Механизмы активации первично и вторично чувствующих рецепторов. Классификация рецепторов и механизмы их возбуждения. Сенсорная система слуха

Рецепторами называются специальные образования, восприни­мающие и преобразующие энергию внешнего раздражения в специфи­ческую энергию нервного импульса.

Все рецепторы разделяют на экстерорецепторы, принимающие раз­дражения из внешней среды (рецепторы органов слуха, зрения, обоняния, вкуса, осязания), интерорецепторы , реагирующие на раздражения из внутренних органов, и проприорецепторы , воспринимающие раздраже­ния из двигательного аппарата (мышц, сухожилий, суставных сумок).

В зависимости от природы раздражителя , на который они настрое­ны, различают хеморецепторы (рецепторы вкуса и обоняния, хеморецепторы сосудов и внутренних органов), механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем), фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепторы сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зрительные и слуховые), и контактные, принимающие непосредственные воздействия (тактильные и др.).

По структурным особенностям различают первичные (первично-чувствующие) и вторичные (вторичночувствующие) рецепторы.

Первичные рецепторы – это окончания чувствительных биполярных клеток, тело которых находится вне ЦНС, один отросток подходит к воспринимающей раздражение поверхности, а другой направляется в ЦНС (например, проприорецепторы, тактильные и обонятельные рецепторы).

Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя. К ним относят рецепторы вкуса, зрения, слуха, вестибулярного аппарата. В практическом отношении наиболее важное значение имеет психофизиологическая классификация рецепторов по характеру ощущений, возникающих при их раздражении. Согласно этой классификации у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, рецепторы положения тела и его частей в пространстве (проприо- и вестибу-лорецепторы) и рецепторы кожи.

Механизм возбуждения рецепторов. В первичных рецепторах энергия внешнего раздражителя непосредственно преобразуется в нервный импульс в самом чувствительном нейроне. В периферическом окончании чувствительных нейронов при действии раздражителя происходит изменение проницаемости мембраны для определенных ионов и ее деполяризация, возникает местное возбуждение – рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервному волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецепторного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-рецептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала (ВПСП), или так называемого генераторного потенциала. При достижении порога возбудимости в волокне чувствительного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенциал, а другая – в генераторный потенциал и потенциал действия. Постсинаптический потенциал первого чувствительного нейрона называют генераторным потенциалом и он приводит к генерации нервных импульсов.

4. Свойства рецепторов

1. Главным свойством рецепторов является их избирательная чувствительность к адекватным раздражителям, к восприятию которых они эволюционно приспособлены (свет для фоторецепторов, звук для рецепторов улитки внутреннего уха и т.п.). Большинство рецепторов настроено на восприятие одного вида (модальности) раздражителя – света, звука и т.п. К таким специфическим для них раздражителям чувствительность рецепторов чрезвычайно высока. Возбудимость рецептора измеряется минимальной величиной энергии адекватного раздражителя, которая необходима для возникновения возбуждения, т.е. порогом возбуждения.

2. Другим свойством рецепторов является очень низкая величина порогов для адекватных раздражителей. Например, в зрительной сенсорной системе фоторецепторы способны возбуждаться одиночным квантом света в видимой части спектра, обонятельные рецепторы – при действии одиночных молекул пахучих веществ и т.п. Возбуждение рецепторов может возникать и при действии неадекватных раздражителей (например, ощущение света в зрительной сенсорной системе при механических и электрических раздражениях). Однако в этом случае пороги возбуждения оказываются значительно более высокими.

Различают абсолютные и разностные (дифференциальные) пороги. Абсолютные пороги измеряются минимально ощущаемой величиной раздражителя. Дифференциальные пороги представляют собой минимальную разницу между двумя интенсивностями раздражителя, которая еще воспринимается организмом (различия в цветовых оттенках, яркости света, степени напряжения мышц, суставных углах и пр.).

3. Фундаментальным свойством всего живого является адаптация, т.е. приспособляемость к условиям внешней среды. Адаптационные процессы, охватывают не только рецепторы, но и все звенья сенсорных
систем.

Адаптация заключается в приспособлении всех звеньев сенсорной системы к длительно действующему раздражителю, а проявляется она в снижении абсолютной чувствительности сенсорной системы. Субъективно адаптация проявляется в привыкании к действию постоянного раздражителя: войдя в прокуренное помещение, человек через несколько минут перестает ощущать запах дыма; человек не ощущает постоянного давления своей одежды на кожу, не замечает непрерывного тиканья часов и т.д.

По скорости адаптации к длительным раздражениям рецепторы подразделяют на быстро и медленно адаптирующиеся. Первые после развития адаптационного процесса практически не сообщают следующему за ними нейрону о длящемся раздражении, у вторых эта информация передается, хотя и в значительно уменьшенном виде (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

Адаптация может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы – это так называемая темновая адаптация. Однако такая высокая возбудимость рецепторов оказывается чрезмерной при переходе в ярко освещенное помещение («свет режет глаза»). В этих условиях возбудимость фоторецепторов быстро снижается - происходит световая адаптация.

Для оптимального восприятия внешних сигналов нервная система тонко регулирует чувствительность рецепторов в зависимости от потребностей момента путем эфферентной регуляции рецепторов. В частности, при переходе от состояния покоя к мышечной работе чувствительность рецепторов двигательного аппарата заметно возрастает, что облегчает восприятие информации о состоянии опорно- двигательного аппарата (гамма- регуляция) . Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремячка) в среднем ухе человека.

5. Кодирование информации

Амплитуда и длительность отдельных нервных импульсов (потенциалов действия), поступающих от рецепторов к центрам, при разных Раздражениях остаются постоянными. Однако рецепторы передают в нервные центры адекватную информацию не только о характере, но и о силе дейст­вующего раздражителя. Информация об изменениях интенсивности раз­дражителя кодируется (преобразуется в форму нервного импульсного ко­да) двумя способами:

изменением частоты импульсов, идущих по каждому из нерв­ных волокон от рецепторов к нервным центрам;

изменением числа и распределения импульсов - их количества в пачке (порции), интервалов между пачками, продолжительно­сти отдельных пачек импульсов, числа одновременно возбужден­ных рецепторов и соответствующих нервных волокон (разнооб­разная пространственно-временная картина этой импульсации, богатая информацией, называется паттерном).

Чем больше интенсивность раздражителя, тем больше частота афферентных нервных импульсов и их количество. Это обусловливает­ся тем, что нарастание силы раздражителя приводит к увеличению деполя­ризации мембраны рецептора, что, в свою очередь, вызывает увеличение амплитуды генераторного потенциала и повышение частоты возникающих в нервном волокне импульсов. Между силой раздражения и числом нерв­ных импульсов существует прямо пропорциональная зависимость.

Имеется еще одна возможность кодирования сенсорной информа­ции. Избирательная чувствительность рецепторов к адекватным раз­дражителям уже позволяет отделить различные виды действующей на организм энергии. Однако и в пределах одной сенсорной системы может быть различная чувствительность отдельных рецепторов к разным по характеристикам раздражителям одной и той же модальности (разли­чение вкусовых характеристик разными вкусовыми рецепторами языка, цветоразличение различными фоторецепторами глаза и др.).

Рецепторы, их классификация. Механизм возникновения возбуждения в рецепторах. Рецепторный и генераторный потенциал.

Рецептор - Это специализированная структура, воспринимающая раздражители из внешней или внутренней среды организма и трансформирующая их энергию в биоэлектрический потенциал. Рецептором может быть высокочувствительное окончание сенсорного нейрона (например, терморецепторы, хеморецепторы, механорецепторы и др.). Рецептором может быть особая специализированная клетка , которая, с одной стороны, контактирует с раздражителем, а с другой - с сенсорным нейроном (например, волосковые клетки кортиевого органа или фоторецепторы сетчатки глаза).

функциональные (физиологические) классификации рецепторов.

По отношению к раздражителям, поступающим из внешней или внутренней среды:

а)экстерорецепторы – воспринимают раздражители из внешней среды;

б)интерорецепторы – воспринимают раздражители изнутри организма. Их еще называют висцерорецепторы. Они располагаются во внутренних органах, выводных протоках, сосудах и т. д.

Отдельно выделяют проприорецепторы и вестибулорецепторы :

· проприорецепторы - находятся в мышцах, сухожилиях и связках. Они воспринимают изменения в состоянии опорно-двигательного аппарата, возникающие в результате активных и пассивных движений.

· вестибулорецепторы – находятся во внутреннем ухе, являются составной частью вестибулярного аппарата и реагируют на изменение положения головы и всего тела в пространстве.

По природе адекватного раздражителя:

а)механорецепторы – реагируют на механическое воздействие;

б)хеморецепторы – реагируют на различные по степени сложности химические вещества;

в)фоторецепторы – реагируют на кванты света;

г)терморецепторы – реагируют на абсолютную величину температуры во внутренней или внешней среде, а также на ее изменение;

д) осморецепторы – реагируют на величину осмотического давления

(в крови, тканевой жидкости, ликворе).

По характеру субъективных ощущений:

а)зрительные (ощущение света);

б)слуховые (ощущение звука);

в)вкусовые (ощущение вкуса);

г)обонятельные (ощущение запаха);

д)тактильные (ощущение прикосновения);

е)температурные (ощущение тепла и холода);

ж)вестибулярные (ощущение положения и перемещения тела в пространстве);

з)проприорецепторы (ощущение движения, вибрации, положения тела в пространстве)

и)ноцирецепторы (ощущение боли).

По месту возникновения возбуждения:

а)первичночувствующие (первичные) - в них рецепторный потенциал и потенциал действия (см. вопросы 3,4) возникают на одном и том же сенсорном нейроне, только в разных его участках. Например, в тельце Пачини, реагирующем на давление или на вибрацию, рецепторный потенциал возникает на рецепторной мембране, на которой нет быстрых натриевых каналов (см. вопрос 5) , а потенциал действия - на электро-возбудимой мембране, являющейся продолжением рецепторной

б)вторичночувствующие (вторичные) – в них рецепторный потенциал и потенциал действия возникают в разных клетках: рецепторный потенциал - в специальной рецепторной клетке, а потенциал действия – в сенсорном нейроне. Например, в зрительном анализаторе рецепторный потенциал возникает в палочках или в колбочках, а потенциал действия в ганглиозных клетках, отростки которых формируют зрительный нерв (рис 2Б). Причем между рецепторной клеткой и ганглиозным нейроном находятся биполярные нейроны, в которых возникает генераторный потенциал (см. вопрос 7) ;

По степени возбудимости:

а)низкопороговые (обладают более высокой возбудимостью);

б)высокопороговые (обладают более низкой возбудимостью).

По количеству воспринимаемых модальностей:

(см. классификацию нейронов)

а)мономодальные;

б)полимодальные.

По количеству воспринимаемых валентностей:

(см. классификацию нейронов)

а)моновалентные;

б)поливалентные.

По способности к адаптации:

а)быстро адаптирующиеся (рис. 3А);

б)медленно адаптирующиеся (рис. 3Б);

в)неадаптирующиеся (рис. 3В).

Механизм возникновения возбуждения в первичночувствующих рецепторах напоминает механизм возникновения возбуждения на постсинаптической мембране химического синапса) и состоит в следующем. Сначала под действием раздражителя на рецепторной мембране возникает рецепторный потенциал (РП). Поскольку РП – это всегда уменьшение степени поляризации мембраны (гиперполяризационный РП не дает возбуждения), то между частично деполяризованной рецепторной мембраной и соседним участком электровозбудимой мембраны возникают локальные токи, которые деполяризуют электровозбудимую мембрану до критического уровня, а значит, приводят к возникновению ПД.

Поверхностная клеточная мембрана не имеет «быстрых» (электровозбудимых) натриевых каналов. Поэтому здесь не может произойти перезарядка поверхностной мембраны, но возможно изменение мембранного потенциала покоя при действии раздражителей. Это изменение мембранного потенциала покоя носит название рецепторный потенциал (РП).

В большинстве рецепторных образований происхождение РП связано с тем, что при действии адекватного раздражителя на рецепторной мембране увеличивается проницаемость для ионов натрия, которые через открывающиеся «медленные» (хемовозбудимые, механовозбудимые и др.) каналы проникают по градиенту концентрации внутрь клетки и деполяризуют поверхностную клеточную мембрану. Степень этой деполяризации (амплитуда РП) зависит от силы раздражителя, то есть чем выше сила раздражителя, тем больше деполяризация мембраны. Эта деполяризация локальна и не распространяется на соседние участки (так как электровозбудимых каналов здесь нет). Таким образом, РП – это по сути дела локальный, или градуальный ответ и проявляется в местной деполяризации мембраны.

В палочках и колбочках (зрительный анализатор) в ответ на воздействие кванта света возникает гиперполяризация поверхностной клеточной мембраны. Гиперполяризационный РП может возникнуть и в вестибулорецепторах преддверия улитки и ампул полукружных каналов

Генераторным называется потенциал, который является причиной возникновения возбуждения в рецепторе. Поэтому рецепторный потенциал иногда называют генераторным. Но чаще генераторным называют потенциал, возникающий во вторичночувствующих рецепторах на клетке, которая располагается вслед за рецепторной. Эта клетка воспринимает информацию от рецепторной клетки (в виде порции медиатора) и изменяет в связи с этим свой мембранный потенциал (рис. 2Б). Это изменение МПП носит название генераторного потенциала (ГП). В свою очередь ГП является причиной возникновения ПД на последующей в этой цепочке - нервной клетке (то есть, генерирует ПД). Например, в зрительном анализаторе ГП возникает на биполярном нейроне, который деполяризуется за счет медиатора, выделяющегося из палочки или колбочки. В свою очередь биполярный нейрон при возникновении ГП также выделяет медиатор, за счет которого возникает возбуждение на ганглиозном нейроне. Далее возбуждение по аксону ганглиозной клетки, в составе зрительного нерва, распространяется по проводниковому отделу зрительного анализатора.

Синапсы, их строение, классификация и функциональные свойства. Особенности передачи возбуждения в них. Механизм формирования ВПСП. Понятие ою электрических синапсах и особенностях передачи возбуждения в них.

Понятие синапс ввел в физиологию известный английский физиолог Чарльз Шеррингтон (1897) для обозначения функционального контакта между нейронами. Под синапсом понимают специализированный межклеточный контакт, предназначенный для передачи информации с нейрона на любую другую возбудимую клетку (нервную, мышечную или железистую).

Существует несколько принципов, согласно которым одни и те же синапсы могут быть классифицированы по-разному

По виду соединяемых клеток:

а) межнейрональные – обеспечивают связь между нейронами, располагающимися как в самой ЦНС, так и за ее пределами;

б) нейроэффекторные – обеспечивают связь между нейроном и эффекторной клеткой (мышечной или секреторной);

в) нейрорецепторные – обеспечивают связь между нейроном и рецептором сенсорного нейрона (таким образом обеспечивается контроль за работой рецепторов, то есть модулируется их возбудимость).

По месту расположения:

а) центральные – расположены в ЦНС,

б) периферические – расположены вне ЦНС (мионевральные, ганглионарные и др.).

По функциональному эффекту:

а) возбуждающие – передают возбуждение на постсинаптическую структуру;

б) тормозные – препятствуют передаче возбуждения на постсинаптическую структуру.

По механизму передачи возбуждения:

А) химические;

Классификация рецепторов и механизмы их возбуждения

Рецепторами называются специальные образования, транс­формирующие (преобразующие) энергию внешнего раздражения в спе­цифическую энергию нервного импульса.

Все рецепторы по характеру воспринимаемой среды делятся на экстерорецепторы, интерорецепторы и проприорецепторы. Экстерорецепторы принимают раздражения из внешней среды, (рецепторы органов слуха, зрения, обоняния, вкуса, осяза­ния). Интерорецепторы реагируют на раздражения из внутренних органов. Проприорецепторы воспринимают раздражения из двигательного аппарата (мышц, сухожилий, сустав­ных сумок).

По виду воспринимаемых раздражений различают хеморецеп­торы (рецепторы вкусовой и обонятельной сенсорных систем, хеморецепторы сосудов и внутренних органов); механорецепторы (проприорецепторы двигательной сенсорной системы, барорецепторы сосудов, рецепторы слуховой, вестибулярной, тактильной и болевой сенсорных систем); фоторецепторы (рецепторы зрительной сенсорной системы) и терморецепторы (рецепто­ры температурной сенсорной системы кожи и внутренних органов).

По характеру связи с раздражителем различают дистантные рецепторы, реагирующие на сигналы от удаленных источников и обусловливающие предупредительные реакции организма (зри­тельные и слуховые) и контактные, принимающие непосред­ственные воздействия (тактильные и др.)

По структурным особенностям различают первичные и вторичные рецепторы. Первичные рецепторы - это окончания чувствительных биполярных клеток, тело которых нахо­дится вне ЦНС, один отросток подходит к воспринимающей раздра­жение поверхности, а другой направляется в ЦНС (например, про­приорецепторы, терморецепторы, обонятельные клетки). Вторичные рецепторы представлены специализированными рецепторными клетками, которые расположены между чувствительным нейроном и точкой приложения раздражителя (например, фоторецепторы глаза).

В первичных рецепторах энергия внешнего раздражителя непосред­ственно преобразуется в нервный импульс в одной и той же клетке. В периферическом окончании чувствительных клеток при действии раздражителя возникает повышение проницаемости мембраны и ее деполяризация, возникает местное возбуждение - рецепторный потенциал, который, достигнув пороговой величины, обусловливает появление потенциала действия, распространяемого по нервно­му волокну к нервным центрам.

Во вторичных рецепторах раздражитель вызывает появление рецеп­торного потенциала в клетке-рецепторе. Ее возбуждение приводит к выделению медиатора в пресинаптической части контакта клетки-ре­цептора с волокном чувствительного нейрона. Местное возбуждение этого волокна отражается появлением возбуждающего постсинаптического потенциала или так называемого генераторного потен­циала. При достижении порога возбудимости в волокне чувстви­тельного нейрона возникает потенциал действия, несущий информацию в ЦНС. Таким образом, во вторичных рецепторах одна клетка преобразует энергию внешнего раздражителя в рецепторный потенци­ал, а другая - в генераторный потенциал и потенциал действия.

В первичных рецепторах при действии раздражителя происходит его взаимодействие с белком-рецетттором мембраны окончаний нервной сенсорной клетки. В результате в клетке возникает рецепторный потенциал (РП), который обладает всеми свойствами локального потенциала. Он одновременно является генераторным потенциалом (ГП), поскольку на его базе возникает ПД.

Во вторичных рецепторах этот процесс несколько сложнее. Раздражитель взаимодействует с мембраной специализированной (не нервной) рецепторной клетки. В ответ на это возникает РП, что приводит к выделению из пресинаптической мембраны рецепторной клетки медиатору. Медиатор влияет на окончание нервной клетки, Деполяризующие ее. Это приводит к возникновению в нервной клетке ГП, который при достижении критического уровня деполяризации превращается в ПД. Следует отметить, что у человека нет рецепторов на некоторые виды энергии, например, на рентгеновское и ультрафиолетовое излучение.

Проводной отдел сенсорных систем

ПД, который возник, распространяется по нервным волокнам по сенсорным путям в участки, лежащие выше. Различают следующие типы путей.

1. Специфические пути - которые несут информацию от рецепторов через различные уровни ЦНС к специфическим ядер таламуса, а от них к специфическим центров коры - проекционных участков. Исключение - обонятельный путь, волокна которого проходят через таламус. Эти пути обеспечивают информацию о физических параметрах раздражителей.

2. Ассоциативные таламо-кортикальные пути - не имеют прямых связей с рецепторами, получают информацию от ассоциативных ядер таламуса. Эти пути обеспечивают информированность о биологическом значении раздражителей.

3. Неспецифические пути - образованные ретикулярной формацией (РФ), влияют на возбудимость работающих нервных центров.

4. Важно подчеркнуть, что в сенсорных системах также эфферентные пути, влияющих на возбуждение разных уровней сенсорных систем. При прохождении импульсов по сенсорным путям происходит не только возбуждение, но и торможения различных уровней ЦНС. Проводной отдел обеспечивает не только проведение импульсов, но и их переработку с выделением полезной информации и торможением менее важной. Это возможно потому, что проводной отдел имеет не только нервные волокна, но и нервные клетки различных уровней ЦНС.

Корковый отдел сенсорных систем

В современном представлении корковый отдел сенсорных систем представлен проекционными (первичными или специфическими) и ассоциативными (вторичными, третичными) участками.

Проекционная участок каждой сенсорной системы является центром определенного вида чувствительности, где формируется ощущение. Оно состоит в основном из моносенсорних клеток, которые получают информацию от специфических ядер таламуса типа по специфическому пути. Проекционная участок обеспечивает восприятие физических параметров раздражителя. В проекционных участках обнаружена топическая организация (topos - место), то есть, упорядоченное расположение проекций от рецепторов.

Ассоциативные участки состоят преимущественно из полисенсорных клеток, которые получают информацию не от рецепторов, а от ассоциативных ядер таламуса. Благодаря этому ассоциативные участки обеспечивают оценки биологического значения раздражителя, оценку источники возникновения стимула.

В корковом отделе каждой сенсорной системы происходят процессы анализа и синтеза, распознавания образов, формирование представлений, детекция (выделения) признаков и организация процессов запоминания важной информации.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

При действии стимула в рецепторе происходит преобразование энергии внешнего раздражения в рецепторный сигнал (трансдукция сигнала). Этот процесс включает в себя три основных этапа:

1. взаимодействие стимула с рецепторной белковой молекулой, которая находится в мембране рецептора;

2. усиление и передачу стимула в пределах рецепторной клетки

открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).
Механизм возбуждения рецепторов связан с изменением проницаемости клеточной мембраны для ионов калия и натрия. Когда раздражение достигает пороговой величины, возбуждается сенсорный нейрон, посылающий импульс в центральную нервную систему. Можно сказать, что рецепторы кодируют поступающую информацию в виде электрических сигналов. Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала).При действии стимула на рецепторную клетку в белково-липидном слое мембраны происходит изменение пространственной конфигурации белковых рецепторных молекул. Это приводит к изменению проницаемости мембраны для определенных ионов, чаще всего для ионов натрия, но в последние годы открыта еще и роль калия в этом процессе. Возникают ионные токи, изменяется заряд мембраны и происходит генерация рецепторного потенциала (РП). А далее процесс возбуждения протекает в разных рецепторах по-разному.

В первично чувствующих рецепторах, которые являются свободными голыми окончаниями чувствительного нейрона (обонятельных, тактильных, проприоцептивных), РП воздействует на соседние, наиболее чувствительные участки мембраны, где генерируется потенциал действия (ПД) , который далее в виде импульсов распространяется по нервному волокну. Таким образом, когда рецепторный потенциал достигает определенной величины, на его фоне возникает распространяющийся ПД. Преобразование энергии внешнего стимула в ПД в первичных рецепторах может происходить как непосредственно на мембране, так и при участии некоторых вспомогательных структур.

Рецепторный и распространяющийся потенциалы возникают в первичных рецепторах в одних и тех же элементах. Так, в расположенных в коже окончаниях отростка сенсорного нейрона при действии раздражителя сначала формируется рецепторный потенциал, под влиянием которого в ближайшем перехвате Ранвье возникает распространяющийся потенциал. Следовательно, в первичных рецепторах рецепторный потенциал является причиной возникновения — генерации — распространяющегося ПД, поэтому его называют еще генераторным

Во вторично чувствующих рецепторах, которые представлены специализированными клетками (зрительные, слуховые, вкусовые, вестибулярные), РП приводит к образованию и выделению медиатора из пресинаптического отдела рецепторной клетки в синаптическую щель рецепторно-афферентного синапса. Этот медиатор воздействует на постсинаптическую мембрану чувствительного нейрона, вызывает ее деполяризацию и образование постсинаптического потенциала, который называют генераторным потенциалом (ГП ). ГП, воздействуя на внесинаптические участки мембраны чувствительного нейрона, обусловливает генерацию ПД. ГП может быть как де-, так и гиперполяризационным и соответственно вызывать возбуждение или тормозить импульсный ответ афферентного волокна.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: