Какие закономерности присущи природным явлениям. Значение законы явлений природы в энциклопедии брокгауза и ефрона. Изменчивость самой Природы

В сжатой и доступной форме изложен полный курс дисциплины, освещены важнейшие современные концепции наук о неживой и живой природе. Является дополненным и переработанным вариантом учебного пособия, рекомендованного Министерством образования и науки РФ для изучения курса «Концепции современного естествознания». Для студентов бакалавриата, магистрантов, аспирантов и преподавателей гуманитарного профиля, для учителей средних школ, лицеев и колледжей, а также для широкого круга читателей, интересующихся различными аспектами естествознания.

* * *

Приведённый ознакомительный фрагмент книги Концепции современного естествознания (А. П. Садохин) предоставлен нашим книжным партнёром - компанией ЛитРес .

Глава 4. Физические концепции описания природы

4.1. Понятие физической картины мира

Познавая окружающий мир, человек создает в своем сознании его определенную модель – картину мира. На каждом этапе своего развития человечество по-разному представляет себе мир, в котором оно живет. Поэтому в истории человечества существовали различные картины мира: мифологическая, религиозная, научная и др. Кроме того, как уже было отмечено, по мере своего развития каждая отдельная наука также может формировать собственную картину мира (физическую, химическую, биологическую и др.). Однако из всего многообразия картин мира, существующих в современной науке, самое широкое представление дает общая научная картина мира, описывающая и природу, и общество, и человека.

Научная картина мира формируется на основе достижений естественных, общественных и гуманитарных наук. Но фундаментом этой картины, бесспорно, является естествознание. Значение естествознания для формирования научной картины мира настолько велико, что нередко научную картину миру сводят к естественно-научной картине мира, содержание которой составляют картины мира отдельных естественных наук.

Естественно-научная картина мира представляет собой систематизированное и достоверное знание о природе, исторически сформировавшееся в ходе развития естествознания. В эту картину мира входят знания, полученные из всех естественных наук, их фундаментальных идей и теорий. В то же время история науки свидетельствует, что основную часть содержания естествознания составляют физические знания. Именно физика была и остается наиболее развитой и систематизированной естественной наукой. Вклад других естественных наук в формирование картины мира был меньшим. Поэтому, когда в европейской цивилизации Нового времени складывалась классическая научная картина мира, естественным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она смогла создать собственную физическую картину мира (в отличие от других естественных наук, которые лишь в XX в. поставили и решили эту задачу).

Физика – это наука, изучающая простейшие и вместе с тем наиболее общие закономерности природы, свойства и строение материи, законы ее движения. В любом явлении физика ищет то, что объединяет его со всеми другими явлениями природы. Поэтому понятия и законы физики фундаментальны, т. е. являются основополагающими для всего естествознания.

Само слово «физика» происходит от греческого phýsis – природа. Эта наука возникла еще в Античности и первоначально охватывала всю совокупность знаний о природных явлениях; тогда физика была тождественна всему естествознанию. Лишь к эпохе эллинизма по мере дифференциации знаний и методов исследования из общей науки о природе выделились отдельные естественные науки, в том числе и физика.

В своей основе физика – экспериментальная наука: ее законы базируются на фактах, установленных опытным путем. Такой она стала начиная с Нового времени. Но помимо экспериментальной физики различают и теоретическую физику, цель которой состоит в формулировании законов природы. Экспериментальная и теоретическая физика не могут существовать друг без друга.

В соответствии с многообразием исследуемых физических объектов, уровней организации и форм движения современная физика подразделяется на ряд дисциплин, так или иначе связанных друг с другом. По изучаемым физическим объектам физика делится на физику элементарных частиц, физику ядра, физику атомов, молекул, газов, жидкостей, твердого тела и плазмы. По критерию уровней организации материи – на физику микро-, макро- и мегамира. По характеру изучаемых процессов, явлений и форм движения (взаимодействия) различают механические, электромагнитные, квантовые и гравитационные явления, тепловые и термодинамические процессы и соответствующие им области физики – механику, электродинамику, квантовую физику, теорию гравитации, термодинамику и статистическую физику.

Кроме того, современная физика содержит небольшое количество фундаментальных теорий, охватывающих все разделы физического знания. Эти теории представляют собой совокупность наиболее важных знаний о характере физических процессов и явлений, приближенное, но наиболее полное отображение различных форм движения материи в природе.

Понятие «физическая картина мира» используется в естествознании давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания. Самое общее теоретическое знание в физике, система понятий, принципов и гипотез служат основой для построения естественно-научных теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, с другой – вводит в физику новые идеи и обусловленные ими понятия, принципы и гипотезы, которые коренным образом меняют основы физического теоретического знания. Иными словами, физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические идеи и теории, наиболее общие понятия, принципы и методы познания, соответствующие современному этапу развития физики.

Развитие самой физики непосредственно связано с физической картиной мира, поскольку представляет собой процесс становления и смены различных ее типов. Постоянное развитие и замена одних картин мира другими, более адекватно отражающими структуру и свойства материи, есть процесс развития самой физической картины мира. Основой для выделения отдельных типов физической картины мира служит качественное изменение фундаментальных физических идей, являющихся базой для физической теории и наших представлений о структуре материи и формах ее существования. С изменением физической картины мира начинается новый этап в развитии физики – с иной системой исходных понятий, принципов, гипотез и стиля мышления, с иными гносеологическими предпосылками. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в смене старой картины мира новой.

В основе объяснения явлений природы с точки зрения физики лежат фундаментальные физические понятия и принципы. К наиболее общим относятся материя, движение, физическое взаимодействие, пространство и время, причинно-следственная связь, место и роль человека в мире. Важнейшим является понятие материи. Поэтому революции в физике всегда связаны с изменением представлений о строении материи. В истории физики Нового времени это происходило дважды. В XIX веке был совершен переход от утвердившихся в XVII в. атомистических, корпускулярных представлений о материи к полевым (континуальным). В XX веке континуальные представления уступили место современным квантовым. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.

Хронологически первой в истории естествознания физической картиной мира была механическая картина, в рамках которой не могли найти объяснения электромагнитные явления, и поэтому она была дополнена электромагнитной (континуальной) картиной мира. Однако многочисленные необъяснимые физические явления, открытые в конце XIX в., показали ограниченность электромагнитной картины мира, что привело к возникновению квантово-полевой картины мира.

4.2. Механическая картина мира

Становление механической картины мира происходило под влиянием метафизических материалистических представлений о материи и формах ее существования. Основу этой картины составили идеи и законы механики, которые в XVII в. сформировали самый разработанный раздел физики. По сути дела, именно механика явилась первой фундаментальной физической теорией. Идеи, принципы и теории механики представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе.

В широком смысле механика изучает механическое движение материи, тел и происходящее при этом взаимодействие между ними. Под механическим движением понимают изменение с течением времени взаимного положения тел или частиц в пространстве. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения и т. п. Происходящие в процессе механического движения взаимодействия представляют собой такие действия тел друг на друга, результатом которых становится изменение скоростей перемещения этих тел в пространстве или их деформация.

Основу механической картины мира составила теория атомов, согласно которой материя имеет дискретную (прерывистую) структуру. Весь мир, включая человека, механическая картина рассматривала как совокупность огромного числа неделимых материальных частиц – атомов. Они перемещаются в пространстве и времени в соответствии с немногими законами механики. Материя есть вещество, состоящее из мельчайших, неделимых, абсолютно твердых движущихся корпускул (атомов); в этом суть корпускулярных представлений о материи.

Законы механики, которые регулируют движение атомов и любых материальных тел, считались фундаментальными законами мироздания. Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение в пространстве. Тела обладают внутренним «врожденным» свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Единственной формой движения является механическое движение, т. е. изменение положения тела в пространстве с течением времени; любое движение можно представить как сумму пространственных перемещений. Движение объяснялось на основе трех законов Ньютона. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым. Закономерности более высоких форм движения материи должны сводиться к законам простейшей ее формы – механическому движению.

Все многообразие взаимодействий в природе механическая картина мира сводила только к гравитационному, которое означало наличие сил притяжения между любыми телами; величина этих сил определялась законом всемирного тяготения. Поэтому, зная массу одного тела и силу гравитации, можно определить и массу другого тела. Гравитационные силы являются универсальными, т. е. они действуют всегда и между любыми телами, сообщают любым телам одинаковое ускорение.

Таким образом, механическая картина представляла мир наподобие гигантской заводной игрушки. Все тела взаимодействуют только механически через столкновение или мгновенное действие гравитационной силы. Поскольку каждое тело определяется параметрами положения и состояния, а действующие на них силы складываются, возможно точное прогнозирование событий на основании расчета характеристик движения и взаимодействия.

В соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно-следственными отношениями. В таком мире нет случайностей, они полностью исключались. Случайным было только то, причины чего оставались неизвестными. Но поскольку мир рационален, а человек наделен разумом, то в конце концов он сможет получить полное и исчерпывающее знание о бытии. Такой жесткий детерминизм находил свое выражение в форме динамических законов.

Жизнь и разум в механической картине мира не обладали никакой качественной спецификой. Человек в этой картине мира рассматривался как природное тело в ряду других тел и поэтому оставался необъяснимым в своих «невещественных» качествах. Таким образом, присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать как ни в чем не бывало. По сути дела, классическое естествознание не стремилось постичь человека. Подразумевалось, что природный мир, в котором нет ничего «человеческого», можно описать объективно, и такое описание будет точной копией реальности. Рассмотрение человека как одного из винтиков хорошо отлаженной машины автоматически устраняло его из данной картины мира.

На основе механической картины мира в XVIII – начале XIX в. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механической картины мира, и она стала рассматриваться в качестве универсальной.

Развитие механической картины мира было обусловлено в основном развитием механики. Успех механики Ньютона в значительной мере способствовал абсолютизации ньютоновских представлений, что выразилось в попытках свести все многообразие явлений природы к механической форме движения материи. Такая точка зрения получила название «механистический материализм» (механицизм). Однако развитие физики показало несостоятельность такой методологии. Это стало ясно при тщетных попытках описать с помощью законов механики тепловые, электрические и магнитные явления (движение атомов и молекул). В результате в XIX в. в физике наступил кризис, который свидетельствовал, что физика нуждается в существенном изменении своих взглядов на мир.

Оценивая механическую картину мира как один из этапов развития физической картины мира, необходимо иметь в виду, что с развитием науки основные положения механической картины мира не были просто отброшены. Развитие науки лишь раскрыло относительный характер механической картины мира. Несостоятельной оказалась не сама механическая картина мира, а ее исходная философская идея – механицизм. В недрах механической картины мира стали складываться элементы новой – континуальной (электромагнитной) картины мира.

4.3. Континуальная картина мира

На протяжении всего XIX в. продолжались попытки объяснить электромагнитные явления в рамках механической картины мира. Но это оказалось невозможным: электромагнитные явления принципиально отличались от механических. Наибольший вклад в формирование электромагнитной картины мира внесли работы М. Фарадея и Д. Максвелла. После создания Д. Максвеллом теории электромагнитного поля стало возможным говорить о появлении электромагнитной картины мира.

Свою теорию Д. Максвелл разработал на основе открытого М. Фарадеем явления электромагнитной индукции. Стремясь разобраться в сущности электрических и магнитных явлений, М. Фарадей, проводя эксперименты с магнитной стрелкой, пришел к выводу, что на вращение магнитной стрелки действуют не электрические заряды, которые находятся в проводнике, а особое состояние окружающей среды, которое возникало в месте нахождения магнитной стрелки. Это означало, что во взаимодействии тока с магнитной стрелкой активную роль играет окружающая проводник среда. В связи с этим М. Фарадей ввел понятие поля как множества магнитных силовых линий, пронизывающих пространство и способных определять и направлять (индуцировать) электрический ток. Это открытие привело ученого к мысли о необходимости замены корпускулярных представлений о материи новыми – континуальными, непрерывными.

Теория электромагнитного поля Д. Максвелла сводится к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое в свою очередь вызывает появление магнитного поля. Так в физику была введена новая реальность – электромагнитное поле. В отличие от дискретного вещества поле как вид материи не обладает массой покоя и характеризуется непрерывностью (континуальностью).

Теория электромагнитного поля Д. Максвелла ознаменовала собой начало нового этапа в физике. В соответствии с этой теорией мир стал представляться единой электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. Важными понятиями новой теории являются: заряд, который может быть как положительным, так и отрицательным; напряженность поля – сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Когда электрические заряды движутся относительно друг друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую и магнитную силы, называется электромагнитной. Считается, что электрические силы (поле) соответствуют покоящимся зарядам, магнитные силы (поле) – движущимся зарядам. Все многообразие этих сил и зарядов описывается системой уравнений классической электродинамики (они известны как уравнения Максвелла). Это закон Кулона, который полностью эквивалентен закону всемирного тяготения Ньютона (F = Q × q 1 × q 2 / R 2 ). Магнитные силовые линии непрерывны и не имеют ни начала, ни конца; магнитных зарядов не существует; электрическое поле создается переменным магнитным полем; магнитное поле может создаваться как электрическим током, так и переменным электрическим полем. Уравнения Максвелла записываются в терминах теории поля. Это позволило единообразно описать стационарные и нестационарные электромагнитные явления, связать пространственные и временные изменения электрического и магнитного полей. Эти уравнения имеют решения, которые описывают электромагнитные волны, распространяющиеся со скоростью света. Из них можно получить решения для совокупности всех волн, которые могут распространяться в любом направлении в пространстве.

Таким образом, были выдвинуты новые физические и философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира. Нельзя сказать, что эти изменения были кардинальны, так как они произошли в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Представления о материи изменились существенно. Корпускулярные идеи уступили место континуальным (полевым). Отныне совокупность неделимых атомов переставала быть конечным пределом делимости материи. В качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами – электрическими зарядами и волновыми движениями в нем. Согласно электромагнитной картине мира, материя существует в двух видах – вещество и поле. Они строго разделены, их превращение друг в друга невозможно. Главным из них является поле, значит, основным свойством материи является непрерывность в противовес дискретности. Электромагнитное поле распространяется в виде поперечных электромагнитных волн со скоростью света, захватывая постоянно новые области пространства. Заполнение пространства электромагнитным полем нельзя описать на основе законов Ньютона, так как механика не понимает этого механизма. В электромагнетизме изменение одной сущности (магнитного поля) приводит к появлению другой (электрического поля). Обе эти сущности образуют в совокупности электромагнитное поле. В механике же одно материальное явление не зависит от изменения другого и вместе они не создают единой сущности.

Расширилось также понятие движения. Оно стало пониматься не только как простое механическое перемещение, но и как распространение колебаний в поле. Соответственно законы механики Ньютона уступили свое господствующее место законам электродинамики Д. Максвелла.

Электромагнитная картина мира произвела настоящий переворот в физике. Она базировалась на идеях непрерывности материи, материального электрического поля, неразрывности материи и движения, связи пространства и времени как между собой, так и с движущейся материей. Новое понимание сущности материи поставило ученых перед необходимостью пересмотра и переоценки этих основополагающих качеств материи.

Законы электродинамики, как и законы классической механики, однозначно предопределяли события, которые они описывали. Поэтому случайность все еще пытались исключить из физической картины мира. Но в середине XIX в. впервые появилась фундаментальная физическая теория нового типа, которая основывалась на теории вероятности. Это была кинетическая теория газов (статистическая механика). Случайность, вероятность наконец-то нашли свое место в физике и были отражены в форме так называемых статистических законов. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам И. Ньютона, и считали вновь созданную теорию промежуточным вариантом, временной мерой. Однако прогресс был налицо: в электромагнитную картину мира вошло понятие вероятности.

Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь «капризом» природы. Эти взгляды только упрочились после появления дарвиновской теории эволюции. Идеи о качественной специфике жизни и разума с большим трудом прокладывали себе путь в научном мировоззрении.

Электромагнитная картина мира объяснила большой круг физических явлений, непонятных с точки зрения прежней механической картины мира. Но и она показала свой ограниченный характер. Главная проблема состояла в том, что континуальное понимание материи не согласовывалось с опытными фактами, подтверждающими дискретность ее многих свойств – заряда, излучения, действия. Оставалась также нерешенной проблема соотношения между полем и зарядом, не удавалось объяснить устойчивость атомов и их спектры, излучение абсолютно черного тела. Все это свидетельствовало об относительном характере электромагнитной картины мира и необходимости ее замены новой физической картиной мира. Поэтому на смену ей пришла новая, квантово-полевая картина мира, объединившая в себе дискретность механической картины мира и непрерывность электромагнитной картины мира.

4.4. Квантово-полевая картина мира

Согласно электромагнитной картине мира, окружающий человека мир представляет собой сплошную среду – поле, которое может иметь в разных точках различную температуру, концентрировать разный энергетический потенциал, по-разному перемещаться и т. д. Сплошная среда может занимать значительные области пространства, ее свойства изменяются непрерывно, у нее нет резких границ. Этими свойствами поле отличается от физических тел, имеющих определенные и четкие границы. Разделение мира на тела и частицы поля, на поле и пространство является свидетельством существования двух крайних свойств мира – дискретности и непрерывности. Дискретность (прерывность) мира означает конечную делимость всего пространственно-временного строения на отдельные ограниченные предметы, свойства и формы движения, тогда как непрерывность (континуальность) выражает единство, целостность и неделимость объекта. В рамках классической физики дискретные и непрерывные свойства мира первоначально выступали как противоположные, отдельные и независимые (хотя в целом и дополняющие друг друга). В современной физике это единство противоположностей – дискретного и непрерывного – нашло свое обоснование в концепции корпускулярно-волнового дуализма.

В основе современной квантово-полевой картины мира лежит новая физическая теория – квантовая механика, в которой соединились две крайние позиции во взгляде на природу материи: атомизм, утверждающий прерывность (дискретность) материи, и полевая физика, утверждающая непрерывность (континуальность) материи.

Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества, так как позволяют выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила определить строение и понять многие свойства твердых тел, последовательно объяснить явления ферромагнетизма, сверхтекучести, сверхпроводимости, понять природу астрофизических объектов – «белых карликов», нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах.

Разработка квантовой механики относится к началу ХХ в., когда были обнаружены физические явления, свидетельствующие о неприменимости механики И. Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе теории и привели к открытию законов квантовой механики.

Впервые представления о кванте высказал в 1900 г. М. Планк, изучая тепловое излучение тел. Своими исследования он продемонстрировал, что излучение энергии происходит дискретно, определенными порциями – квантами, энергия которых зависит от частоты световой волны. Эксперименты Планка привели к признанию двойственного характера света, который обладает одновременно корпускулярными и волновыми свойствами, т. е. представляет собой диалектическое единство двух противоположностей. Оно выражается в том, что чем короче длина волны излучения, тем ярче проявляются квантовые свойства; чем больше длина волны, тем ярче проявляются волновые свойства света.

В 1924 году французский физик Л. де Бройль выдвинул гипотезу, согласно которой корпускулярно-волновой дуализм имеет универсальный характер, т. е. все частицы вещества обладают волновыми свойствами. Позднее эта идея де Бройля была подтверждена экспериментально, и принцип корпускулярно-волнового дуализма был распространен на все процессы движения и взаимодействия в микромире.

В соответствии с квантово-полевой картиной мира любой микро-объект, обладая волновыми и корпускулярными свойствами, не имеет определенной траектории и не может иметь определенных координат и скорости (импульса). Это можно сделать только через определение волновой функции в данный момент, а потом через обнаружение его волновой функции в любой другой момент. Квадрат модуля дает вероятность нахождения частицы в данной точке пространства. Кроме того, относительность пространства-времени в данной картине мире приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории микрообъекта. И если в классической физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой микрочастицы подчиняется не динамическим, а статистическим законам.

Таким образом, материя двулика: она обладает и корпускулярными, и волновыми свойствами, которые проявляются в зависимости от условий. Отсюда общая картина реальности в квантово-полевой картине мира становится «двоякой»: с одной стороны, в нее входят характеристики исследуемого объекта, с другой – условия наблюдения, от которых зависит определенность этих характеристик. Это означает, что картина реальности в современной физике является не только картиной объекта, но и картиной процесса его познания.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они всегда выступают в вероятностной форме, в виде так называемых статистических законов, которые соответствуют более глубокому уровню познания природных закономерностей. Таким образом, в основе нашего мира лежит случайность, вероятность.

Также новая картина мира впервые включила в себя наблюдателя, от присутствия которого зависели получаемые результаты исследований. Более того, был сформулирован так называемый антропный принцип, который утверждает, что наш мир таков, каков он есть, только благодаря существованию человека. Отныне появление человека считается закономерным результатом эволюции Вселенной.

4.5. Динамические и статистические законы

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т. п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей – существенных, повторяющихся связей между предметами и явлениями – задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон – это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна 1 / 6 . Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 × 1 / 6 = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон – закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения – статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория Х. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

4.6. Принципы современной физики

Важной частью современной физической картины мира являются принципы современной физики – наиболее общие законы, влияние которых распространяется на все физические процессы, все формы движения материи.

Принцип симметрии. Обычно под симметрией (от греч. symmetria – соразмерность) понимают однородность, пропорциональность, гармонию каких-либо материальных объектов. В современном естествознании симметрия – понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние явлений, относительную устойчивость, пропорциональность и соразмерность между составными частями целого. Симметрии бывают геометрическими (выражают свойства пространства и времени) и динамическими (выражают свойства физических взаимодействий).

Наглядных примеров симметрий довольно много. Многим творениям человеческих рук в силу разных причин придается симметричная форма. Симметричны мячи, большинство зданий и сооружений, произведений искусства. Также симметричны многие человеческие действия. Симметрию можно обнаружить в живописи, музыке, поэзии, танце. В изобилии симметрии встречаются в природе – снежинка, дождевая капля, различные кристаллы и т. д.

Приведенные примеры симметрии связаны с представлениями о структуре предметов, которая не меняется при совершении некоторых преобразований. Долгое время это были единственные симметрии, известные в науке. Но постепенно пришло осознание того, что симметрии могут быть не только наглядными, геометрическими. Есть целый ряд симметрий, связанных с описанием каких-либо изменений сложных естественных процессов. Эти симметрии не фиксируются в наблюдениях, они становятся заметны лишь в уравнениях, описывающих природные процессы. Поэтому физики, исследуя математическое описание той или иной физической системы, время от времени открывают новые, часто неожиданные симметрии. Эти симметрии достаточно тонко «запрятаны» в математическом аппарате и совсем не видны тому, кто наблюдает саму физическую систему.

С точки зрения физики симметричным является объект, который в результате определенных преобразований остается неизменным, инвариантным. Инвариантность – это неизменность какой-либо величины при изменении физических условий, способность не изменяться при определенных преобразованиях.

Симметрия в физике – это свойство физических величин, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных преобразованиях этих величин.

Симметрии в физике тесно связаны с законами сохранения физических величин – утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определенных классах процессов.

Так, закон сохранения энергии вытекает из однородности времени. Время симметрично относительно начала отсчета, все моменты времени равноправны.

Закон сохранения импульса вытекает из однородности пространства. Все его точки равноправны, поэтому перенос системы никак не повлияет на ее свойства.

Закон сохранения момента импульса вытекает из изотропности пространства. Свойства пространства одинаковы по всем направлениям, поэтому поворот системы не влияет на ее свойства.

Также есть целый ряд симметрий, действующих в микромире. Они описывают разные аспекты взаимопревращений элементарных частиц и лежат в основе таких законов сохранения, как закон сохранения электрического заряда, барионного и лептонного зарядов и ряда других законов, открытых в последнее время. Таким образом, XX в. подтвердил огромную роль принципа симметрии в физике.

Принцип дополнительности и соотношения неопределенностей является основополагающим в современной физике. Он был сформулирован в 1927 г. Н. Бором для объяснения феномена корпускулярно-волнового дуализма.

В ходе своих исследований Н. Бор обратил внимание на то, что все предметы и явления, которые мы видим вокруг себя (и, конечно, измерительные приборы для регистрации элементарных частиц), состоят из огромного множества микрочастиц. Иными словами, они являются макроскопическими системами и ничем иным. Сам человек также существо макроскопическое. Поэтому наши органы чувств не воспринимают микропроцессов. Понятия, которыми мы пользуемся для описания предметов и явлений окружающего мира, – макроскопические понятия. С их помощью можно легко описать любые физические процессы, проходящие в макромире. Но применить эти понятия для описания микрообъектов полностью нельзя, так как они не адекватны процессам микромира.

В то же время других понятий у нас нет и быть не может. Чтобы компенсировать неадекватность нашего восприятия и представления об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга. Эти понятия – частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.

Принцип суперпозиции (наложения) – допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, что воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике данный принцип не универсален и во многих случаях справедлив лишь приближенно.

В микромире, наоборот, принцип суперпозиции – фундаментальный принцип. Наряду с принципом неопределенности он составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории этот принцип лишен той наглядности, которая характерна для механики И. Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т. е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из этих состояний.

Принцип соответствия был сформулирован Н. Бором в 1923 г. Физики столкнулись с ситуацией, когда рядом со старыми, давно оправдавшими себя теориями (например, механикой И. Ньютона) появились новые теории (теория относительности А. Эйнштейна), описывающие ту же область действительности. Принцип соответствия утверждает преемственность физических теорий: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

Поэтому теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.

Каждая физическая теория – ступень познания – является относительной истиной. Смена физических теорий – процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира. Таким образом, принцип соответствия отражает объективную ценность физических теорий.


Таблица 4.1. Зарубежные неметрические единицы


Продолжение


Законы природы – это утверждения, которые выражают постоянное свойство или постоянную связь каких-либо явлений в живой или в неживой природе . Например, законом природы является закон сообщающихся сосудов, закон притяжения, теплопроводность металлов и т.п.

Существенной характеристикой закона природы является его всеобщность . Описание единого факта не является законом природы. Законр всегда служит для выражения свойств, являющихся общими для целого ряда явлений или объектов. Например, то, что сегодня идет дождь – это не закон природы, а указание на единичный факт. Но то, что вода в состоянии пара составляет существенную часть атмосферы и участвует в круговороте воды в природе – это закон природы.

Другая существенная черта закона природы – его необходимость . Само явление природы, либо связь между явлениями или связь между объектами должна быть обязательной. Одно должно определять другое или вытекать из другого, т.е. должна быть строгая причинно-следственная связь. Если хотя бы в одном случае такая связь не прослеживается, то закон природы перестает быть таковым, либо, по крайней мере, к нему формулируют исключение, и закон из абсолютного становиться относительным. Например, утверждение, что повышение температуры жидкости увеличивает скорость ее испарения, является законом природы. Между этими явлениями – увеличением температуры и скоростью испарения жидкости – существует жесткая зависимость. Но если однажды будет обнаружена жидкость с уникальным свойством безразличия к испарению вследствие любого повышения температуры, сформулированный нами закон природы перестанет быть таковым, либо будет сформулировано исключение из него.

Если говорить кратко, что законами природы являются существенные, необходимые и повторяющие связи между объектами реального мира .

В законах природы раскрывается сущность объектов, характер их существования и развития.

Законы природы объективны , они существуют до нас и вне нас. Они не являются субъективным порождением нашей фантазии.

По своему методологическому уровню законы природы деляться на эмпирические и теоретические . Эмпирические законы выражают связи между объектами и явлениями, которые мы можем наблюдать и оценивать опытным путем, в том числе с использованием специальной научной аппаратуры. Теоретические законы открывают нам более глубокие внутренние связи явлений. Мы формулируем теоретические законы общелогическими и специльно научными методами, в том чисе математическими, посредством введения теоретических понятий.

Законы природы можно также классифицировать в зависимости от той области научного знания , в которой такие законы познаются. Так, можно говорить о физических законах, биологических законах, законах человеческой психики.

Кто установил законы природы или ято является их причиной? На этот вопрос материалисты отвечают, что причиной этих законов является сама сущность объектов и явлений, их объективные свойства. Например, причиной закона электропроводности металлов является наличие свободных электронов в атомных оболочках. Другой ответ на поставленный вопрос заключается в том, что законы природы установлены Богом непосредственно в момент сотворения мира. Этой точки зрения придерживаются религиозные философы . В качестве сверхъестественной силы, установившей законы природы может фигурировать Высший Разум или Абсолют. Это – точка зрения идеалистов . Изначально в философии выражение «законы природы» использовалось именно для противопоставления «божественным законам».

Среди законов природы имеются такие, в которые человек способен вмешиваться. Эта тема является сегодня исключительно актуальной в связи с проблемами экологии на планете. Также следует упомянуть важные этические аспекты вмешательства человека в законы наследственности живых организмов. Возможность и необходимость вмешательства человека в действие законов природы должна оцениваться с точки зрения морали, нравственности, а также вопроса о самом выживании человечества на планете.

Человеческое общество также имеет свои законы. Законы общества – это законы человеческой деятельности, но не индивидуальной, а общественной, коллективной. Это – законы взаимодействия человеческих коллективов самого разного масштаба. Их можно подразделить на экономические законы и социальные законы . Например, к экономическим законам относятся законы денежного обращения (количество денег в обращении в целом должно соответствовать количеству производимого и импортрируемого товара), законы покупательной способности населения и инфляции (увеличение покупательной способности населения неизбежно влечет инфляцию, т.е. падение стоимости денег и соответствующий этому падению рост цен). К числу социальных законов можно отнести законы народонаселения (увеличение материального благосостояния всегда влечет снижение темпов прироста населения или даже уменьшение населения).

Законы общества могут иметь объективную форму , быть выражены в юридических законах, либо не иметь такой формы выражения.

В отличие от законов природы, которые в целом действуют независимо от человеческого сознания, законы общества имеют очень сильный субъективный заряд. Ведь общество не является механическим агрегатом, поэтому действие законов общества зависит от деятельности человека. Причем как от коллективных действий, так и от индивидуальных действий лиц, облеченных властью. Например, закономерное (постепенное и последовательное) развитие капиталистических отношений в России в 1917 году было насильно и искусственно нарушено октябрьским переворотом большевиков. При этом огромную роль в этом сыграл один-единственный человек – В.И.Ленин, без которого такой переворот не мог бы состояться.

Поскольку человек имеет возможность прямо влиять на действие законов развития общества, эти законы следует более правильно называть закономерностями или тенденциями . Ведь всегда есть вероятность того, что вследствие усилий людей, закон будет на какое-то время нарушен.

Важно понять, что действие законов общества как тенденций развития общественных отношений не зависит от воли людей . Однажды нарушенная общественная закономерность все равно вернет развитие человеческих отношений на прежний путь.

Также важно понять, законы общества являются продуктом сознательной деятельности самих людей . Вне человеческого общества никаких законов общества быть не может.

Законы общества могут иметь всеобщий характер – действовать на протяжении всей истории человечества и распространяться на все человечество. Например, закон общего увеличения народонаселения на планете. Законы могут быть частными – т.е. действовать только на каком определенном отрезке человеческой истории. Например, феодальный закон о праве феодала на присвоение аграрных продуктов в обмен на военную защиту крестьян. Законы могут быть специфическими , т.е. проявляющимися в каком-то конкретном социальном образовании. Например, закон партийной дисциплины и подчинения меньшинства партии большинству.

КАК ВОЗНИКЛИ ЗАКОНЫ ПРИРОДЫ? ПОРАЗИТЕЛЬНЫЕ ГИПОТЕЗЫ ФИЗИКОВ

Александр ВОЛКОВ

Как возникли законы природы? В былые времена люди полагали,
что они придуманы Богом. Сегодня физики вновь задаются этим вопросом и выдвигают поразительные гипотезы. Что же такое законы природы?

Мы видим, что мир живет по определенным правилам, именуемым "законами природы". Они доступны нашему пониманию. Ученые открывают эти законы и формулируют их. Их поиск давно считается самым важным и почетным долгом исследователей. Прогресс в науке тесно связан с открытием законов природы. Они помогают обобщать факты, объяснять происходящее, прогнозировать будущее. Многим кажется естественным, что в хаосе многообразных процессов, протекающих вокруг нас, угадывается стройный порядок, и он ощутим на всех уровнях от Микрокосма до Макрокосма. Все мироздание живет по законам, скрепляющим его, как тело - скелет.

Но откуда они взялись? Вечны ли они или со временем меняются? Слепо ли подчиняется им природа или может их нарушить? Почему многие из них - особенно законы физики - мы можем формулировать на языке математики? Быть может, сам Бог является математиком, как шутят ученые?

На протяжении веков люди отвечали на эти вопросы, не задумываясь. Законы природы придумал Бог. Они действуют вечно. Стало быть, они возникли в момент сотворения Вселенной, - говоря научным языком, во время Большого Взрыва. И, очевидно, уже тогда они были "идеальными". Но верится в такое с трудом. Можно ли предусмотреть все заранее? Для чего в момент зарождения Вселенной нам нужен закон, который "следил" бы за тем, чтобы некоторые металлы при температуре, близкой к абсолютному нулю по шкале Кельвина, теряли свое электрическое сопротивление? О каких сверхнизких температурах шла речь в тот миг? О каком абсолютном нуле? В том беспрестанно кипевшем "первородном супе", что наполнял народившийся космос, не могло быть и речи о сверхпроводимости!

А если ответить по-другому? Может быть, законы природы "не сотворены" никем? Что если они исподволь формировались на протяжении многих миллионов лет? Мы знаем, что природа претерпевает эволюцию. Живые организмы приспосабливаются к окружающему их миру и соответственно меняются. Возможно, подобная эволюция происходит и в космосе. Элементарные частицы (протоны, электроны, нейтрино и иже с ними) каким-то образом "приспосабливаются" друг к другу. Возникают определенные "правила общежития" данных частиц. Некоторые правила забываются, некоторые усваиваются все четче - они и становятся "законами природы". Так, например, считает биолог Руперт Шелдрейк. Впрочем, он уже давно заклеймен как представитель псевдонауки, придумавший теорию "морфогенетических (формообразующих) полей".

Подобные идеи впрямь противоречат знаниям, накопленным астрофизикой. Свет отдаленных галактик доносит до нас вести о том, какие законы действовали вскоре после "сотворения мира". Спектральные линии световых лучей свидетельствуют, что звезды в ту эпоху подчинялись тем же законам, что и сейчас.

От веры в высший разум до высшей математики

Для древних греков не существовало законов природы. В их представлении Природа вела себя так же хаотично, как человеческое общество. Отдельные атомы, - им соответствовали греческие города-государства, - блуждали, сталкивались друг с другом, на короткое время соединялись, а потом их непрочные союзы вновь распадались.

Как следствие, античным ученым удалось открыть, пожалуй, лишь три физических закономерности, которые заслуживают названия "законов природы": закон рычага, закон отражения света Евклида и, наконец, знаменитый закон Архимеда ("На всякое тело, погруженное в жидкость, действует выталкивающая сила..."). Впрочем, ни Архимед, ни другие ученые того времени не называли эти воззрения "законами", а говорили, как и в математике, о "принципах", "аксиомах" и "теоремах". Со времен Пифагора считалось, что в основе миропорядка лежит некая математическая гармония. Во всяком сложном естестве имеется своя простая логика. Так образ "принципов", правящих миром, стал изначально складываться из математических элементов - цифр и операций над ними.

Вообще же лишь в средневековой Европе человек задумался о том, что в природе действуют свои неумолимые законы. Да и как было не думать об этом? Ведь мир пребывал во власти строгого Бога, ревностно следившего за тем, как соблюдаются его заповеди-законы. Для Августина Блаженного они были чем-то вроде привычки Господа творить то, а не иное, - привычки, которой Он в любой момент мог изменить, дабы явить желанное чудо.

Законы лишь на какой-то миг (что сотни или тысячи лет перед вечностью, как не одно мгновение?) ограничивали всемогущую волю Господа, но вовсе не отменяли ее. Законы, насажденные Творцом, постижимы, а чудеса, как всякое исключение, лишь подтверждают суровую правоту правил.

В эпоху Возрождения религия и естествознание были все так же тесно переплетены друг с другом. Враждебные отношения ученых и богословов не стоит переоценивать. Науку и веру сплачивала глубокая, внутренняя общность. Их плодотворная связь не утрачивается и в дальнейшем. Так, Ньютон был истово верующим человеком, а Лейбниц усматривал в законах природы непреложную волю Господню. Само их существование свидетельствовало, в какой гармонии живет мир и как прекрасно все, что творит Бог. Верил в высший разум и Альберт Эйнштейн. Без этой веры вряд ли могла зародиться мысль о "формуле мироздания", описывающей все явления явления, что происходят в нашем мире.

Деятельность многочисленной плеяды ремесленников и инженеров эпохи Возрождения заставила людей Нового времени по-иному взглянуть на законы, данные Богом. Можно было не только подчиняться им, но и использовать их во благо себе, придумывая приборы, действующие по этим законам, вторгаясь в процессы, протекающие по этим законам, наконец, управляя самой природой, подчиняя ее себе, заставляя себе служить. Господь мог бы вмешаться в наш диалог с природой, лишая ее иногда возможности жить по закону, данному от века, и заставляя жить по закону Чуда Божьего. Но раз этого нарушения вековых правил не наблюдалось, новые поколения ученых решили, что Бог бездействует потому, что... Он умер, Его нет в природе, Он не от мира сего. Не допускавший все последние века исключения из правил мироздания, Бог был исключен из самого мироздания, как лишняя в нем сущность. Сухие строки формул заменили его. Но остается открытым вопрос: откуда мы знаем, что математический язык в точности - "один к одному" - отражает действительность? Уже сейчас для ее описания используются сложнейшие формулы, которые лежат на грани разумного. Что дальше?

Реалисты, конструктивисты и все-все-все

Гипотеза о существовании в природе неких законов оказалась настолько эффективной, что ученые продолжали ее придерживаться, даже когда предполагаемый творец законов - Бог - был упразднен. Изгнание Бога лишь осложнило вопрос происхождения законов. Вечно ли они существуют? А, может быть, их "вечно" придумывают? В спорах о сущности законов природы выделяется несколько партий.

Реалисты, или платоники, полагают, что законы природы существуют независимо от наших формулировок и определений. Они реальны, как стулья, полемически писал в своей книге "Мечта о единстве Вселенной" нобелевский лауреат Стивен Вайнберг: "Я отстаиваю реальность законов природы... Если мы говорим, что какой-то предмет реален, то тем самым просто выражаем своего рода уважение к нему. Мы полагаем, что к данному предмету надо отнестись вполне серьезно, поскольку не в нашей власти всецело контролировать его, а значит, мы в какой-то мере сами можем испытать его влияние".

Разумеется, законы природы заслуживают куда большего уважения, чем любые предметы. Ведь последние все же не могут ускользнуть из-под нашей власти. Мы вольны переставить стул, передвинуть стрелку часов, раздробить каменную глыбу, а вот повлиять на законы природы не можем. Сколько мы ни наблюдаем за Солнцем, мы не в силах изменить, например, силу его притяжения. Мы зависим от законов природы, а они от нас - нет. Эти законы не выдуманы нами, а открыты. И, подобно тому, как пустынный остров, затерянный в океане, существовал задолго до того, как его увидел человек, так и законы природы были математичны еще во время оно, а не только с тех пор, как их открыли. В этом убеждены и некоторые современные ученые, например, американский физик Александр Виленкин, выросший в СССР: "Надо полагать, что законы физики существовали "еще до того", как возникла Вселенная". По его мнению, сам факт рождения и становления Вселенной априори предполагает наличие определенных законов, по которым будет протекать ее развитие. Эта точка зрения близка традиции Платона, который верил в то, что за пределами видимого нами мира реально существует мир идей.

Позитивисты и номиналисты убеждены в обратном. "Я не соглашусь с Платоном, - заявляет Стивен Хоукинг. - Физические теории - это лишь математические модели, которые мы конструируем. Мы не можем задаться вопросом, что такое действительность, ведь мы не в силах проверить, что реально, а что нет, не прибегая к помощи разного рода моделей". Подобное мнение не ново. Физик и философ Эрнст Мах, ставший когда-то объектом нападок первого классика ленинизма, призывал ограничиваться лишь простыми математическими описаниями эмпирических про¬цессов. А философ Людвиг Витгенштейн в "Логико-философском трактате" полемично заявлял, что "в основе всего современного мировоззрения лежит ошибочное убеждение в том, что так называемые законы природы суть объяснения явлений природы".

Прагматики, избегая крайностей, присущих сторонникам обоих научных лагерей, считают законы природы неким полезным подспорьем, помогающим довольно точно описать природные феномены. "Меня интересует модель, которая наиболее эффективно объяснит наблюдаемые факты, - подчеркивает американский физик и космолог Пол Стейнхардт. - Соответствует ли она реальности, это пустой вопрос. Модели всегда упрощают реальность. По сути дела, нам не очень даже важна реальность сама по себе. Мы нуждаемся, прежде всего, в модели, которая описывает многообразие сложных феноменов с помощью самых простых концепций, понятных нашему разумению и позволяющих предсказывать происходящее". Выступая перед студентами, Стейнхардт часто приводит следующий пример. По телевизору идет трансляция футбольного матча. В таком случае, пробуя предсказать, что произойдет в следующий момент, лучше всего полагать, что цветовые пятна на экране - это подобия футболистов, и дальше руководствоваться знанием футбольных правил и закономерностями игры как таковой. Конечно, можно прибегнуть к "более реалистичной" модели - вспомнить об особенностях электронно-лучевой трубки, об электромагнитных полях - в общем, обо всем том, что порождает цветовые сигналы на экране монитора. "Но знание этих основ электроники окажется бесполезным, если мы захотим понять, что произойдет в футбольной игре в следующую минуту. Итак, выбор модели зависит от того, какие задачи мы ставим перед собой. Реальность - это не всегда то, что вам хотелось бы, а вам хотелось бы понимания".

Конвенционалисты относятся к законам природы еще радикальнее. Для них они - не просто полезное подспорье, придуманное людьми, но еще и отражение определенных норм и традиций, укоренившихся в обществе. По их мнению, природа живет по законам, навязанным ей людьми, например, кастой богословов или ученых. Если утрировать сказанное, нет разницы в том, вращается ли Земля вокруг Солнца или Солнце вокруг Земли, важно лишь, какое мнение складывается об этом в обществе, а оно переменчиво, как и судьба закона, описывающего отношения нашей планеты и светила.

Конструктивисты, или инструменталисты, рассматривают законы как средство описания природы. Они считают, что вести речь об истине или лжи бессмысленно и надо оценивать законы природы по другим критериям - практичны они или нет, понимая эту практичность в буквальном смысле слова, а именно, можно ли на их основе конструировать различные приборы, механизмы и измерительные аппараты. Натурфилософия в таком понимании - это прикладная техника, "набор новейших технических ноу-хау", заявляет Петер Яних, профессор философии Марбургского университета и автор книги "Границы естествознания: познавать значит действовать". По его словам, "пресловутые законы природы - это всего лишь высказывания о функционирующих машинах, высказывания, которые можно без особых преобразований использовать как инструкции по конструированию разного рода машин".

Подобные полемичные мнения, естественно, вызывают резкий отпор у тех, кто удивленно вопрошает: "Что можно сконструировать при помощи теории относительности или уравнения Шредингера? И разве планеты движутся вокруг Солнца только ради того, чтобы мы юстировали по ним наши телескопы и совершенствовали их конструкцию?"

На этом фоне куда более практичными выглядят соображения "реалистов". Ведь, с их точки зрения, можно объяснить, почему одни научные теории являются истинными, а другие - ложными. Природа - вот безжалостный, неподкупный судья, решающий, верна теория или нет. Не бывает нескольких отличных друг от друга, но одинаково истинных теорий, описывающих некий феномен. Непременно одна из них берет верх, а другие, несмотря на всю свою убедительность, оказываются ложными. Мы тянемся к истине, мы ищем ее. Но как выглядит истина в нашем толковании?

Как придумать закон?

Простейшие законы природы - такие, как "зависимость силы тяготения от квадрата расстояния", - мы еще можем представить себе чисто геометрически. Но что прикажете делать с общей теорией относительности или квантовой физикой? С какой стати Матушке-Природе ведомы столь сложные конструкции, что они недоступны разумению большинства людей? Что если мы заблуждаемся, считая, что природа следует каким-то формулам? Закономерности ведь можно разглядеть в любом нагромождении случайных фактов.

Возможно, многие закономерности, принимаемые нами за неумолимые законы, являются лишь следствием нашей способности отыскивать определенные схемы в любых наблюдаемых процессах. Она укоренилась в нас еще в каменном веке. Чтобы выжить в ту эпоху, человеку приходилось выказывать недюжинную наблюдательность. От его взгляда не должна была уклониться ни одна подозрительная деталь - ни сломанная ветка, ни примятая трава. Иначе легко было стать жертвой хищника. У страха глаза велики, и наши далекие предки порой замечали опасность там, где ее вообще не было. Отыскивали знак зверя там, где не ступала его нога.

Вот и мы часто видим то, чего нет. Быть может, квантовая физика и астрология имеют больше общего, чем полагают многие. В том и другом случае - глядя в гороскоп или взирая на уравнение - мы хотим видеть то, что эти формулы обещают нам. И мы это видим.

Возможно, читатели не знают, что уравнение Шредингера, важнейшее уравнение квантовой физики, весьма вольно трактует реальность. Вот что сказано о нем в "Берклеевском курсе физики" Э. Вихмана: "Теория уравнения Шредингера... основана на нескольких сильных допущениях, из которых мы отметим главные:

1) частицы не рождаются и не исчезают: в любом физическом процессе число частиц данного типа остается постоянным;
2) скорость частиц достаточно мала; лишь в этом случае возможно нерелятивистское приближение.

Мы считаем перечисленные допущения сильными, так как, во-первых, из опыта известно, что процессы рождения и аннигиляции частиц действительно происходят, а во-вторых, любая фундаментальная теория должна принимать во внимание принципы специальной теории относительности".

Так что, было бы поспешно заявлять, что законы квантовой физики идеально отражают действительность. Можно лишь отметить, вновь процитировав Э. Вихмана, "что применение теории Шредингера к атомным и молекулярным явлениям оказалось чрезвычайно успешным. В этой области ее следует считать, несмотря на ограниченность, хорошим приближением". Она достаточно верно предсказывает поведение элементарных частиц.

Итак, законы физики, равно как и гороскопы, имеют обыкновение "предсказывать" - нужно лишь правильно сформулировать их, сделав определенные допущения. На практике мы вынуждены пренебрегать многими факторами, мешающими проявлению этих законов. Так что, они определенно идеализируют природу и зачастую следуют особенностям нашего мышления. Порой мы го¬товы скорее придумать законы, чем их открыть.

Возьмем, к примеру, "закон сохранения энергии". Что будет, если он перестанет вдруг соблюдаться - в Микромире ли, в Макромире? Нас это не смутит. В его незыблемости мы уверены. Мы тут же, походя, выдумаем новую форму энергии - какую-нибудь энергию вакуума, - избавляющую нас от любых сомнений. И вот уже энергетический баланс восстановлен.

Так, например, когда масса видимой Вселенной оказалась недостаточной, чтобы соблюдались известные нам законы, пришлось "открывать на кончике пера" темное вещество, а затем и темную энергию. Логика рассуждений заставила нас признать, что мироздание на 95% состоит из материи, которая почти никак не заявляет о своем присутствии. Подобные открытия побуждают некоторых заявлять, что вся физика - фикция.

Когда время течет из будущего в прошлое

Вот любопытная гипотеза, объясняющая эволюцию законов природы. Представим себе камень, брошенный в воду. Он порождает волну, которая распространяется во времени и пространстве - направляется в будущее и бесконечность. Мы видим эту волну в следующую секунду в метре от нас; она бежит вперед, дальше... Уравнение, описывающее поведение подобных волн, имеет два решения. Первое из решений - "запаздывающее" - описывает поведение волны так, как ее видит наблюдатель. Можно прибегнуть к такой формуле: "Некие сигналы, испускаемые настоящим, воздействуют на будущее". Но есть и другое решение уравнения - "опережающее". Оно описывает все с точностью до наоборот. Откуда-то из бесконечной дали и из будущего к нам направ¬ляется некая едва различимая рябь. Наконец, достигнув "здесь и сейчас", она сгущается. Происходит сингулярное событие: из воды вылетает камень. Можно прибегнуть к такой формуле: "Настоящее улавливает некие сигналы, испускаемые будущим». Для этой волны время течет в обратном направлении.

На первый взгляд, подобное описание действительности есть сущая бессмыслица. А что если это не так? В свое время этой проблемой занялись два ведущих американских физика, Ричард Фейнман и Джон Уилер. Их интересовало, может ли существовать Вселенная, в которой встречаются оба описанных нами типа волн: волна, устремленная в будущее, и волна, что возвращается из будущего и воздействует на настоящее. Полученный результат таков: если предположить, что все волны действуют по принципу "фифти-фифти", то есть одна и та же волна наполовину "запаздывает", наполовину "опережает" будущее, то нет ничего невозможного в том, что будущее воздействует на наш сегодняшний мир. Самое удивительное, что подобный мир, воссозданный искусством математики и пребывающий под властью собственного будущего, мы не можем отличить от того мира, который нас окружает, и который мы видим перед собой. Мы живем в этом мире.

Американский физик Джон Крамер разработал гипотезу, которую он назвал "гипотезой встречи времен". Если атом испускает фотон, то из этого следует, что когда-нибудь этот фотон неминуемо будет поглощен. Первое событие - рождение фотона - может состояться только в том случае, если состоится второе событие - его поглощение. Оба события излучают волны, которые распространяются во времени. Одна направляется в будущее, другая спешит в прошлое. Посреди пространства и времени они встречаются. Итак, фотон может существовать лишь в том случае, если подтвердится, что оба важнейших для него события реальны, что он родится и погибнет.

(Как тут не применить эту гипотезу к человеческой судьбе? Из нее явствует, что все события, способные принести человеку смерть, - от глобальных катастроф до не рожденных пока микробов, - излучают определенные волны, которые беспорядочно минуют нас, пока, наконец, одна нас не заденет. Поясним этот процесс следующим сравнением. Представим себе, что рядом с улицей, по которой мы ежедневно ходим, спрятался слепой безумный автоматчик, изо дня в день стреляющий наугад очередями. Когда-нибудь его пуля непременно "заденет и поглотит вас". Так что все вокруг нас насыщено "миазмами" смерти, испускаемыми будущим.)

Законы природы могли бы возникать, как световые частицы. Если предположить, что те адресуются к самим себе, пребывающим за пределами нашего времени - в далеком будущем мире, то и законы природы мы вправе рассматривать с двух точек зрения. Первая - это привычная для нас причинно-следственная связь событий в настоящем. Это - "детерминированный" подход к мирозданию. Другая точка зрения - "телеологическая": будущее влияет на настоящее. Волны проникают в будущее и при¬бывают оттуда. Посреди пространства и времени они встречаются и создают некий порядок: законы природы. Так сходятся две гипотезы: законы природы формируются исподволь, постепенно, но с другой стороны, их творит будущее.

Впрочем, если все эти рассуждения покажутся вам слишком туманными, то почему бы тогда не согласиться с кредо британского историка Томаса Карлейля: "Я не притязаю на постижение Вселенной - она чересчур велика для меня".

"Законы природы сотворили наш мир"

(Из интервью немецкого физика Петера Мительштедта* журналу "Bild der Wissenschaft")

Можно бесконечно рассуждать о том, что такое законы природы и существуют ли они в реальности. Вы посвятили им целую книгу, которая так и называется - "Законы природы". Что вы понимаете под этим термином?

Мительштедт: Законы природы определяют ход природных процессов. Описывая природу, мы прибегаем к помощи универсальных законов, а также конкретных начальных условий. Последние характеризуют частные случаи и единичные факторы, а законы выявляют нечто общее в протекающих процессах.

Что отличает законы природы?

Мительштедт: Они больше, чем просто законы логики или математики, а потому их можно опровергнуть эмпирическим путем. Конечно, последние действуют и в материальном мире, но они не являются подлинными законами природы. Многое, что мы принимаем за законы природы, оказывается при более пристальном рассмотрении логико-математическими законами. Особенно это касается квантовой механики.

Законы природы есть только в физике или, например, в биологии тоже?

Мительштедт: Законы физики описывают универсальные категории материального мира. Это законы времени и пространства, это фундаментальные законы, обуславливающие поведение материи. Они действуют везде, в том числе в биологии. Существование же особых законов, применимых, например, только в биологии, - законов, которые нельзя свести к законам физики, - я считаю крайне невероятным.

Для многих философов законы природы сродни платоновским идеям - они существуют где-то за пределами нашего материального, пространственно-временного мира. Для других это - всего лишь полезное подспорье, помогающее описывать наблюдаемый нами мир, или даже особые категории нашего сознания. А каково Ваше мнение на сей счет?

Мительштедт: Законы природы - это артефакты, с помощью которых мы пытаемся постичь реальность во всей ее сложности и целостности. В природных феноменах мы отличаем простое и универсальное (законы) от сложного и характерного (начальные и краевые условия).

А можем ли мы понять, является ли наш мир продуктом законов природы или же наоборот?

Мительштедт: Законы природы, которые мы стремимся выявить и сформулировать, должны действовать независимо от места и времени во всех возможных мирах. Они действовали еще до рождения нашего мира, и будут действовать до его скончания, да и после того. Так что именно они определили становление нашего мира - они сотворили наш мир.

* В 1965-1995 годах Петер Мительштедт был профессором кафедры теоретической физики Кельнского университета. В 2005 году в соавторстве с философом Паулем Вайнгартнером выпустил книгу "Законы природы".

Закон (принцип) подобия, моделирования и прогнозирования как всеобщий - универсальный, фундаментальный Закон Природы, закон Вселенной, закон Мироздания.

Подобие (геометрическое) означает наличие одинаковой формы у геометрических фигур независимо от их размеров. Углы между соответствующими линиями подобных фигур равны, а все линии уменьшены или увеличены пропорционально.
Подобие (физическое) означает, что устройства, имеющие разные размеры и продолжительность жизненного периода, но одинаковые по форме (строению), по своим свойствам, определяемым их формой (строением) могут быть уменьшенными или увеличенными моделями друг друга.
На принципе подобия (и резонанса) основана визуализация, включая визуализацию здоровья . Она с технической точки зрения объясняется тем, что визуализируемый образ, являясь близким подобием оригинала, является для последнего "широкодиапазонным камертоном". Поэтому он способен настроить организм на здоровый лад. Подробнее об этом сказано в рубрике "ВИЗУАЛИЗАЦИЯ"

Модель (в широком смысле) - любой образ, аналог, используемый в качестве его "заместителя", "представителя".
Моделирование - исследование каких-либо явлений, процессов или систем объектов путем построения и изучения их моделей. Оно (с уменьшением или увеличением) широко применяется человеком при разработке новых слишком больших или слишком малых объектов, изготовление образцов которых в реальную величину трудно выполнимо. Иногда моделируют и старые объекты, выясняя, например, причину аварии.
Моделирование явлений - это изучение одних явлений при помощи других..
Моделировать (с замедлением или ускорением) можно не только пространство, но и время , увеличивая или замедляя процесс старения (скорость протекания процессов старения), т. е. растягивая или сжимая период жизни испытуемого объекта.

Моделирование, в общем случае, - это создание в настоящем пространстве-времени точных, уменьшенных или увеличенных пространственно-временных копий прошлых устройств или процессов или прообразов будущих.

Все люди (в грубом приближении) являются моделями друг друга , выполненными с разными коэффициентами моделирования. Это особенно заметно между акселератами и лилипутами (они по размеру могут отличаться даже в два раза). Однако при взаимодействии со средой, имеющей тот же коэффициент моделирования и акселераты, и лилипуты способны выполнять одни и те же основные физические функции. Что касается мыслительных функций, то, на первый взгляд, особого различия между акселератами и лилипутами не наблюдается. Однако и их мыслительный рабочий диапазон, возможно, также скорректирован в соответствии с их физическим коэффициентом моделирования (несколько сдвинут, причем для лилипутов - в сторону более коротких длин волн). Но из-за огромной ширины мыслительного диапазона человека как вида и индивидуального различия мыслительных способностей отдельных человеческих особей, отличия, вызванные разностью размеров тела, могут быть не особенно заметными. Но проверить это было бы интересно.

На основании модельных испытаний можно предсказать, причем с большой степенью вероятности, как поведет себя в "жизни" то или иное реальное устройство или процесс . Моделируют и самолеты, и мосты, и антенны, и многое, многое другое, включая процессы и явления.

Если геометрические размеры формы и испускаемых-поглощаемых ею частиц-волн выполнены с одним и тем же коэффициентом моделирования (уменьшены или увеличены в одно и то же число раз), то, как известно, и параметры, связанные с их относительными размерами, будут одинаковыми . На этом основано исследование на моделях так называемых электрических параметров антенн, зависящих только от их размеров в длинах волн.

Взаимодействие с потоком вязкой среды подобных тел, как бы они не отличались по размерам, будет сходным, если в соответствии с размерами будут так подобраны значения скорости и вязкости, чтобы было обеспечено равенство чисел Рейнольдса . Это и дает возможность провести испытания процессов не на реальных объектах, а на их моделях.

Зная жизнь, - последовательность смены событий и сами события какого-либо одного природного образования, можно определить, что было и что будет с другим таким же или подобным ему (меньшим или большим по величине, и (или) живущим дольше или меньше) образованием, включая и человека, так как и он дитя Природы . Именно это мы фактически делаем, прогнозируя, например, ход химических реакций или ход болезни, развитие растений, животных, человека, общества и многое, многое другое.

Наши прогнозы в отношении людей особой точностью пока не отличаются , так как очень трудно найти достаточно точную модель каждого конкретного человека (и не только человека), живущего в тех же условиях, и получить достоверную информацию о прошлой жизни этой модели. Но если в будущем будут созданы банки данных о генетических параметрах и жизни огромного количества людей , живших в разные промежутки пространства-времени, то каждому человеку можно будет подобрать достаточно точный аналог, рожденный и живший примерно в тех же условиях. Это позволит более точно прогнозировать то или иное развитие его жизни. В общем-то, такое прогнозирование принципиально ничем не отличается от прогнозирования хода химических реакций, который во многих случаях может "предсказать" даже школьник.

Банк данных, скорее всего, уже давно создан Природой в виде множества "остаточных" полей-душ и продуктов нашего повседневного мышления и чувствования, а также следов на нашей вещественной форме-теле . Поэтому по "конструкции" тела и его отдельных элементов опытный исследователь может определить, какое именно поле-душу способно принять то или иное тело и какими программами человек способен руководствоваться в процессе своей жизни. Не следует, однако, забывать о том, что осознанно или неосознанно меняя конструкцию тела, мы можем существенно изменить программу нашей жизни, а, меняя программу жизни (окружающие нас поля), изменить тело.

Получение информации, необходимой для прогнозирования , благодаря повторению процессов, происходящих с аналогичными моделями и в аналогичных условиях, используется весьма широко. Для этого достаточно найти в пространстве-времени аналогичный процесс, определить в нем фазу, соответствующую настоящему моменту, и рассчитать коэффициент "моделирования" по времени. Это позволит, исходя из подобия процессов, получить информацию о предыдущих (прошлых) и последующих (будущих) фазах процесса, происходящего в настоящем.

Например , "просвечивая" при помощи тех или иных волн тело человека, получают информацию о состоянии внутренних органов. Сравнивая ее с информацией о здоровом теле, отыскивают в них отклонения от нормы. При сравнении информации, полученной об одних и тех же органах, но в разное время, определяют отрицательную или положительную динамику протекания той или иной болезни. Сопоставляя эту динамику с развитием такой же болезни у других больных, определяют ее течение в прошлом и прогнозируют ее возможное будущее развитие. Это относится не только к человеку и его болезням, но и ко всем другим процессам. Проанализировав динамику множества аналогичных процессов и составив обширный банк данных, можно с достаточной степенью точности "предсказывать" течение того или иного процесса, имеющего в этом банке данных соответствующие ему аналоги.

Прогнозирование будущего развития процесса, происходящего в настоящем, исходя из хода аналогичного процесса в прошлом, широко практикуется учеными самых разных направлений . Этот метод успешно работает по отношению к тем процессам, время прохождения которых по сравнению с жизнью человечества в фазе человека разумного мало, что позволило подметить их общие закономерности и составить для них обширный банк данных. Те процессы, продолжительность которых (по нашим меркам) слишком велика, мы прогнозировать пока не научились, так как у нас для них очень мало или вообще нет аналогов.

Что касается исторических процессов, то их точное прогнозирование затруднено тем, что историки и политологи вынуждены пользоваться, в основном, умышленно искаженной информацией, а некоторые и сами ее умышленно искажают .

Наиболее достоверной является информация, записанная в окружающем нас пространстве и в нас самих, так как здесь преднамеренных искажений быть не должно. Основная трудность считывания такой информации заключается в том, чтобы отделить друг от друга следы, несущие разную информацию, и правильно их расшифровать.

В принципе, все информировано обо всем, так как любое взаимодействие оставляет после себя следы как на вещественном (в виде деформации формы), так и на полевом (остаточное излучение) уровне. А скорость распространения информации зависит от скорости распространения несущих ее частиц-волн и позволяет при использовании "быстрых" частиц-волн влиять на ход будущих событий.
Этим мы пользуемся постоянно, сообщая, например, по телефону о приезде того или иного человека, что дает нам возможность подготовить ему хорошую встречу или совсем избежать ее. Это же мы делаем, когда слышим предупреждение о надвигающемся урагане или мощной волны типа солитона. И ничего в этом удивительного для нас нет.

Если мы научимся ОСОЗНАННО взаимодействовать с окружающим нас миром на уже освоенных нами и пока неосвоенных частицах-волнах огромной скорости и проникающей способности без помощи наших рукотворных устройств, а при помощи собственного организма, то многое в нашем мире из разряда невероятного перейдет в разряд вполне очевидного. Тогда прогнозирование событий и упреждающее воздействие на их будущее развитие станет не исключением, а нормой. И эта норма, наверняка, во всех нас заложена Природой, так как с каждым годом появляется все больше людей, обладающих способностью осознанного энергоинформационного взаимодействия (при помощи мыслеформ) как с живыми, так, якобы, и неживыми представителями нашего мироздания разных уровней бытия.

Компьютерное моделирование, которое реальные устройства заменяет "виртуальными" компьютерными моделями, получило в настоящее время широкое распространение. С его помощью испытывают, например, прочность проектируемых мостов, аэродинамические свойства самолетов, моделируя их будущее при тех внутренних параметрах и внешних условиях, с которыми и в которых им предстоит эксплуатироваться - "жить". Уже появились сообщения о съемках фильмов в "виртуальной" среде компьютера, Фактически это и есть моделирование БУДУЩЕГО , т.е. воспроизведение заранее заданных объектов и процессов, но пока лишь на полевом уровне. Однако подобным образом можно создать и более плотные (вплоть до вещественных) модели, включая человека.

Если подобие и моделирование (воспроизведение одинаковых, уменьшенных или увеличенных пространственно-временных копий) является всеобщим принципом построения нашего мира, то это дает возможность не только прогнозировать, но и конструировать будущее на основании прошлого опыта и получать знания о прошлом, исходя из настоящего.

Подобные модели следует искать среди схожих по форме (строению) систем, как на нашем уровне проживания, так и в мире атома, и в мире космоса. Поэтому космические Девы, Драконы, Медведи, Псы и др. могут оказаться увеличенными моделями соответствующих персонажей нашей среды обитания.

Модель – это материальный или идеальный объект, замещающий исследуемую систему и адекватным образом отображающий ее существенные стороны. Модель объекта отражает его наиболее важные качества, пренебрегая второстепенными .

Компьютерная модель (англ. computer model), или численная модель (англ. computational model) – компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.

Говоря о компьютерной реконструкции, мы будем подразумевать разработку компьютерной модели определенного физического явления или среды.

Физическое явление – процесс изменения положения или состояния физической системы. Физическое явление характеризуется изменением определенных физических величин, связанных между собой. Например, к физическим явлениям относятся все известные виды взаимодействия материальных частиц.

На рисунке 1 представлена компьютерная динамическая модель изменения магнитного поля, образованного двумя магнитами, в зависимости от положения и ориентации магнитов относительно друг друга.

Рисунок 1 - Компьютерная динамическая модель изменения магнитного поля

Представленная компьютерная модель отражает динамику изменения параметров магнитного поля методом графической визуализации изолиниями. Построение изолиний магнитного поля осуществляется в соответствии с физическими зависимостями, учитывающими полярность магнитов при их определенном расположении и ориентации в плоскости.

Рисунок 2 иллюстрирует компьютерную имитационную модель течения воды в открытом русле, ограниченном стенками длинного стеклянного лотка.

Рисунок 2 - Компьютерная имитационная модель течения воды в открытом русле

Расчет параметров открытого потока (формы свободной поверхности, расхода и напора воды и др.) в данной модели выполняется в соответствии с законами гидродинамики открытых потоков. Расчетные зависимости составляют основу алгоритма, согласно которому производится построение модели потока воды в виртуальном трехмерном пространстве в реальном времени. Представленная компьютерная модель позволяет произвести геометрические замеры отметок поверхности воды в различных точках по длине потока, а также, определить расход воды и другие вспомогательные параметры. На основании полученных данных можно исследовать реальный физический процесс.

В приведенных примерах рассматриваются компьютерные имитационные модели с графической визуализацией физического явления. Однако компьютерные модели могут и не содержать визуальной или графической информации об объекте исследования. Тот же самый физический процесс или явление можно представить в виде набора дискретных данных, причем используя тот же алгоритм, на котором строилась имитационная визуальная модель.

Таким образом, основной задачей построения компьютерных моделей является функциональное исследование физического явления или процесса с получением исчерпывающих аналитических данных, а уже второстепенных задач может быть много, в том числе и графическая интерпретация модели с возможностью интерактивного взаимодействия пользователя с компьютерной моделью.

Механическая система (или система материальных точек) – совокупность материальных точек (или тел, которые по условию задачи оказалось возможным рассматривать как материальные точки).

В технических науках среды разделяют на сплошные (непрерывные) и дискретные среды. Данное разделение является в некоторой степени приближением или аппроксимацией, поскольку физическая материя по своей сути дискретна, а понятие непрерывности (континуума) относится к такой величине, как время. Другими словами, такая «сплошная» среда как, например, жидкость или газ состоит из дискретных элементов – молекул, атомов, ионов и т.д., однако математически описать изменение во времени этих структурных элементов крайне сложно, поэтому к таким системам вполне обосновано применяются методы механики сплошных сред.

– Дворецкий С.И., Муромцев Ю.Л., Погонин В.А. Моделирование систем. – М.: Изд. центр «Академия», 2009. – 320 с.

"Белов, В.В. Компьютерная реализация решения научно-технических и образовательных задач: учебное пособие / В.В. Белов, И.В. Образцов, В.К. Иванов, Е.Н. Коноплев // Тверь: ТвГТУ, 2015. 108 с."



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: