Муравьиный альдегид с оксидом меди. Общая формула карбонильных соединений. Физические свойства альдегидов

ОПРЕДЕЛЕНИЕ

Альдегиды – органические вещества, относящиеся к классу карбонильных соединений, содержащих в своем составе функциональную группу –СН = О, которая называется карбонильной.

Общая формула предельных альдегидов и кетонов C n H 2 n O. В названии альдегидов присутствует суффикс –аль.

Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН 2 = О, ацетальдегид (уксусный альдегид) – СН 3 -СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

СН 3 -СН 2 -СН 2 -СН = О (бутаналь);

СН 3 -СН(СН 3)-СН = О (2-метилпентаналь);

СН 3 -С(СН 2 -СН 3) = О (метилэтилкетон).

Химические свойства альдегидов

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; α-СН кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

1. Реакции присоединения:

— воды с образованием гем-диолов

R-CH = O + H 2 O ↔ R-CH(OH)-OH;

— спиртов с образованием полуацеталей

CH 3 -CH = O + C 2 H 5 OH ↔CH 3 -CH(OH)-O-C 2 H 5 ;

— тиолов с образованием дитиоацеталей (в кислой среде)

CH 3 -CH = O + C 2 H 5 SH ↔ CH 3 -CH(SC 2 H 5)-SC 2 H 5 + H 2 O;

— гидросульфита натрия с образованием α-гидроксисульфонатов натрия

C 2 H 5 -CH = O + NaHSO 3 ↔ C 2 H 5 -CH(OH)-SO 3 Na;

— аминов с образованием N-замещенных иминов (основания Шиффа)

C 6 H 5 CH = O + H 2 NC 6 H 5 ↔ C 6 H 5 CH = NC 6 H 5 + H 2 O;

— гидразинов с образованием гидразонов

CH 3 -CH = O + 2 HN-NH 2 ↔ CH 3 -CH = N-NH 2 + H 2 O;

— циановодородной кислоты с образованием нитрилов

CH 3 -CH = O + HCN ↔ CH 3 -CH(N)-OH;

— восстановление. При взаимодействии альдегидов с водородом получаются первичные спирты:

R-CH = O + H 2 → R-CH 2 -OH;

2. Окисление

— реакция «серебряного зеркала» — окисление альдегидов аммиачным раствором оксида серебра

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓;

— окисление альдегидов гидроксидом меди (II), в результате которого выпадает осадок оксида меди (I) красного цвета

CH 3 -CH = O + 2Cu(OH) 2 → CH 3 -COOH + Cu 2 O↓ + 2H 2 O;

Эти реакции являются качественными реакциями на альдегиды.

Физические свойства альдегидов

Первый представитель гомологического ряда альдегидов – формальдегид (муравьиный альдегид) – газообразное вещество (н.у.), альдегиды неразветвленного строения и состава С 2 -С 12 – жидкости, С 13 и длиннее – твердые вещества. Чем больше атомов углерода входит в состав неразветвленного альдегида, тем выше его температура кипения. С увеличением молекулярной массы альдегидов увеличиваются значения величин их вязкости, плотности и показателя преломления. Формальдегид и ацетальдегид способны смешиваться с водой в неограниченных количествах, однако, с ростом углеводородной цепи эта способность альдегидов снижается. Низшие альдегиды обладают резким запахом.

Получение альдегидов

Основные способы получения альдегидов:

— гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо 2 (СО) 8) Реакция проводится при нагревании до 130С и давлении 300 атм

СН 3 -СН = СН 2 + СО +Н 2 →СН 3 -СН 2 -СН 2 -СН = О + (СН 3) 2 СНСН = О;

— гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

НС≡СН + Н 2 О → СН 3 -СН = О;

— окисление первичных спиртов (реакция протекает при нагревании)

СН 3 -СН 2 -ОН + CuO → CH 3 -CH = O + Cu + H 2 O.

Применение альдегидов

Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.) используют в качестве ингредиентов в парфюмерии.

Примеры решения задач

ПРИМЕР 1

Задание Бромированием С n H 2 n +2 получили 9,5 г монобромида, который при обработке разбавленным раствором NaOH превратился в кислородсодержащее соединение. Пары его с воздухом пропущены над раскаленной медной сеткой. При обработке образовавшегося при этом нового газообразного вещества избытком аммиачного раствора Ag 2 O выделилось 43,2 г осадка. Какой углеводород был взят и в каком количестве, если выход на стадии бромирования 50%, остальные реакции протекают количественно.
Решение Запишем уравнения всех протекающих реакций:

C n H 2n+2 + Br 2 = C n H 2n+1 Br + HBr;

C n H 2n+1 Br + NaOH = C n H 2n+1 OH + NaBr;

C n H 2n+1 OH → R-CH = O;

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓.

Осадок выделившийся в последней реакции – это серебро, следовательно, можно найти количество вещества выделившегося серебра:

M(Ag) = 108 г/моль;

v(Ag) = m/M = 43,2/108 = 0,4 моль.

По условию задачи, после пропускания вещества полученного в реакции 2 над раскаленной металлической сеткой образовался газ, а единственный газ –альдегид – это метаналь, следовательно, исходное вещество – это метан.

CH 4 + Br 2 = CH 3 Br + HBr.

Количество вещества бромметана:

v(CH 3 Br) = m/M = 9,5/95 = 0,1 моль.

Тогда, количество вещества метана, необходимое для 50% выхода бромметана – 0,2 моль. М(CH 4) = 16 г/моль. Следовательно масса и объем метана:

m(CH 4) = 0,2×16 = 3,2 г;

V(CH 4) = 0,2×22,4 = 4,48 л.

Ответ Масса метана — масса 3,2 г, объем метана-4,48 л

ПРИМЕР 2

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: бутен-1 → 1-бромбутан + NaOH → А – Н 2 → В + OH → С + HCl → D.
Решение Для получения 1-бромбутана из бутена-1 необходимо провести реакцию гидробромирования в присутствии пероксидных соединений R 2 O 2 (реакция протекает против правила Марковникова):

CH 3 -CH 2 -CH = CH 2 + HBr → CH 3 -CH 2 -CH 2 -CH 2 Br.

При взаимодействии с водным раствором щелочи 1-бромбутан подвергается гидролизу с образованием бутанола-1 (А):

CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH → CH 3 -CH 2 -CH 2 -CH 2 OH + NaBr.

Бутанол-1 при дегидрировании образует альдегид – бутаналь (В):

CH 3 -CH 2 -CH 2 -CH 2 OH → CH 3 -CH 2 -CH 2 -CH = О.

Аммиачный раствор оксида серебра окисляет бутаналь до аммонийной соли – бутирата аммония (С):

CH 3 -CH 2 -CH 2 -CH = О + OH →CH 3 -CH 2 -CH 2 -COONH 4 + 3NH 3 + 2Ag↓ +H 2 O.

Бутират аммония при взаимодействии с соляной кислотой образует масляную (бутановую) кислоту (D):

CH 3 -CH 2 -CH 2 -COONH 4 + HCl → CH 3 -CH 2 -CH 2 -COOH + NH 4 Cl.

Альдегидами называются органические соединения, в которых карбонильная группа (С-О) связана с водородом и радикалом R (остатки алифатических, ароматических и гетероциклических соединений):

Полярность карбонильной группы обеспечивает полярность молекулы в целом, поэтому альдегиды имеют более высокие температуры кипения, чем неполярные соединения сравнимой молекулярной массы.

Поскольку атомы водорода в альдегидах связаны только с атомом углерода (близкие относительные электроотрицательности), межмолекулярные водородные связи не образуются. Поэтому температуры кипения альдегидов ниже, чем у соответствующих спиртов или карбоновых кислот. В качестве примера можно сравнить температуры кипения метанола (Т^ 65 °С), муравьиной кислоты (Гкип 101 °С) и формальдегида (7^, -21 °С).

Низшие альдегиды растворимы в воде, вероятно, вследствие образования водородных связей между молекулами растворенного вещества и растворителя. Высшие альдегиды хорошо растворяются в большинстве обычных органических растворителей (спирты, эфиры). Низшие альдегиды имеют резкий запах, у альдегидов с С3-С6 весьма неприятный запах, в то время как высшие альдегиды обладают цветочными запахами и применяются в парфюмерии.

В химическом отношении альдегиды - весьма реакционноспособные соединения. Наиболее характерны для альдегидов реакции нуклеофильного присоединения, что обусловлено присутствием в молекуле электрофильного центра - карбонильного атома углерода группы С=0.

Многие из этих реакций, например, образование оксимов, семикарбазонов и других соединений, используются в качественном и количественном анализе ЛС из группы альдегидов потому, что продукты присоединения альдегидов характеризуются определенной для каждого альдегида температурой плавления. Так, альдегиды при встряхивании с насыщенным раствором гидросульфита натрия легко вступают в реакцию присоединения:

Продукты присоединения представляют собой соли, имеющие определенную температуру плавления, хорошо растворимы в воде, но не растворимы в органических растворителях.

При нагревании с разбавленными кислотами гидросульфитные производные гидролизуются до исходных соединений.

Способностью альдегидов образовывать гидросульфитные производные пользуются как для определения подлинности препарата с альдегидной группой в молекуле, так и для очистки альдегидов и выделения их из смесей с другими веществами, не реагирующими с гидросульфитом натрия.


Альдегиды также легко присоединяют аммиак и другие азотсодержащие нуклеофилы. Продукты присоединения обычно малоустойчивы и легко подвергаются дегидратации и полимеризации. Образующиеся в результате полимеризации циклические соединения при нагревании с разбавленными кислотами легко разлагаются, вновь освобождая альдегид:
r-ch-nh2 г з -NH R-СС
-зн2о "
он

Альдегиды легко окисляются. Оксид серебра(І) и другие окислители с невысоким значением окислительного потенциала способны окислять альдегиды. Например, для альдегидов характерна реакция образования серебряного зеркала, которая протекает с аммиачным раствором AgN03:

AgN03 + 3NH3 - OH + NH4N03

Реактив Толленса

При этом на стенках пробирки образуется зеркальный налет металлического серебра:

2OH + RCOH 2Agi + RCOOH + 4NH3T + Н20

Аналогично альдегиды могут восстанавливать медь(П) до меди(1). Для проведения реакции к раствору альдегида добавляют реактив Фелинга (щелочной раствор тартратного комплекса меди(П)) и нагревают. Сначала образуется желтый осадок гидроксида меди(1) - СиОН, а затем красный - оксида меди(1) - Си20:

2KNa + RCOH + 3NaOH + 2КОН -

2CuOHi + RCOONa + 4KNaC4H406 + 2H20 2CuOH - Cu20 + H20

К окислительно-восстановительным относится также реакция взаимодействия альдегидов с реактивом Несслера в щелочной среде; при этом выпадает темный осадок восстановленной ртути:

K2 + RCOH + ЗКОН - RCOOK + 4KI + Hgl + 2Н20

Следует иметь в виду, что реакция с реактивом Несслера более чувствительна, поэтому ее используют для обнаружения примесей альдегидов в ЛС. Подлинность лекарственных средств, содержащих альдегидную группу, подтверждают менее чувствительными реакциями: серебряного зеркала или с реактивом Фелинга. Некоторые другие соединения, например полифенолы, также окисляются соединениями Ag(I) и Си(П), т.е. реакция не является специфической.


Формальдегид и уксусный альдегид склонны к полимеризации. Формальдегид полимеризуется, образуя циклические тримеры, тетрамеры или линейные полимеры. Реакция полимеризации протекает в результате нуклеофильной атаки кислорода одной молекулы карбонильного атома углерода другой:

Так, из 40 % водного раствора формальдегида (формалина) образуется линейный полимер - параформ (и = 8 - 12), тример и тетрамер.

Для альдегидов характерны наркотические и дезинфицирующие свойства. По сравнению со спиртами альдегидная группа усиливает токсичность вещества. Введение галогена в молекулу альдегида повышает его наркотические свойства. Например, наркотические свойства хлораля более выражены, чем у уксусного альдегида:

с!3с-сС

Получение. Альдегиды могут быть получены окислением первичных спиртов хромовой кислотой (Na2Cr04, H2S04) при кипячении или перманганатом калия в щелочной среде:

Дегидрирование первичных спиртов осуществляют над медным катализатором (Си, Сг203) при 300-400 °С.

Промышленное производство метаналя основано на парофазном окислении метанола с железомолибденовым катализатором:

2СН3ОН + 02 500 ~600 2СН2=0 + Н20

Раствор формальдегида (формалин)

Получение. Формалин - это водный раствор формальдегида (40 %), стабилизированный метанолом (6-10 %). Европейская Фармакопея содержит ФС «Формальдегида раствор (35 %)» (см. табл. 9.1). В лабораторных условиях формальдегид может быть получен дегидрированием метанола над медью или деполимеризацией параформа.

Определение подлинности. Фармакопейный способ - реакция серебряного зеркала.

Поскольку формальдегид легко вступает в реакции конденсации, например, с гидроксилсодержащими ароматическими соединениями с образованием окрашенных соединений, ГФ рекомендует также использовать для его идентификации реакцию с салициловой кислотой, в результате которой появляется красное окрашивание:

H2S04
НО
соон

Аналогично протекает реакция с хромотроповой кислотой с образованием синефиолетовых и красно-фиолетовых продуктов (ЕФ).

Для определения подлинности фармальдегида могут быть использованы реакции с азотсодержащими нуклеофилами, например первичными аминами:

H-Ctf° + H2N-R - н-с^^К + Н20

Образующиеся N-замещенные имины (основания Шиффа) малорастворимы, некоторые из них окрашены, другие дают окрашенные соединения с ионами тяжелых металлов. ЕФ предлагает реакцию с фенилгидразином. В присутствии калия феррици- анида в кислой среде образуются продукты реакции интенсивно красного цвета.

Испытания на чистоту. Контроль примеси муравьиной кислоты осуществляют, определяя кислотность. Согласно ГФ, концентрация муравьиной кислоты в препарате не должна превышать 0,2 %; устанавливают содержание муравьиной кислоты методом нейтрализации (ГФ). Согласно ЕФ, метанол определяют методом газовой хроматографии (9-15 % об.). Сульфатная зола - не более 0,1 % в навеске 1,0 г.

I2 + 2NaOH - Nal + NaOI + Н20

Гипойодит окисляет формальдегид до муравьиной кислоты. Непрореагировавший гипойодит при подкислении раствора избытком серной кислоты превращается в йод, который оттитровывают тиосульфатом натрия:

НСОН + NaOI + NaOH - HCOONa + Nal + H20 NaOI + Nal + H2S04 -*■ I2 + Na2S04 + H20 I2 + 2Na2S203 - Na2S406 + 2NaI

Возможно использование и других титрующих агентов при определении формальдегида: водорода пероксида в щелочном растворе, церия(ІУ) сульфата, натрия сульфита.

Препарат можно рассматривать как пролекарство, так как физиологическое действие оказывает не сам гексаметилентетрамин, а формальдегид, выделяющийся при разложении препарата в кислой среде. Именно этим объясняется включение его в настоящий раздел (см. табл. 9.1).

Получение. Уротропин (тетраазаадамантан) получают конденсацией метаналя и аммиака из водных растворов. Промежуточный продукт реакции - гексагидро-1,3,5- триазин:

ll

Гексагидро- Уротропин

1,3,5-трназин


Определение подлинности. При нагревании смеси препарата с разведенной серной кислотой образуется аммонийная соль, из которой при добавлении избытка щелочи выделяется аммиак:

(CH2)6N4 + 2H2S04 + 6Н20 - 6НСОН + 2(NH4)2S04 (NH4)2S04 + 2NaOH - 2NH3t + Na2S04 + 2H20

Гексаметилентетрамин можно обнаружить также по красному окрашиванию раствора при добавлении салициловой кислоты после предварительного нагревания с серной кислотой (см. определение подлинности формальдегида).

Испытания на чистоту. В препарате не допускается присутствие примесей органических соединений, параформа, солей аммония. ГФ указывает допустимые пределы содержания примесей хлоридов, сульфатов, тяжелых металлов.

Количественное определение. Для количественного определения гексаметилентетрамина ГФ предлагает использовать метод нейтрализации. Для этого навеску препарата нагревают с избытком 0,1М раствора серной кислоты. Избыток кислоты оттитровы- вают раствором щелочи концентрацией 0,1 моль/л (индикатор метиловый красный).

На способности гексаметилентетрамина давать с йодом тетрайодиды основан йодометрический метод количественного определения.

Первая группа свойств — реакции присоединения. В карбонильной группе между углеродом и кислородом присутствует двойная связь, которая, как вы помните, состоит из сигма-связи и пи-связи. В реакциях присоединения пи-связь рвется и образуются две сигма связи — одна с углеродом, вторая — с кислородом. На углероде сосредоточен частичный положительный заряд, на кислороде — частичный отрицательный. Поэтому к углероду присоединяется отрицательно заряженная частица реагента, анион, а к кислород — положительно заряженная часть молекулы.

Первое свойство — гидрирование, присоединение водорода.

Реакция проходит при нагревании. Применяется уже известный вам катализатор гидрирования — никель. Из альдегидов получаются первичные спирты, из кетонов вторичные.

У вторичных спиртов гидроксогруппа связана со вторичным атомом углерода.

Второе свойство — гидратация, присоединение воды. Эта реакция возможна только для формальдегида и ацетальдегида. Кетоны совсем не реагируют с водой.

Все реакции присоединения идут таким образом, что плюс идет к минусу, а минус к плюсу.

Как вы помните из видео про спирты , наличие двух гидроксогрупп у одного атома почти невозможная ситуация, такие вещества крайне неустойчивы. Так вот конкретно два этих случая — гидрат формальдегида и уксусного альдегида — возможны, хотя и существуют только в растворе.

Сами реакции знать не обязательно. Скорее всего, вопрос на экзамене может звучать как констатация факта, допустим, с водой реагируют и перечислены вещества. Среди их перечня которых могут быть метаналь или этаналь.

Третье свойство — присоединение синильной кислоты.

Снова плюс идет к минусу, а минус к плюсу. Получаются вещества, называемые гидроксинитрилами. Опять же, сама реакция встречается нечасто, но знать об этом свойстве нужно.

Четвертое свойство — присоединение спиртов.

Здесь снова не нужно знать наизусть уравнение реакции, просто надо понимать, что такое взаимодействие возможно.

Как обычно в реакциях присоединения к карбонильной группе — плюс к минусу, а минус к плюсу.

Пятое свойство — реакция с гидросульфитом натрия.

И снова, реакция довольно сложная, выучить ее вряд ли получится, но это одна из качественных реакций на альдегиды, потому что полученная натриевая соль выпадает в осадок. То есть по факту вы должны знать, что альдегиды реагируют с гидросульфитом натрия, этого будет достаточно.

На этом закончим с первой группой реакций. Вторая группа — реакции полимеризации и поликонденсации.

2. Полимеризация и поликонденсация альдегидов

С полимеризацией вы знакомы: полиэтилен, бутадиеновый и изопреновый каучуки, поливинилхлорид — это продукты объединения множества молекул (мономеров) в одну большую, в единую полимерную цепь. То есть получается один продукт. При поликонденсации происходит то же самое, но помимо полимера получаются еще низкомолекулярные продукты, например, вода. То есть получается два продукта.

Итак, шестое свойство — полимеризация. Кетоны в эти реакции не вступают, промышленное значение имеет только полимеризация формальдегида.

Пи-связь рвется и образуются две сигма связи с соседними мономерами. Получается полиформальдегид, называемый также параформ. Вероятнее всего, вопрос на экзамене может звучать так: в реакции полимеризации вступают вещества. И приведен список веществ, среди которых может быть в формальдегид.

Седьмое свойство — поликонденсация. Еще раз: при поликонденсации помимо полимера получается еще низкомолекулярное соединение, например, вода. Формальдегид вступает в такую реакцию с фенолом. Для наглядности сначала запишем уравнение с двумя молекулами фенола.

В результате получается такой димер и отщепляется молекула воды. Теперь запишем уравнение реакции в общем виде.

Продуктом поликонденсации является феноло-формальдегидная смола. Она находит широкое применение — от клеев и лаков до пластмасс и компонента древесно-стружечных плит.

Теперь третья группа свойств — реакции окисления.

3. Окисление альдегидов и кетонов

Восьмой реакцией в общем списке является качественная реакция на альдегидную группу — окисление аммиачным раствором оксида серебра. Реакция «серебряного зеркала». Скажу сразу, кетоны не вступают в эту реакцию, только альдегиды.

Альдегидная группа окисляется до карбоксильной, кислотной группы, но в присутствии аммиака, который является основание, сразу же происходит реакция нейтрализации и получается соль — ацетат аммония. Серебро выпадает в осадок, покрывая пробирку изнутри и создавая зеркальную поверхность. Эта реакция встречается на ЕГЭ постоянно.

Кстати, эта же реакция является качественной на другие вещества, имеющие альдегидную группу, например, на муравьиную кислоту и ее соли, а также на глюкозу.

Девятая реакция тоже качественная на альдегидную группу — окисление свежеосажденным гидроксидом меди два. Здесь тоже замечу, что кетоны не вступают в эту реакцию.

Визуально будет наблюдаться сначала образование желтого осадка, который потом становится красным. В некоторых учебниках встречается информация, что сначала образуется гидроксид меди один, имеющий желтый цвет, который затем распадается на красный оксид меди один и воду. Так вот это неверно — по последним данным в процессе выпадения осадка меняется размер частиц оксида меди один, которые в конечном счете достигают размеров, окрашенных именно в красный цвет. Альдегид окисляется до соответствующей карбоновой кислоты. Реакция встречается на егэ очень часто.

Десятая реакция — окисление альдегидов подкисленным раствором перманганата калия при нагревании.

Происходит обесцвечивание раствора. Альдегидная группа окисляется до карбоксильной, то есть альдегид окисляется до соответствующей кислоты. Для кетонов эта реакция не имеет практического смысла, поскольку происходит разрушение молекулы и в результате получается смесь продуктов.

Важно отметить, что муравьиный альдегид, формальдегид, окисляется до углекислого газа, потому как соответствующая ему муравьиная кислота сама не устойчива к действию сильных окислителей.

В итоге углерод переходит из степени окисления 0 в степень окисления +4. Напомню, что и метанол, как правило, в таких условиях окисляется по максимуму до CO 2 , проскакивая стадию и альдегида, и кислоты. Эту особенность надо запомнить.

Одиннадцатая реакция — горение, полное окисление. И альдегиды, и кетоны сгорают до углекислого газа и воды.

Запишем уравнение реакции в общем виде.

По закону сохранения массы атомов слева должно быть столько же, сколько атомов справа. Потому что ведь в химических реакциях атомы никуда не деваются, а просто изменяется порядок связей между ними. Так вот молекул углекислого газа будет столько же, сколько и атомов углерода в молекуле карбонильного соединения, поскольку в состав молекулы входит один атом углерода. То есть n молекул CO 2 . Молекул воды будет в два раза меньше, чем атомов водорода, то есть 2n/2, а значит просто n.

Атомов кислорода слева и справа одинаковое количество. Справа их 2n из углекислого газа, потому что в каждой молекуле два атома кислорода, плюс n воды, итого 3n. Слева атомов кислорода столько же — 3n, но один из атомов находится в молекуле альдегида, значит его надо вычесть из общего количества, чтобы получить количество атомов, приходящихся на молекулярный кислород. Выходит 3n-1 атомов содержит молекулярный кислород, а значит молекул в 2 раза меньше, потому как в состав одной молекулы входят 2 атома. То есть (3n-1)/2 молекул кислорода.

Таким образом, мы составили уравнение сгорания карбонильных соединений в общем виде.

И, наконец, двенадцатое свойство, относящееся к реакциям замещения — галогенирование по альфа-атому углерода. Еще раз обратимся к строению молекулы альдегида. Кислород оттягивает на себя электронную плотность, создавая частичный положительный заряд а углероде. Метильная группа пытается компенсировать этот положительный заряд, смещая к нему электроны от водорода по цепи сигма-связей. Связь углерод-водород становится более полярной и водород легче отрывается при атаке реагентом. Такой эффект наблюдается только для альфа-атома углерода, то есть атома следующего за альдегидной группой, вне зависимости от длины углеводородного радикала.

Таким образом, возможно получение, например, 2-хлорацетальдегида. Возможно дальнейшее замещение атомов водорода до трихлорэтаналя.

РАБОЧИЕ ТЕТРАДИ

Продолжение. Начало см. в № 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32/2004

Урок 24. Химические свойства и применение альдегидов

Химические свойства. Рассмотрим поведение альдегидов в отношении стандартного набора реагентов: кислорода воздуха О 2 , окислителей [О], а также Н 2 , Н 2 О, спиртов, Na, НСl.

Альдегиды медленно окисляются кислородом воздуха в карбоновые кислоты:

Качественная реакция на альдегиды – реакция «серебряного зеркала». Реакция состоит во взаимодействии альдегида RСНО с водно-аммиачным раствором оксида серебра(I), представляющим растворимое комплексное соединение OH. Реакцию проводят при температуре, близкой к температуре кипения воды (80–100 °С). В результате на стенках стеклянного сосуда (пробирки, колбы) образуется осадок металлического серебра – «cеребряное зеркало»:

Восстановление гидроксида меди(II) в оксид меди(I) – другая характерная реакция альдегидов. Реакция протекает при кипячении смеси и состоит в окислении альдегида. Точнее сказать, происходит внедрение атома [О] окислителя Cu(OH) 2 по связи С–Н альдегидной группы. При этом изменяются степени окисления карбонильного углерода (от +1 до +3) и атома меди (от +2 до +1). При нагревании голубого осадка Cu(OH) 2 в смеси с альдегидом наблюдается исчезновение голубой окраски и образование красного осадка Cu 2 O:

Альдегиды присоединяют водород Н 2 по двойной связи С=О при нагревании в присутствии катализатора (Ni, Pt, Pd). Реакция сопровождается разрывом -связи в карбонильной группе С=О и присоединением по месту ее разрыва двух атомов Н молекулы водорода Н–Н. Таким образом из альдегидов получают спирты:

Альдегиды с электроноакцепторными заместителями в -положении к альдегидной группе присоединяют воду с образованием гидратов альдегидов (диолов-1,1):

Для того чтобы удерживать две электроотрицательные гидроксильные группы, атом углерода должен нести достаточный положительный заряд. Созданию дополнительного положительного заряда на карбонильном углероде способствуют три электроноакцепторных атома хлора при соседнем -углероде хлораля.

Реакция альдегидов со спиртами. Синтез полуацеталей и ацеталей. В благоприятных условиях (например: а) при нагревании с кислотой или в присутствии водоотнимающих средств; б) при внутримолекулярной конденсации с образованием пяти- и шестичленных циклов) альдегиды реагируют со спиртами. При этом к одной молекуле альдегида может присоединиться либо одна молекула спирта (продукт – полуацеталь), либо две молекулы спирта (продукт – ацеталь):

Альдегиды не присоединяют НСl по двойной связи С=О. Также альдегиды не реагируют с Na, т.е. альдегидный водород группы –СНО не обладает заметными кислотными свойствами.

Применение альдегидов основано на их высокой реакционной способности. Альдегиды используют в качестве исходных и промежуточных соединений в синтезе веществ с полезными свойствами других классов.
Формальдегид НСНО – бесцветный газ с резким запахом – используют для производства полимерных материалов . Вещества с подвижными атомами Н в молекуле (обычно при связях С–Н или N–H, но не О–Н) соединяются с формальдегидом СН 2 О по типу:

Если в молекуле исходного вещества два или несколько подвижных протонов (у фенола С 6 Н 5 ОН – три таких протона), то в реакции с формальдегидом получается полимер. Например, с фенолом – фенолформальдегидная смола:

Подобным образом мочевина с формальдегидом дает мочевиноформальдегидные смолы:

Формальдегид служит исходным веществом для производства красителей, фармацевтических препаратов, синтетического каучука, взрывчатых веществ и многих других органических соединений.

Формалин (40%-й водный раствор формальдегида) применяется в качестве антисептика (обеззараживающего средства). Свойство формалина свертывать белок используется в кожевенном производстве и для сохранения биопрепаратов.

Ацетальдегид СН 3 СНО – бесцветная жидкость (t кип = 21 °С) с резким запахом, хорошо растворимая в воде. Главное использование ацетальдегида – получение уксусной кислоты . Из него также получают синтетические смолы, лекарства и т.д.

УПРАЖНЕНИЯ

1. Опишите, с помощью каких химических реакций можно различить следующие пары веществ:
а) бензальдегид и бензиловый спирт; б) пропионовый альдегид и пропиловый спирт. Укажите, что будет наблюдаться в ходе каждой реакции.

2. Приведите уравнения реакций, подтверждающих наличие в молекуле
п-гидроксибензальдегида соответствующих функциональных группировок.

3. Напишите уравнения реакций бутаналя со следующими реагентами:
а)
Н 2 , t , кат. Pt; б) КМnО 4 , Н 3 О + , t ; в) OH в NH 3 /H 2 O; г) НОСН 2 СН 2 ОН, t, кат. НСl.

4. Составьте уравнения реакций для цепочки химических превращений:

5. В результате гидролиза ацеталя образуются альдегид RCHO и спирт R"ОН в мольном соотношении 1:2. Составьте уравнения реакций гидролиза следующих ацеталей:

6. При окислении предельного одноатомного спирта оксидом меди(II) образовалось 11,6 г органического соединения с выходом 50%. При взаимодействии полученного вещества с избытком аммиачного раствора оксида серебра выделилось 43,2 г осадка. Какой спирт был взят и какова его масса?

7. 5-Гидроксигексаналь в подкисленном водном растворе находится преимущественно в форме шестичленного циклического полуацеталя. Составьте уравнение соответствующей реакции:

Ответы на упражнения к теме 2

Урок 24

1. Различить два вещества можно с помощью реакций, характерных только для одного из этих веществ. Например, альдегиды окисляются в кислоты при действии слабых окислителей. Нагревание смеси бензальдегида и аммиачного раствора оксида серебра протекает с образованием на стенках колбы «серебряного зеркала»:

Бензальдегид восстанавливается при каталитическом гидрировании в бензиловый спирт:

Бензиловый спирт реагирует с натрием, в реакции выделяется водород:

2С 6 Н 5 СН 2 ОН + 2Na 2C 6 Н 5 CН 2 ONa + Н 2 .

При нагревании в присутствии катализатора меди бензиловый спирт окисляется кислородом воздуха в бензальдегид, что обнаруживается по характерному запаху горького миндаля:

Аналогичным образом можно различить пропионовый альдегид и пропиловый спирт.

2. В п -гидроксибензальдегиде три функциональные группы: 1) ароматическое кольцо; 2) фенольный гидроксил; 3) альдегидная группа. В специальных условиях – при защите альдегидной группы от окисления (обозначение – [–СНО]) – можно провести хлорирование п -гидроксибензальдегида в бензольное кольцо:

6. Уравнения указанных реакций:

Последовательно найдем количество вещества – серебра, альдегида RCHO и спирта RCH 2 OH:

(Ag) = 43,2/108 = 0,4 моль;

(RCHO) = 1/2(Ag) = 0,2 моль.

C учетом выхода 50% в реакции (1):

(RСН 2 ОН) = 2(RCHO) = 0,4 моль.

Молярная масса альдегида:

М (RCHO) = m / = 11,6/0,2 = 58 г/моль.

Это – пропионовый альдегид СН 3 СН 2 СНО.

Соответствующий ему спирт – пропанол-1 СН 3 СН 2 СН 2 ОН.

Масса спирта: m = M = 0,4 60 = 24 г.

Ответ. Был взят спирт пропанол-1 массой 24 г.

Альдегидами и кетонами называются производные углеводородов, содержащие карбонильную группу, или оксогруппу. В альдегидах, как правило, карбонильная группа связана одной из своих свободных валентностей с атомом водорода, другой – с каким-либо углеводородным радикалом. Все альдегиды содержат группу СОН, называемую альдегидной. В кетонах карбонильная группа двумя своими валентностями соединена с какими-либо углеводородными радикалами. Альдегиды и кетоны бывают насыщенными, ненасыщенными и ароматическими. Предельные альдегиды и кетоны с одинаковым числом углеродных атомов изомерны друг другу и имеют одну и ту же суммарную формулу.

Рисунок 3.3 – Строение карбонильной группы

Альдегиды называют или по кислотам, в которые они переходят при окислении (тривиальная номенклатура), или по названию предельных углеводородов с добавлением окончания -аль (систематическая номенклатура IUРАС). Кетоны по рациональной номенклатуре называют по названию радикалов, входящих в их молекулу, с добавлением окончания -кетон. По систематической номенклатуре IUРАС кетоны называют по названию соответствующего углеводорода с добавлением окончания -он и с указанием местонахождения карбонильной группы.

Наличие карбонильной группы обусловливает высокую реакционную активность альдегидов и кетонов и определяет их способность к многочисленным и разнообразным реакциям.

Альдегиды легко окисляются до карбоновых кислот с тем же углеродным скелетом.

1. Они могут окисляться даже кислородом воздуха и такими слабыми окислителями, как аммиачный раствор гидроокиси серебра:

2. Реакцию альдегидов с аммиачным раствором гидроокиси серебра называют «реакцией серебряного зеркала» – окисление аммиачным раствором оксида серебра (реактив Толленса). Ее используют для обнаружения альдегидов:

R–CH=O + 2OH → RCOOH + 2Ag↓ + 4NH3 + H2O.

Кетоны не окисляются ни кислородом воздуха, ни слабыми окислителями, не восстанавливают аммиачный раствор гидроокиси серебра. Они окисляются лишь под действием более сильных окислителей, например, перманганата калия, причем окисление происходит иначе, чем окисление альдегидов. При окислении молекула кетона расщепляется с образованием молекул кислот или кислоты и кетона с меньшим числом углеродных атомов, чем первоначальный. Разрыв цепи углеродных атомов происходит рядом с карбонильным атомом углерода:

Если в молекуле кетона содержится два различных радикала, то распад молекулы при окислении может идти по двум возможным направлениям, например:

Таким образом, произведя окисление кетона и узнав, какие кислоты получились в результате окисления, можно определить строение кетона.

3. Реакция окисления гидроксидом меди(II):

а) в виде свежеприготовленного осадка Cu(OH)2 при нагревании;

б) в форме комплекса с аммиаком (OH)2;

в) в составе комплекса с солью винной кислоты (реактив Фелинга).

При этом образуется красно-кирпичный осадок оксида меди(I) или металлическая медь (реакция «медного зеркала», более характерная для формальдегида):

R–CH=О + 2Cu(OH)2 → RCOOH + Cu2O↓ + H2О;

H2C=О + Cu(OH)2 → HCOOH + Cu↓ + H2О;

R–CH=O + 2(OH)2 → RCOOH + Cu2O↓ + 4NH3 + 2H2O;

R–CH=O + 2Cu(OH)2/соль винной кислоты → RCOOH + Cu2O↓ + 2H2O.

При нагревании наблюдают появление осадка оксида меди(I) желтого цвета, переходящего в красный:

Муравьиный альдегид, в отличие от других альдегидов, восстанавливает оксиды меди, образуя «медное зеркало».

4. Реакция восстановления альдегидами реактива Фелинга.

Реакционную смесь нагревают. При этом раствор сначала окрашивается в зеленый, а затем в желтый цвет, и наконец, выпадает оксид меди (I) красного цвета:

5. Цветная реакция на альдегиды с фуксиксернистой кислотой: наблюдается постепенное появление красно-фиолетовой окраски. Если к смеси муравьиного альдегида с фуксинсернистой кислотой прибавлять концентрированную соляную кислоту, то появляется характерная синяя окраска. В смеси изовалерианового альдегида с фуксинсернистой кислотой под влиянием соляной кислоты окраска сравнительно быстро исчезает.

Рисунок 3.4 – Качественные реакции на альдегидную группу

Как альдегиды, так и кетоны могут присоединять водород, синильную кислоту, магний-органические соединения, гидросульфит натрия.

С гидроксиламином и фенилгидразином альдегиды и кетоны реагируют с образованием оксимов и фенилгидразонов; при действии пятихлористого фосфора атом кислорода в молекулах альдегидов и кетонов замещается двумя атомами хлора.

Однако между альдегидами и кетонами имеются и существенные различия. Так, в отличие от альдегидов кетоны не окрашивают бесцветный раствор фуксинсернистой кислоты, в мягких условиях не конденсируются под действием щелочей, за редкими исключениями, и дают со спиртами ацетали только в присутствии кислот Льюиса. Из кетонов с гидросульфитом натрия реагируют только те, которые содержат одну метильную или две метиленовые группы в непосредственном соседстве с карбонилом.

Окисляются кетоны труднее, чем альдегиды, причем при их окислении происходит разрушение молекулы, труднее для кетонов протекают и реакции конденсации.

Применение альдегидов и кетонов.

Метаналь (муравьиный альдегид) CH2=O: получение фенолформальдегидных смол; получение мочевино-формальдегидных (карбамидных) смол; полиоксиметиленовые полимеры; синтез лекарственных средств (уротропин); дезинфицирующее средство; консервант биологических препаратов (благодаря способности свертывать белок).

Этаналь (уксусный альдегид, ацетальдегид) СН3СН=О: производство уксусной кислоты; органический синтез.

Ацетон СН3–СО–СН3: растворитель лаков, красок, ацетатов целлюлозы; сырье для синтеза различных органических веществ.

booksshare.net -> Добавить материал

Добавить материал

Спасибо, что решили отправить нам материалы

Спасибо от всех людей, желающих поглощать знания и заниматься научной деятельностью и, кроме того, от тех, кто желает получать плоды научной деятельности в виде улучшающих жизнь инноваций.

Отправка Вами материалов позволит Вам скачивать электронные книги с нашего сайта. Однако, следует заметить, что отпарвляемый Вами материал не должен быть представлен в Интернете, иначе не будет смысла выкладывания на сайте материала, который и так без проблем найдут он-лайн. Проверить начличие такового в Интернете не сложно: заходите в поисковик (к примеру, яндекс), вводите цельный отрывок из текста материала (слов 20 подряд без знаков препинания — они будут только мешаться), желательно из середины работы, так как введения могут и присутствовать в Интернете, а основной текст — отсутствовать.

После осуществления поиска, смотрите, не нашёл ли поисковик точно такой же текст (если он есть, то он обязательно будет входить в первую десятку найденых сайтов). Если текста не найдено — то можно отправлять материал и исправить то, что люди, которые, возможно, желают воспользоваться материалом, не могут найти его.

Как получить уксусный альдегид

Можно проверить наличие этого материала также и в других поисковиках.

Следует отметить, что для сайта очень большую ценность представляют материалы, которые едва ли можно найти в библиотеках, а именно — дипломные работы, диссертации, монографии и прочие Ваши работы, которые не распространяются в больших количествах в печатных изданиях, в отличие от учебных пособий, известных работ, и т.п., которые, однако, также обладают немалой научной ценностью и, как следствие, ценностью для всего человечества.

Вы можете отправить материал на наш почтовый ящик или заполнив форму ниже:

Реактивы и материалы: формальдегид, 40%-ный водный раствор; сульфат меди CuSO4, 0,2 н.

Напишите реакцию окисления уксусного альдегида Cu(OH)2

раствор; едкий натр, 2 н. раствор.

В пробирку помещают 4 капли раствора едкого натра, разбавляют 4 каплями воды и добавляют 2 капли раствора сульфата меди (II). К выпавшему осадку гидроксида меди (II) прибавляют 1 каплю раствора формальдегида и взбалтывают содержимое пробирки. Нагревают над пламенем горелки до кипения только верхнюю часть раствора так, чтобы нижняя часть оставалась для контроля холодной. В нагретой части пробирки выделяется желтый осадок гидроксида меди (I) (СuОН), переходящий в красный оксид меди (I) (Сu2О), а иногда на стенках пробирки выделяется даже металлическая медь.

Химизм процесса:

CuSO4 + 2NaOH = Cu(OH)2 + Na2SO4

2Cu(OH)2 + HCOH = HCOOH + Cu2O + 2H2O

Повторите этот опыт, заменив раствор формальдегида раствором этаналя.

Сформулируйте вывод по работе.

| Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Общая формула альдегидов:

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

— предельные; например:

— непредельные; например:

— ароматические; например:

— алициклические; например:

Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений — кетонам

например:

Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp2-гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости.

Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства

Химические свойства

Альдегиды — реакционноспособные соединения, вступающие в многочисленные реакции.

Наиболее характерны для альдегидов:

по карбонильной группе; реагенты типа НХ присоединяются следующим образом:

связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I.

Реакции присоединения

В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:

II.

уксусный альдегид cu oh 2

Реакции окисления

Упрощённо:

Эта реакция является (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).

Эта реакция также являетсяу (выпадает красный осадок Сu2O).

Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее — до Н2СO3(СO2 + Н2O):

III.

Реакции ди-, три- и полимеризации

3.

Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:

IV. Реакция поликонденсации формальдегида с фенолом

V.

Превращение формальдегида в углеводы

VI. Взаимодействие формальдегида с аммиаком

Способы получения

1.

Окисление алкенов

2. Каталитическое окисление первичных спиртов

3.

Окисление первичных спиртов различными окислителями (КМnО4, K2Cr2О7 и др.)

4. Каталитическое дегидрирование первичных спиртов

5.

Щелочной гидролиз дигалогеналканов, содержащих атомы галогена у первичного атома углерода.

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Специфические способы получения формальдегида и ацетальдегида

1.

Каталитическое окисление метана

2. Гидратация ацетилена (реакция Кучерова)

Понятие о альдегиды. Состав молекулы, электронная и структурная формулы.

Тема 3.2 Альдегиды и кетоны

Функциональная карбонильная группа

Альдегидами называют органические вещества, молекулы которых содержат функциональную группу атомов , соединенную с углеводородным радикалом.

Общая формула веществ этого класса CnH2n +1 COН или R-COН, в которой R — это атом водорода (в случае с Мурино альдегидом) или углеводородный радикал.

Группа атомов называется карбонильной группой, или карбонил.

Сравнению со спиртами в составе молекул альдегидов на два атома водорода меньше.

Это отражается в названии «альдегиды», что происходит от слов «алкоголь» и «дегидрирования», т.е. дегидрований алкоголь.

Первый член гомологического ряда альдегидов — метаналь, или формальдегид, или Мурино альдегид.

Он формулу .

Следующий за ним — этаналь, или ацетальдегид, или уксусный альдегид. Его формула .

По номенклатуре, исторически сложилась, названия альдегидов происходят от названий тех кислот, на которые они превращаются при окислении. Например, Мурино альдегид — от Мурино кислоты, уксусный альдегид — от уксусной кислоты и т. д. По систематической номенклатуре, названия альдегидов образуют от названий соответствующих предельных углеводородов путем добавления суффикса-аль: метаналь, этаналь, пропаналя т.д..

Формальдегид СН2=О (муравьиный альдегид, метаналь).

Представляет собой бесцветное горючее вещество с острым раздражающим запахом. Растворим в воде, обычно используется в виде 33-40 % водного раствора, который называют формалином. Вырабатывают формальдегид в больших количествах.

Он применяется в производстве пластмасс. Полиформальдегид с большим молекулярным весом – ценный синтетический материал, используемый в качестве заменителя металлов. В кожевенной промышленности формальдегид применяется для дубления кожи, в медицине и санитарии – для дезинфекции.

Ацетальдегид СН3-СН=О (уксусный альдегид, этаналь).

Представляет собой бесцветную легколетучую, легковоспламеняющуюся жидкость с сильным характерным запахом прелых яблок.

1. уксусный альдегид+ Ag₂O => (р. серебряного зеркала) 2. уксусный альдегид+2Cu(OH)₂ =>

Хорошо растворим в воде. Используют ацетальдегид для многих промышленных синтезов. Особенно важно окисление его в уксусную кислоту, превращение в этилацетат (по реакции Тищенко); может быть восстановлен в этиловый спирт.

Ацетон СН3-СО-СН3 (диметилкетон).

Бесцветная, легковоспламеняющаяся жидкость с довольно приятным запахом. Смешивается с водой. Ацетон является ценным растворителем (в производстве лаков, искусственного шелка, взрывчатых веществ) и исходным веществом в синтезе разнообразных органических соединений.

В последнее время в технике большое значение приобрело применение ацетона для получения так называемого кетена.

Кетен – газообразное вещество, очень реакционноспособное. Применяется для получения уксусного ангидрида и ряда других ценных продуктов, в частности, очень хорошего пищевого консерванта – сорбиновой кислоты.

Применение альдегидов.

Из альдегидов наибольшее применение имеет формальдегид.

Особенности применения формальдегида: используется обычно в виде водного раствора – формалина; многие способы применения формальдегида основаны на свойстве свертывать белки; в сельском хозяйстве формалин необходим для протравливания семян; формалин применяется в кожевенном производстве; формалин оказывает дубящее действие на белки кожи, делает их более твердыми, негниющими; формалин применяется также для сохранения биологических препаратов; при взаимодействии формальдегида с аммиаком получается широко известное лекарственное вещество уротропин.

Основная масса формальдегида идет на получение фенолформальдегидных пластмасс, из которых изготавливаются: а) электротехнические изделия; б) детали машин и др.

Ацетальдегид (уксусный альдегид) в больших количествах используется для производства уксусной кислоты.

Восстановлением ацетальдегида в некоторых странах получают этиловый спирт.

Получение альдегидов:

1) общим способом получения альдегидов служит окисление спиртов;

2) если накалить в пламени спиртовки спираль из медной проволочки и опустить ее в пробирку со спиртом, то проволочка, которая покрывается при нагревании темным налетом оксида меди (II), в спирте становится блестящей;

3) обнаруживается также запах альдегида.

С помощью такой реакции получается формальдегид в промышленности.

Для получения формальдегида через реактор с раскаленной сеткой из меди или серебра пропускается смесь паров метилового спирта с воздухом;

4) при лабораторном получении альдегидов для окисления спиртов могут быть использованы и другие окислители, например перманганат калия;

5) при образовании альдегида спирт, или алкоголь, подвергается дегидрированию.

Особенности реакции гидратации ацетилена:

а) сначала идет присоединение воды к ацетилену по месту одной π-связи;

б) образуется виниловый спирт;

в) непредельные спирты, в которых гидроксильная группа находится у атома углерода, который связан двойной связью, неустойчивы и легко изомеризуются;

г) виниловый спирт превращается в альдегид:

д) реакция легко осуществляется, если пропускать ацетилен в нагретую воду, которая содержит серную кислоту и оксид ртути (II);

е) через несколько минут в приемнике можно обнаружить раствор альдегида.

В последние годы разработан и получает распространение способ получения ацетальдегида окислением этилена кислородом в присутствии хлоридов палладия и меди.

Свойства

В химическом отношении это высоко реакционноспособные вещества, что обусловлено наличием в их молекуле карбонильной группы.

Высокая реакционная способность альдегидов объясняется:

а) наличием поляризованной двойной связи

б) дипольным моментом карбонила

в) наличием частичного положительного заряда на атоме углерода карбонила

Двойная связь между С и О, в отличие от двойной связи между двумя углеродами, сильно поляризована, так как кислород обладает значительно большей электроотрицательностью, чем углерод, и электронная плотность π-связи смещается к кислороду.

Такая высокая поляризация определяет электрофильные свойства углерода карбонильной группы и его способность реагировать с нуклеофильными соединениями (вступать в реакции нуклеофильного присоединения). Кислород группы обладает нуклеофильными свойствами.

Характерны реакции окисления и нуклеофильного присоединения

Билет 7

1) Аминокислоты - органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.

Простейший представитель - аминоуксусная кислота H2N-CH2-COOH (глицин)

Некоторые представители аминокислот:

1) аминоуксусная кислота Н2N-СН2-СООН;

2) аминопропионовая кислота Н2N-СН2-СН2-СООН;

3) аминомасляная кислота Н2N-СН2-СН2-СН2-СООН;

4) аминовалериановая кислота Н2N-(СН2)4-СООН;

5) аминокапроновая кислота Н2N-(СН2)5-СООН.

Чем больше атомов углерода в молекуле аминокислоты, тем больше может существовать изомеров с различным положением аминогруппы по отношению к карбоксильной группе.

6. Чтобы в названии изомеров можно было указывать положение группы – NH2 по отношению к карбоксилу, атомы углерода в молекуле аминокислоты обозначаются последовательно буквами греческого алфавита: а) ?-аминокапроновая кислота; б) ?-аминокапроновая кислота.

Получение

Аминокислоты получают различными методами, нек-рые из них предназначены специально для получения тех или иных А.

Наиболее распространенными общими методами химического синтеза А. являются следующие.

1. Аминирование галоидопроизводных органических кислот. На галоидопроизводное (обычно бромзамещенную кислоту) действуют аммиаком, в результате чего галоид замещается на аминогруппу.

Получение А. из альдегидов путем обработки их аммиаком и цианистым водородом или цианидами. В результате такой обработки получается циангидрин, к-рый далее аминируется, образуя аминонитрил; омыление последнего дает А.

3. Конденсация альдегидов с производными глицина с последующим восстановлением и гидролизом.

Отдельные А. могут быть получены из гидролизатов белков в виде труднорастворимых солей или других производных. Напр., цистин и тирозин легко осаждаются в изо электрической точке; диаминокислоты осаждают в виде солей фосфорно-вольфрамовой, пикриновой (лизин), флавпановой (аргинин) и других кислот; дикарбоновые А.

осаждают в виде кальциевых или бариевых солей, глутаминовая к-та выделяется в виде гидрохлорида в кислой среде, аспарагиновая к-та - в виде медной соли и т. д. Для препаративного выделения ряда А. из гидролизатов белка применяют также методы хроматографии и электрофореза.

Для промышленных целей многие А. получают методами микробиологического синтеза, выделяя их из культуральной среды определенных штаммов бактерий.

Свойства аминокислот

Для любого спортсмена важны не только тренировки, но и теоретическая подкованность, благодаря которой можно получать высокие результаты тренировок.

Для этого стоит знать свойства аминокислот, ведь этот вид спортивного питания является одним из наиболее востребованных.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: