемая мясная муха Она откладывает свои яйца в рапы теплокровных животных Из яиц развиваются ли­чинки, которые вызывают заболевание и даже гибель домашнего скота, диких зверей и дичи Мясная муха нано­сит большой вред хозяйству И тогда решили испробовать метод лучевой стерилизации на мясной мухе Построили «мушиную» фабрику, на которой разводили и стерилизова­ли мух Стерилизованных насекомых выпускали на зара­женную местность Результат сказался быстро Заболевание и падеж скота резко уменьшились Затраты на «мушиную» фабрику не только окупились в первый год, но и принесли равную по сумме затрат прибыль. В США на острове Куракоо, площадью в 435 квадратных километров, выпусти­ли около 2000 стерильных самцов мясной мухи на один квадратный километр На острове мясная муха практи­чески уничтожена.

Идея консервирования продуктов возпикла давно Продукты консервировали древние египтяне и ипки На­верное, самый древний способ сохранения продуктов - высушивание их па солнце Со временем способы консер­вирования менялись Сегодня холодильник имеется почти в любой городской квартире Но самый современный спо­соб сохранения пищевых продуктов - консервирование их с помощью проникающих излучений Если облучать, например, свежее мясо гамма-лучами в дозе 100000 репт- геп, то срок его храпепия на складе удлиняется в пять раз Если облученпое мясо хранить при температуре около нуля градусов, то оно сохраняется в течение нескольких месяцев, не теряя питательных и вкусовых качеств С по­мощью радиации удлиняются сроки хранения свежей рыбы Облученная рыба в рефрижераторах сохраняет свои вкусовые качества до 35 дней А без лучевой обработки при тех же условиях хранения - 7 - 10 дней.

Сейчас ищут способ консервировать с помощью гамма- лучей икру, молоко, фрукты И даров моря- крабов, устриц, креветок

Хорошие результаты дает облучепие ягод и фруктов Облученная клубника, хранившаяся в рефрижераторе при температуре +4 градуса, длительное время не теряла ни свежести, ни аромата Даже опытные дегустаторы и экс­перты не могли установить, какие из ягод были облучены в «консервирующих» дозах А грибы шампиньоны? Они обладают прекрасными вкусовыми качествами И их мож­но выращивать искусственно в течение всего года Но при хранении грибы быстро портятся теряют свежесть и вку­совые качества, сохпут и шляпка их разворачивается, как у старых грибов Облученные шампиньоны в течение дли тельного хранения выглядели так, будто их только что принесли из парника - старение грибов резко затормажи­валось, шляпки их были круто закручепы, как у молодых грибов.

Недавно в печати появилось сообщение о лучевом коп- сервировании цветов. Знаменитые голландские тюльпаны, облученные в определенной дозе, помещенные в пакет, на­дутый углекислым газом, удобны в транспортировке и мо­гут храниться длительный срок Казалось, что они только что сорваны с грядки, настолько свежими были их лепе­стки.

Особенно выгодно с помощью радиации увеличивать срок хранения овощей.

Картофель имеет один серьезный недостаток: при хра­нении он прорастает, клубни сморщиваются и теряют свои вкусовые качества. Над проблемой лучевой консервации картофеля начали работать многие ученые в различных научно-исследовательских институтах нашей страны. Мно­гочисленные опыты показали: облучение клубней в дозе 10 ООО рентген резко затормаживает или прекращает ве­сеннее прорастание картофеля и не понижает сопротивляе­мости его к заболеваниям. Вкусовые качества облученно­го картофеля не ухудшаются. Опытные дегустаторы не на­шли никаких изменений в блюдах, приготовленных из такого картофеля.

Проблема лучевой консервации интенсивно разрабаты­вается во всем мире. И это закономерно Слишком очевид­ные экономические выгоды она несет. Некоторые методы лучевого консервирования уже разрешены для практиче­ского использования. Другие еще не вышли из стен лабо­раторий И самое главное - идут многолетние опыты, ко­торые должны доказать: облученные продукты безвредны для человека.

На растениях легче экспериментировать, чем на живот­ных. Работая с облучением семян, можно ставить опыты сразу на многих тысячах биологических объектах. И поэто­му ученому заметно помогает статистика Да и экономиче­ски такой опыт значительно выгоднее.

А использовалась ли ионизирующая радиация для практических целей в животноводстве?

Животные намного чувствительнее к действию прони­кающей радиации, чем растения В нашей стране на одной из современных птицефабрик был поставлен такой опыт В течение нескольких часов в процессе инкубации кури­ные яйца облучали в дозе 1-2 рентген. Такие незначи­тельные дозы радиации оказали стимулирующее действие: количество вылупившихся цыплят увеличивалось, куры из облученных яиц обладали большей яйценоскостью.

Курам «повезло» или стимулирующее действие малых доз ионизирующей радиации - общая закономерность?

Наверное, тут таятся и общие закономерности Во вся­ком случае, врачи всего мира давно признают целебное действие радоновых ванн для человека.

Итак, ионизирующая радиация радиоактивных изотопов может разумно использоваться человеком и в сельском хо­зяйстве. Но любознательный читатель, наверно, уже заме­тил, что речь шла о внешних источниках проникающих лучей Как правило, о гамма-лучах, испускаемых радиоак­тивным кобальтом. Но существует огромное количество радиоактивных изотопов, которые испускают, например, «мягкие» бета-лучи, энергия которых невелика. Радиоак­тивный углерод С" и радиоактивная сера в3®, биологически наиболее важные элементы, обладают именно таким, «мягким», излучением. Энергия проникающего излучения другого биологически важного изотопа - радиоактивного фосфора Р3! значительно выше, но и она «мягче» по срав­нению с «жесткими» гамма-лучами кобальта Со0.

Возможности использования таких «меченых» атомов в народном хозяйстве тоже велики. Приведем примеры.

Чтобы врага победить, его надо знать. Чтобы успешно бороться с опасными вредителями сельского хозяйства, с вредными насекомыми, надо хорошо изучить их жизнь.

Ученые метили радиоактивным фосфором таких опас­ных насекомых, как саранча, малярийный комар, а также фруктовую муху. Этим способом определили скорость пе­релета саранчи и дальность ее распространения из главных очагов размножения; выяснили протяженность перелетов малярийных комаров. Фруктовая муха оказалась относи­тельным домоседом. Ее метили радиоактивным фосфором л выпускали в апельсиновой роще. При благоприятных усло­виях фруктовые мухи не удалялись от места обитания больше чем на несколько сот метров.

Полученные сведения позволили наметить расположе­ние заградительных зон и разработать систему обороны и борьбы с этими насекомыми.

Инсектициды - яды для насекомых, один из современ­ных способов борьбы с ними. Введем в эти химические со­единения радиоактивную метку. Индикатор сразу позволя­ет ответить на целый ряд важных вопросов. Как ведут себя эти соединения в организме насекомых, почему они ядовиты для них? Как сделать их избирательными по дей­ствию - не вредными для человека, растении и полезных насекомых? Не попадают ли яды в сельскохозяйственные продукты? Когда яды теряют свою токсичность?

На наших древнейших друзьях - пчелах были постав­лены опыты. Например, кормили радиоактивным фосфором рабочую пчелу, и она становилась меченой. В улей поме­щали счетчик радиоактивных частиц И вот удалось устано­вить, сколько раз в день вылетает на работу рабочая пче­ла, каков ее рабочий день и какова скорость полета Или по­ступали по-другому Подслащенные сахаром растворы с подмешанным к ним радиоактивным фосфором помещали на какое-нибудь поле Прилетающие на него пчелы, есте­ственно, метились И тогда можно было точно определить, какие поля пользуются у пчел наибольшей популярно­стью А отсюда и практические решения, которые помогут увеличить продукцию неутомимых тружеников.

Радиоактивные изотопы используются во всех исследо­ваниях по биохимии и физиологии насекомых. Значение этих работ понятно Изучив, например, деятельность гор­монов и ферментов, управляющих развитием и поведением полезных насекомых, можно будет использовать насекомых в интересах человека.

Ученые были поражены, когда узнали, с какой скоро­стью протекают в растениях некоторые биохимические процессы.

В коробочку из плексигласа помещали несколько листь­ев растения, впускали туда определенное количество ра­диоактивной по углероду углекислоты и оставляли растение на солнечном свету В результате процессов фотосинтеза углекислота усваивалась, переходила в состав органиче­ских веществ и транспортировалась в различные участки растения Через равные интервалы времени брали образцы и измеряли их радиоактивность И вот оказалось, что ско­рость передвижения вновь синтезированных соединений с восходящим током весьма значительна: дпем на солнечном свету - 50-100 сантиметров в минуту Раньше считали, что весь углерод в оргапических веществах образуется растепием из углекислоты воздуха, хотя его там сотые до­ли процепта Только сравнительно недавно с помощью меченых атомов удалось доказать, что углекислота и соли угольной кислоты, содержащиеся в почве, интенсивно.

Радиоактивным фосфором можно пометить насекомых и растения.

используются растением. Они активно транспортируются из корней в листья. Там, в результате фотосинтеза, из них образуются углеводы и идет синтез органических ве­ществ. А отсюда следовал практически важный вывод: для повышения урожайности необходимо обогащать почву углекислотой - вносить в почву соли угольной кислоты. Можно добавлять в почву и так называемые зеленые удоб­рения Например, запахивать многолетние травы. Пример­но через 20-30 дней начинается выделение углекисло­ты, которое продолжается все лето.

Так использование метода радиоактивных индикаторов оказалось полезным для науки об удобрениях растений.

Чем и как выгоднее подкармливать растения? В какие сроки? В какой форме вносить удобрения? Как на них влияют климатические условия? Как они транспортируют­ся в растениях и где усваиваются?

Меченый по фосфору суперфосфат, гидроксилапатит и другие удобрения вносили в почву. И оказалось, что куку­руза через 2,5 месяца после посадки лучше всего усваивала фосфор из трехкальциевого фосфата, хуже из суперфосфа­та и еще хуже из гидроксилапатита. Обнаружили, что хлопчатник особенно нуждается в подкормке фосфором в возрасте 10-20 дней и во время цветения.

С помощью меченых атомов определили роль в жизни растений микроэлементов - кобальта, марганца, цин­ка, меди. Достаточно, например, внести в почву 1-3 ки­лограмма бора на гектар пашни, и урожайность клевера резко возрастет. Марганец повышает урожайность сахар­ной свеклы, медный купорос - урожай зерновых на тор­фяных почвах.

Однажды на лекции по радиационной биохимии ко мне подошла студентка биологического факультета Москов­ского университета. Она жаловалась, что в наше время до­казана невозможность чуда. «Была какая-то надежда,- говорила она,- когда в печати появились сообщения о су­ществовании «снежного человека» или предположение, что на Землю упал не тунгусский метеорит, а прилетал кос­мический корабль с неведомых планет неземной цивили­зации. Так нет тебе! Дотошные ученые быстро доказали, что этого быть не может».

Но разве исследователи не нашли маленькое чудо, ко­гда установили, что отдельные деревья в лесу могут обме­ниваться между собой питательными веществами через сросшиеся корни? В дубовой роще радиоактивный броми­стый калий, введенный в дерево, через 3 дня обнаружи­вался у пяти рядом расположенных дубов!

Особенно часто используются химические соединения, меченые радиоактивным углеродом, фосфором, серой. И конечно, микроэлементы и такие соединения, как калий, натрий, железо... Но нужно хорошо представлять задачу исследования, чтобы правильно выбрать радиоизотоп На­пример, период полураспада радиоактивного углерода С" около 6000 лет. Этот радиоизотоп слишком «молод» для изучения геологических процессов, но он незаменим для исследования процессов обмена веществ в организме жи­вотных.

Пользуясь радиоактивным углеродом, можно узнать, какие условия питания необходимы для достижения мак­симальной продуктивности животных или как усваиваются питательные корма и что нужно ввести в рацион коров, чтобы увеличить удои молока.

Без хорошей теории не может быть и хорошей практи­ки Возможности метода радиоактивных изотопов для ре­шения самых сложных теоретических вопросов биохимии, физиологии, биофизики безграничны Ученый в течение одного рабочего дня не успеет прочитать даже одни заго­ловки статей и исследований, в которых рассказывается об использовании радиоактивных изотопов для различных биологических целей Даже специалистов нередко удивля­ют исследования, в которых используют меченые атомы.

Иногда сложные биологические задачи решаются про­сто Иногда наоборот: казалось бы, простое биологическое явление расшифровывается путем многолетней и кропот­ливой работы

Например, из каких составных, простейших частей об­разуется коровье молоко и в каких тканях?

Вопрос звучит просто, но для ответа на него потребо­вались усилия многих десятков ученых в течение многих

Три четверти века назад о существовании радиоактив­ных изотопов знало всего несколько человек. Сегодня «по­лезная радиация» стала достоянием миллионов людей. Альберт Эйнштейн сказал: «Явления радиоактивности - самая революционная сила технического прогресса за все время с тех пор, как доисторический человек открыл огонь».

Евгений Романцев. "Рожденная атомом"

Главная > Учебно-методическое пособие

2.2 Действие ионизирующих излучений на растения

В целом, растения более устойчивы к радиационному воздействию, чем птицы и млекопитающие. Облучение в небольших дозах может стимулировать жизнедеятельность растений – рисунок 3 - прорастание семян, интенсивность роста корешков, накопление зелёной массы и др. Нужно отметить, что дозовая кривая, приведенная на этом рисунке безусловно повторяется в опытах в отношении самых разнообразных свойств растений для доз радиационного воздействия, вызывающих угнетение процессов. В отношении стимуляции дозовая характеристика процессов не так очевидна. Во многих случаях проявление стимуляции на живых объектах не наблюдается.

Рисунок 3 - Зависимость числа проросших глазков картофеля сорта от дозы облучения

Большие дозы (200 - 400 Гр) вызывают снижение выживаемости растений, появление уродств, мутаций, возникновение опухолей. Нарушения роста и развития растений при облучении в значительной степени связаны с изменениями обмена веществ и появлением первичных радиотоксинов, которые в малых количествах стимулируют жизнедеятельность, а в больших - подавляют и нарушают её. Так, промывка облученных семян в течение суток после облучения снижает угнетающий эффект на 50-70%.

У растений лучевая болезнь возникает под воздействием различных видов ионизирующих излучений. Наиболее опасны альфа-частицы и нейтроны, нарушающие нуклеиновый, углеводный и жировой обмен в растениях. Очень чувствительны к облучению корни и молодые ткани. Общий симптом лучевой болезни - задержка роста. Например, у молодых растений пшеницы, фасоли, кукурузы и других задержка роста наблюдается через 20-30 ч после облучения дозой более 4 Гр. В то же время разными исследователями показано, что облучение воздушно-сухих семян многих культур дозами 3-15 Гр не только не приводит к угнетению роста и развития растений, а напротив способствует ускорению многих биохимических процессов. Это выражалось в ускорении развития и увеличении урожайности.

Установлены видовые, сортовые и индивидуальные внутрисортовые различия в радиочувствительности растений. Например, симптомы лучевой болезни у традесканции возникают при её облучении дозой 40 р, у гладиолуса - 6000 р. Смертельная доза облучения для большинства высших растений 2000-3000 р (поглощенная доза порядка 20-30 Гр), а низших, например дрожжей, 30 000 р (300 Гр). При лучевой болезни повышается также восприимчивость растений к инфекционным болезням. Пораженные растения нельзя использовать в пищу и на корм скоту, так как они могут вызвать лучевую болезнь у человека и животных. Методы защиты растений от лучевой болезни разработаны недостаточно.

2.3 Действие ионизирующих излучений на беспозвоночных

Радиочувствительность беспозвоночных изменяется в значительных пределах: полулетальная доза у некоторых асцидий, кишечно-полосных, членистоногих, нематод колеблется в пределах от 30 до 50 Гр. У моллюсков она находится в пределах 120-200 Гр, у амеб эта величина достигает 1000 Гр, а у инфузорий устойчивость близка к устойчивости микроорганизмов - LD 50 находится в пределах 3000 - 7000 Гр.

Радиочувствительность зависит как от совокупности свойств организма и состояния окружающей среды, так и от периода онтогенеза. Так у дрозофилы полулетальная доза в стадии имаго равна 950 Гр, в стадии куколки 20-65 Гр, чувствительность яиц, в зависимости от времени колеблется от 2 до 8 Гр, а в стадии личинки она равна 100-250 Гр.

2.4 Действие ионизирующих излучений на позвоночных

Чувствительность позвоночных к радиационному воздействию значительно выше, чем у предыдущих групп организмов. Наиболее радиоустойчивы змеи, у которых LD 50 находится в пределах от 80 до 200 Гр, у тритонов и голубей она соответствует величинам 25-30 Гр, у черепах – 15-20 Гр, у кур – 10-15 Гр, для карповых рыб – 5-20 Гр, для грызунов 5-9 Гр. Млекопитающие еще менее устойчивы к действию радиации. Полулетальная доза для собак 2,5-4 Гр, а у обезьян 2- 5,5 Гр. У животных лучевая болезнь. наиболее изучена у одомашненных млекопитающих и птиц. Различают острую и хроническую лучевую болезнь. Острая возникает при однократном общем облучении экспозиционными дозами: 1,5-2,0 Гр (лёгкая степень), 2,0-4,0 Гр (средняя), 4,0-6,0 Гр (тяжёлая) и свыше 6,0 Гр (крайне тяжёлая). В зависимости от тяжести течения лучевой болезни. у животных наблюдают угнетение, ухудшение аппетита, рвоту (у свиней), жажду, поносы (могут быть со слизью, кровью), кратковременное повышение температуры тела, выпадение волос (особенно у овец), кровоизлияния на слизистых оболочках, ослабление сердечной деятельности, лимфопению и лейкопению. При крайне тяжёлом течении - шаткость походки, мышечные судороги, понос и смерть. Выздоровление возможно при лёгком и среднем течении болезни. Хроническая лучевая болезнь. развивается при длительных воздействиях небольших доз общего гамма-излучения или поступивших внутрь организма радиоактивных веществ. Она сопровождается постепенным ослаблением сердечной деятельности, нарушением функций желёз внутренней секреции, истощением, ослаблением сопротивляемости инфекционным болезням. Лечению предшествует вывод животных из зараженной местности, удаление радиоактивных веществ с наружных покровов водой, моющими и другими средствами. В начале болезни рекомендуют переливание крови или кровезаменителей, внутривенное введение 25-40%-ного раствора глюкозы с аскорбиновой кислотой. При заражении через пищеварительный тракт - применяют адсорбенты (водная смесь костной муки или сернокислого бария с йодистым калием), при поражении через лёгкие - отхаркивающие средства.

При внутреннем поражении животных радиоактивные вещества выделяются из организма, загрязняя внешнюю среду, а с продуктами питания (молоко, мясо, яйца) могут попадать в организм человека. Продукты от животных, подвергшихся лучевому поражению, не используются в пищу или на корм зверям, так как могут вызвать у них лучевую болезнь.

2.5 Действие ионизирующих излучений на человека

Накопленный к настоящему времени большой материал, полученный в экспериментах на животных, а также на основе обобщения многолетних данных о состоянии здоровья рентгенологов, радиологов и других лиц, которые подвергались воздействию ионизирующих излучений, показывает, что при однократном равномерном гамма - облучении всего тела наступают последствия, обобщенные в таблице 1. Таблица 1 – Последствия при однократном равномерном гамма - облучении всего тела

Доза, Гр *

Последствия

смерть наступает через несколько часов или дней вследствие повреждения центральной нервной системы.

смерть наступает через одну - две недели вследствие внутренних кровоизлияний.

50% облученных умирает в течение одного-двух месяцев вследствие поражения клеток костного мозга.

нетрудоспособность. Возможна смерть.

нижний уровень развития лучевой болезни.

кратковременные незначительные изменения состава крови.

облучение при рентгеноскопии желудка (разовое).

допустимое аварийное облучение персонала (разовое).

допустимое аварийное облучение населения (разовое).

допустимое облучение персонала в нормальных условиях за год.

допустимое облучение населения в нормальных условиях за год.

средняя годовая эквивалентная доза облучения за счет всех источников излучения.

* - для γ и электронного облучения, поглощенная доза (Гр) равна эквивалентной дозе (Зв).

Лучевая болезнь, заболевание, возникающее от воздействия различных видов ионизирующих излучений. Человек, животные, микроорганизмы и растения постоянно подвергаются извне действию гамма-излучений земной коры, космических лучей и изнутри облучаются находящимися в организме человека в ничтожных количествах радиоактивными веществами (46 K, 226 Ra, 222 Rn, 14 C и др.). Развитие лучевой болезни. наступает лишь тогда, когда суммарная доза облучения начинает превышать естественный радиоактивный фон. Способность радиации вызывать лучевую болезнь зависит от биологического действия ионизирующих излучений; чем больше поглощённая доза излучения, тем сильнее выражено поражающее действие радиации.

У человека лучевая болезнь может быть обусловлена внешним облучением, когда источник его находится вне организма, и внутренним - при попадании радиоактивных веществ в организм с вдыхаемым воздухом, через желудочно-кишечный тракт или кожу. Лучевая болезнь может развиться при относительно равномерном облучении всего тела, какого-либо органа или участка организма. Различают острую лучевую болезнь, возникающую от однократного общего облучения в сравнительно больших дозах (сотни рад), и хроническая форму, которая может быть результатом перенесённой острой лучевой болезни либо хронического воздействия малыми дозами (единицы рад).

Общие клинические проявления лучевой болезни зависят главным образом от полученной суммарной дозы. При однократном общем облучении дозой до 100 р (порядка 1 Гр) происходят сравнительно лёгкие изменения, которые могут рассматриваться как состояние так называемой предболезни. Дозы свыше 100 р вызывают те или иные формы лучевой болезни (костно-мозговую, кишечную) разной тяжести, при которых основные проявления и исход лучевой болезни зависят главным образом от степени поражения органов кроветворения.

Дозы однократного общего облучения свыше 600 р (более 6 Гр) считают абсолютно смертельными; гибель наступает в сроки от 1 до 2 мес после облучения. При наиболее типичной форме острой лучевой болезни вначале, через несколько минут или часов, у получивших дозу больше 200 р возникают первичные реакции (тошнота, рвота, общая слабость). Через 3-4 сут симптомы стихают, наступает период мнимого благополучия. Однако тщательное клиническое обследование выявляет дальнейшее развитие болезни. Этот период продолжается от 14-15 суток до 4-5 недель.

В последующем ухудшается общее состояние, нарастает слабость, появляются кровоизлияния, повышается температура тела. Количество лейкоцитов в периферической крови после кратковременного увеличения прогрессивно уменьшается, падая (вследствие поражения кроветворных органов) до чрезвычайно низких цифр (лучевая лейкопения), что предрасполагает к развитию сепсиса и кровоизлияний. Продолжительность этого периода 2-3 недели.

Существуют и другие формы лучевой болезни. Например, при общем облучении в дозах от 1000 до 5000 р (10-50 Гр) развивается кишечная форма лучевой болезни, характеризующаяся преимущественно поражением кишечника, ведущим к нарушению водно-солевого обмена (от обильных поносов), и нарушением кровообращения. Человек при этой форме обычно погибает в течение первых суток, минуя обычные фазы развития лучевой болезни. После общего облучения в дозах свыше 5000 р (более 50 Гр) смерть наступает через 1-3 сутки или даже в момент самого облучения от повреждения тканей головного мозга (эта форма лучевой болезни называется церебральной). Другие формы лучевой болезни человека и животных в основном определяются местом облучения.

Особенности течения и степень нарушений при лучевой болезни зависят от индивидуальной и возрастной чувствительности; дети и старики менее устойчивы к облучению, поэтому тяжёлые поражения у них могут возникать от меньших доз излучения. В период эмбрионального развития ткани организма особенно чувствительны к действию радиации, поэтому облучение беременных женщин (например, применение лучевой терапии) нежелательно даже в малых дозах.

Процесс восстановления организма после облучения в умеренных дозах наступает быстро. При лёгких формах лучевой болезни выраженные клинические проявления могут отсутствовать. При более тяжёлых формах лучевой болезни период полного восстановления иногда затягивается до года и больше. Как отдалённые проявления лучевой болезни у женщин отмечается бесплодие, у мужчин - отсутствие сперматозоидов; эти изменения чаще носят временный характер. Через много месяцев и даже лет, после облучения, иногда развивается помутнение хрусталика (так называемая лучевая катаракта). После перенесённой острой лучевой болезни иногда остаются стойкие невротические проявления, очаговые нарушения кровообращения; возможно развитие склеротических изменений, злокачественных новообразований, лейкозов, появление у потомства пороков развития, наследственных заболеваний.

Характерные черты хронической лучевой болезни - длительность и волнообразность её течения. Это обусловлено проявлениями поражения, с одной стороны, и восстановительных и приспособительных реакций - с другой. При преимущественном поражении того или иного органа или ткани отмечается несоответствие между глубиной поражения поврежденных структур и слабо выраженными или поздно проявляющимися признаками общих реакций организма.

На ранних стадиях основные клинические проявления - многообразные нарушения нервной регуляции функций внутренних органов и в первую очередь сердечно-сосудистой системы. Могут возникать изменения ферментативной активности и секреторно-моторной функции желудочно-кишечного тракта; нарушения физиологической регенерации кроветворения вызывают развитие лейкопении. При продолжающемся облучении и прогрессировании заболевания все проявления усугубляются.

Лечение острой лучевой болезни направлено на нормализацию органов кроветворения (пересадка костного мозга, переливание крови, введение препаратов нуклеиновых кислот, стимуляторы кроветворения), борьбу с инфекцией (антибиотики), предупреждение возникновения кровоизлияний (витамины), уменьшение интоксикации (кровопускание, кровозамещение), воздействие на нервную систему и др. При хронической лучевой болезни. назначают питание, богатое белками и витаминами, длительное пребывание на свежем воздухе, лечебную физкультуру; симптоматические средства (сердечные, нейротропные, нормализующие функцию желудочно-кишечного тракта и тому подобное). При нарушении кроветворения - стимулирующие его препараты.

Принятые законодательно нормы предельно допустимых доз и концентраций радиоизотопов для различных производств и профессиональных групп установлены из расчёта общего облучения в дозе не более 50 мЗв/год (5 рад/год) и гарантируют безопасность работы с этими веществами. Опасность облучения может возникнуть при нарушении правил охраны труда или в аварийных ситуациях, в условиях военного времени (применение противником атомного оружия).

Атомные взрывы резко повышают загрязнение внешней среды радиоактивными продуктами деления, вследствие чего в ней увеличивается количество радиоактивного йода (111 I), стронция (90 Sr), цезия (137 Cs), углерода (14 C), плутония (239 Pu) и других. Возникает угроза опасного для здоровья облучения и увеличения числа наследственных болезней. В подобных случаях решающее значение для профилактики развития лучевой болезни имеет защита от ионизирующих излучений.

2.5.1 Дозы, получаемые человеком от различных источников Радиационные воздействия на человека отличаются значительной разнообразностью, они могут быть, в зависимости от места нахождения источников относительно организма, подвергшегося воздействию радиации:- внешними;- внутренними.В зависимости от происхождения:- естественными;- техногенными (антропогенными).В зависимости от физического состояния нуклидов:- газообразными;- жидкими;- твердыми.В зависимости от активности:- высокоактивными;- низкоактивными.В зависимости от нахождения источника ионизирующего излучения:- земными;- космическими.Дозы, получаемые человеком от естественных источников, могут колебаться в значительной степени в зависимости от места проживания и работы. Так жители гор и ландшафтом с повышенным радиационным фоном могут получать в дозы несколько раз превышающие годовые нагрузки жителей равнин. Летчики, альпинисты также получают дополнительные лучевые нагрузки. Допустимые пределы приведены в пункте 10 – нормы радиационной безопасности, а на диаграмме – рисунок - 4, показаны величины доз, получаемые человеком от различных источников.На диаграмме показаны величины естественного фонового облучения, средние величины доз, получаемых от экранов телевизоров и компьютеров, величина допустимого облучения, дозы, получаемые при рентгене зубов и желудка, и, наконец, планируемая доза при аварийном облучении. Нормируемой величиной является также содержание некоторых радионуклидов техногенного происхождения в продуктах питания. В первую очередь это относится к радионуклидам цезия-137 и стронция-90. На диаграмме – рисунок 5 - приводится содержание К-40 в продуктах питания в сравнении с допустимым содержанием Cs-137 и Sr-90.Как следует из диаграммы, во многих продуктах питания содержание естественного радионуклида К 40 составляет значительную величину по сравнению с допустимым содержанием Cs-137 и Sr-90. В почве территорий с высокими антропогенными загрязнениями цезием и стронцием, содержание калия-40, как правило, во много раз превышает средние суммарные величины Cs 137 и Sr 90 . Вклад радиоактивного калия составляет 12,3 % от всей величины среднего фонового уровня естественного облучения костного мозга человека и дает основную долю внутреннего облучения.

Естественное облучение костного мозга человека – одного из наиболее чувствительных органов складывается из облучения космическими источниками, суммарная величина которых достигает 50 мкР/год, величина литосферных и атмосферных источников также равна 50 мкР/год.

Из элементов, находящихся в организме существенную роль играет К 40 , который дает 15 мкР/год, меньший вклад дают другие элементы, находящиеся внутри организма человека – рисунок 6 - радон - 222 адсорбированный в крови дает 3 мкР/год, углерод – 14 – 1,6 мкР/год, радон - 226 и радон -228 и дочерние продукты их распада суммарно дают также 1,6 мкР/год, и, наконец, полоний - 210 и дочерние продукты распада дают 0,4 мкР/год.

2.6 Сравнительные величины радиочувствительности

Таблица 2- Радиочувствительность разных групп организмов

Объект

LD 50 , Гр

Бактерии

Высшие растения

Беспозвоночные

Позвоночные

Как видно из таблицы, диапазон устойчивости к радиации в живой природе достаточно широк. Наиболее устойчивы к действию ионизирующих излучений микроорганизмы - дозы, способные вызвать их гибель, составляют сотни и тысячи грей. Для беспозвоночных животных диапазон летальных доз обычно на порядок ниже этих величин, а для позвоночных они составляют десятки грей, здесь наиболее чувствительны к радиационным воздействиям млекопитающие. Исходя из данных таблицы 2 можно сделать вывод, что по мере усложнения биологической организации объектов их устойчивость к радиации резко снижается.

Обычно животные, облученные в дозе 5 - 10 Гр, живут в среднем (за некоторым исключением) от нескольких дней до нескольких недель. Лучевой синдром в этом диапазоне доз облучения назван «костномозговой» или «кроветворный», ибо решающее значение в его исходе имеет поражение кроветворной системы организма, в первую очередь костного мозга. В результате глубокого торможения процессов клеточного деления происходит опустошение костного мозга. На исход лучевой болезни существенно влияет способность кроветворных органов к восстановлению, которое зависит от количества сохранившихся стволовых клеток.

В интервале доз от 10 до 100 Гр средняя продолжительность жизни млекопитающих практически не зависит от величины поглощенной дозы и составляет в среднем 3,5 сут. Эффект независимости средней продолжительности жизни от величины дозы облучения получил название «3,5-дневный эффект», а возникающий лучевой синдром - «желудочно-кишечный». Летальный исход этого синдрома связан с поражением слизистой кишечника и желудка, высокой чувствительностью к радиации быстро делящихся эпителиальных клеток, оголением ворсинок.

Облучение в дозах, превышающих 100 Гр, приводит к гибели млекопитающих, наступающей в первые несколько дней или даже несколько часов. У гибнущих животных наблюдают явные признаки поражения центральной нервной системы, поэтому этот лучевой синдром называют «церебральный». Происходит резкое подавление жизнедеятельности нервных клеток, реакция которых на облучение принципиально отличается от реакции костного мозга и кишечника отсутствием клеточных потерь.

Если поглощенная доза достигает 1000 Гр и более, животные гибнут сразу же «под лучом». Механизм такого поражения может быть связан с тем, что возникают массовые структурные поражения макромолекул. Иногда лучевой синдром, вызванный облучением в таких высоких дозах ионизирующей радиации, называют молекулярной смертью.

В ответных реакциях организма на действие ионизирующей радиации условно можно выделить три последовательно развивающиеся во времени стадии; физические реакции, биофизические процессы и общебиологические изменения. Физическая стадия - поглощение энергии, ионизация и возбуждение атомов и молекул, образование радикалов - происходит в течение микро- и миллисекунд. Биофизические процессы - внутри- и межмолекулярный перенос энергии, взаимодействие радикалов друг с другом и с неповрежденными молекулами, внутримолекулярные изменения - происходят в течение секунд - миллисекунд. Общебиологические изменения в клетке и организме - образование стабильных измененных молекул, нарушение генетического кода, транскрипции и трансляции, биохимические, физиологические и морфологические изменения в клетках и тканях, иногда заканчивающиеся гибелью организма, могут протекать в течение минут - суток или растягиваться на годы.

Установлено, что разные органы и ткани сильно различаются по своей чувствительности к ионизирующей радиации, а также по роли в лучевой патологии и конечном исходе болезни. По морфологическим изменениям их радиочувствительность располагается (по степени убывания чувствительности) в такой последовательности:

Органы кроветворения;

Половые железы;

Слизистые оболочки, слюнные, потовые и сальные железы, волосяные сосочки, эпидермис;

Желудочно-кишечный тракт;

Органы дыхания;

Железы внутренней секреции (надпочечники, гипофиз, щитовидная железа, островки поджелудочной железы, паращитовидная железа);

Органы выделения;

Мышечная и соединительная ткани;

Соматические костная и хрящевая ткани;

Нервная ткань.

Органы кроветворения наиболее радиочувствительны, поражение костного мозга, тимуса, селезенки, лимфатических узлов - одно из важнейших проявлений острой лучевой болезни. Значительные морфологические и функциональные нарушения наблюдаются во всех кроветворных органах, причем изменения в системе крови представляется возможным обнаружить вскоре после действия радиации и даже при относительно небольших дозах облучения.

Обычно процесс клеточного опустошения подразделяют на три стадии. Первая, длящаяся около 3 ч, характеризуется относительным постоянством содержания клеток в кроветворных тканях. Вторая стадия охватывает интервал времени от 3 до 7 ч после облучения, для нее характерно резкое и глубокое опустошение костного мозга и лимфоидных тканей (количество клеток в костномозговой ткани может снижаться более чем наполовину). В третьей стадии скорость клеточного опустошения замедляется и дальнейшее уменьшение количества клеток происходит в костном мозге в результате репродуктивной гибели, а также продолжающейся дифференцировки части клеток и миграции их в кровь. Длительность течения третьей стадии пропорциональна дозе облучения.

Солеустойчивость

Растения, устойчивые к засолению, называют галофитами (от греч. galos - соль, Phyton - растение). Они отличаются от гликофитов - растений незасоленных водоемов и почв - рядом анатомических и метаболических особенностей. У гликофитов при засолении снижается рост клеток растяжением, нарушается азотный обмен и накапливается токсичный аммиак.

Все галофиты делят на три группы:

1. Настоящие галофиты (эугалофиты) - наиболее устойчивые растения, накапливающие в вакуолях значительные количество солей. Поэтому они обладают большой сосущей силой, позволяющей поглощать воду из сильно засоленной почвы. Для растений этой группы характерна мясистость листьев, которая исчезает при выращивании их на незасоленных почвах.

2. Солевыделяющие галофиты (криногалофиты), поглощая соли, не накапливают их внутри тканей, а выводят из клеток на поверхность листьев с помощью секреторных железок. Выделение солей железками осуществляется с помощью ионных насосов и сопровождается транспортом больших количеств воды. Соли удаляется с опадающими листьями. У некоторых растений избавление от избытка солей происходит без поглощения больших количеств воды, так как соль выделяется в вакуоль клетки-головки листового волоска с последующим ее обламыванием и восстановлением.

3. Соленепроницаемые галофиты (гликогалофиты) растут на менее засоленных почвах. Высокое осмотическое давление в их клетках поддерживается за счет продуктов фотосинтеза, а клетки малопроницаемы для солей.

Солеустойчивость растений увеличивается после предпосевного закаливания семян. Семена замачивают один час в 3 % растворе NaCl с последующим промыванием водой в течение 1,5 часа. Этот прием повышает устойчивость растений к хлоридному засолению. Для закалки к сульфатному засолению семена в течение суток вымачивают в 0,2 %-ном растворе сульфата магния.

Различают прямое и косвенное действие радиации на живые организмы. Прямое действие энергии излучения на молекулу переводит ее в возбужденное или ионизированное состояние. Особенно опасны повреждения структуры ДНК: разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований. Косвенное действие радиации состоит в повреждениях молекул, мембран, органоидов клеток, вызываемых продуктами радиолиза воды. Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию. Ионы воды за время жизни 10 -15 - 10 -10 сек способны образовать химически активные свободные радикалы и пероксиды. Эти сильные окислители за время жизни 10 -6 - 10 -5 сек могут повредить нуклеиновые кислоты, белки-ферменты, липиды мембран. Первоначальные повреждения усиливаются при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков.



Устойчивость растений к действию радиации определяется следующими факторами:

1. Постоянное присутствие ферментных систем репарации ДНК. Они отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК.

2. Наличие в клетках веществ – радиопротекторов (сульфгидрильные соединения, аскорбиновая кислота, каталаза, пероксидаза, полифенолоксидаза). Они ликвидируют свободные радикалы и пероксиды, возникающие при облучении.

3. Восстановление на уровне организма обеспечивается у растений: а) неоднородностью популяции делящихся клеток меристем, которые содержат клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью, б) присутствием в апикальных меристемах покоящихся клеток, которые приступают к делению при остановке деления клеток основной меристемы, в) наличием спящих почек, которые после гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.


После выпадения радиоактивных осадков часть их непосредственно попадает на растения, так или иначе влияя на них в ближайшее же время, а часть поступает затем через корневую систе­му, вызывая тот или иной эффект. Некоторые реакции растений на лучевые поражения рассмотрим на примере лесных древесных растений.

Почки. Одним из характерных признаков радиационного поражения древесных растений является повреждение и гибель ростовых почек верхушечных и боковых побегов. Например, при поглощенной дозе 20-40 Гр усыхают не все почки. Часть из них дает прирост побегов в первую вегетацию после облучения. Побеги сильно укорочены и не имеют хвои или имеют редкие одиночные хвоинки вместо пучков.

Листья и хвоя. Поражение листьев и хвои древесных растений при облучении - один из важнейших лучевых эффектов, т. к. связан с поражением и гибелью деревьев. Например, при остром γ-облучении через 3 месяца при дозах 100-200 Гр начинается поражение сосны. Через 15-20 дней после облучения окраска хвои из темно-зеленой становится оранжево-желтой. Затем эта окраска появляется на всей кроне, и деревья усыхают. В диапазоне поглощенных доз 70-100 Гр внешние признаки поражения сосны появляются через 6 месяцев (желтеет хвоя). При облучении 5-40 Гр наблюдается пожелтение отдельных пучков хвои на однолетних побегах. При дозах 10-60 Гр в верхней части крон деревьев сосны желтеет двухлетняя хвоя на 1/2-1/4 длины побега. При до­зах 60-100 Гр двухлетняя хвоя полностью погибает.

Камбий. Даже при частичном радиационном повреждении камбия деревья становятся ветровальными и буреломными. В эксперименте большая часть деревьев в течение двух лет после облучения была сломана ветром.

Прирост. Торможение роста побегов сосны осенью наблюдается при поглощенной дозе 10-30 Гр. В первый год после облучения побеги были короче в 2-3 раза, на второй вегетационный период они существенно меньше, а на третий - исчезают. Достоверное снижение продуктивности сосны наблюдается при поглощенной дозе свыше 5 Гр и особенно заметно во второй и последующие периоды вегетации после облучения. При поглощенной дозе свыше 25 Гр продуктивность уже через 2 года снижается до нуляФенология. Реакция на облучение у лиственных пород проявляется в сдвигах наступления основных фенофаз: замедление в распускании листьев весной и более ранний листопад. Существенных различий в прохождении весенних фенофаз у березы и осины облученных и необлученных насаждениях практически нет, а осенью на облученных осинах и березах листья раньше желтеют и опадают. На соснах при поглощенных дозах свыше 5 Гр отмечается раннее опадение хвои старших возрастов. При дозах 100- 200 Гр задержка сроков распускания листьев у деревьев составляет 7-9 дней, на следующий год - 4-5 дней. Через 5 лет с момента загрязнения фенологический сдвиг уменьшается, а через 7 лет исчезает.

Воздействие радиации на животных.

В воздействии радиации, нового для популяций животных экологического фактора, выделяют 2 периода:

1. Популяция попала впервые в условия сильного радиоактивного загрязнения. Наблюдается резкое воздействие на популяцию: изменяются возрастная, половая и пространственная структуры популяции: увеличивается смертность и снижается

2. Популяция прожила в условиях радиоактивного загрязнения в течение нескольких лет, за которые дала ряд новых поколений. В этом случае в результате увеличения изменчивости особей в популяции и благодаря радиационному отбору возникает радиоадаптация популяции, которая выходит на более высокий уровень по радио­резистентности. Эффекты воздействия на нее повышенного радиоактивного фактора среды обитания в этот период менее заметны.

Смертность и продолжительность жизни. Радиоактивное излучение в больших дозах губительно действует на животных в биогеоценозах. Так, при облучении смешанного леса мощностью дозы 0,5 Гр/сут. отмечается снижение численности и гибель особей в популяции птиц. Для гибели птиц характерны величины ЛД 5о / 30 в диапазоне 4,6-30 Гр.

Плодовитость. Уровень плодовитости - более радиочувствительный параметр, чем уровень гибели. Минимальные разовые дозы облучения, приводящие к снижению темпов воспроизводства, могут составлять менее 10% от доз, являющихся непосредственной причиной гибели животных.

Хроническое поступление малых доз 90 Sr в организм мышей снижает у них величину выводка. Радиочувствительность половых желез различных видов сильно колеблется; однако самки мышей относятся к числу наиболее радиочувствительных животных. Пло­довитость у мышей снижается после воздействия на самок доз око­ло 0,2 Гр. Самцы мышей менее чувствительны, и для снижения у них плодовитости требуются дозы выше 3 Гр. Стойкое бесплодие у самок мышей наступает после дозы 1 Гр.

Интенсивность размножения падает на загрязненных территориях из-за более быстрого отмирания взрослых особей, снижается величина выводка.

Развитие. Наблюдаются задержки в развитии и различные аномалии в потомстве животных. Так, при облучении птенцов они отстают по росту и развитию оперения, особенно если облучение произошло в возрасте 2-х дней, а мыши на загрязненных 90 Sr территориях раньше созревают и участвуют в размножении.

Поведение животных. Изменение поведения животных при их облучении рентгеновскими и -γ-лучами заключается в распознавании организмами источника излучения и его избегании. Особенности поведения мышей и крыс, морских свинок и обезьян в поле γ-излучения свидетельствуют о том, что высшие позвоночные обладают способностью определять местоположение источника излучения и избегать



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: