Ласточка - модель ракеты с парашютом. Система спасения ракеты "феникс" Модель ракеты «зенит»

Т.е. чтобы разглядеть открытие парашюта, надо очень постараться. Но все равно полет красивый.

Когда писалась статья о проекте РК-1, проект РК-2 был только в самом зародыше. Но уже тогда, я высказал мнение, что система спасения - самая сложная в ракете, не несущей других полезных грузов. Как в воду глядел. Больше всего времени потрачено именно на отработку этой системы. Была, правда, допущена и тактическая ошибка. Для таких тонких и ответственных систем надо, конечно, проводить сначала серию наземных тестовых испытаний, прежде чем проводить полеты. Именно после такой серии стендовых испытаний и был осуществлен успешный запуск.

Однако хватит воды. Расскажу о том, что получилось, и в чем уверен. Схема системы спасения ракеты РК-2-1 представлена на Рис.1. Она получилась простой и надежной. Давайте по порядку. Позиции элементов на схеме буду указывать цифрами в скобках. Например, фюзеляж (1).

Крепление
Напомню, что система крепится к поперечно вкрученному в фюзеляж (1) винту М5 (3). Снизу в этот силовой винт упирается двигатель своей мортиркой (2). Двигатель имеет оригинальную систему уплотнения, которая предотвращает прорыв газов от вышибного заряда между корпусом движка и фюзеляжем ракеты. См. статью Двигатель . Тонкостенный пластиковый фюзеляж должен быть в обязательном порядке изолирован изнутри двумя-тремя слоями офисной бумаги проклеенной силикатным клеем или эпоксидкой, по крайней мере в области мортирки и пламегасителя.
К силовому винту крепится пламегаситель (4). Этот простой элемент - гордость моей схемы. Я не встречал чего-то подобного, поэтому буду считать его своей разработкой /27.11.2007 kia-soft/. С появлением пламегасителя работа системы спасения сразу пошла на лад. Конструкция его элементарна. На ось из 2-х миллиметровой стальной проволоки надевается кусок, отодранный от металлической мочалки для чистки сковородок. С двух сторон он поджимается шайбами, сделанными из однокопеечных монет. При внутреннем диаметре фюзеляжа 25 мм, диаметр шайб - 15мм.
Проволока загибается с каждой стороны в виде металлического уха. Одним ухом крепится к силовому винту, а ко второму уху крепится гибкий трос (5). Длина рабочей части 30-40мм. Значение пламегасителя в пиротехнической системе спасения трудно переоценить. Как следует из самого названия, изначально планировалось погасить факел вышибного заряда. Но результат превзошел все ожидания. Элемент не только погасил факел, но и предотвратил выброс несгоревших порошинок к парашюту, и сыграл еще роль радиатора, заметно снизив тепловую нагрузку на остальные элементы. Плюс ко всему пламегаситель выполняет функцию фильтра, практически устраняя образование налета несгоревших частиц на внутренней рабочей поверхности. После трех срабатываний системы была проведена ревизия: вся гарь осела в пламегасителе, все элементы системы остались чистыми и неповрежденными, даже тросик в месте крепления к пламегасителю.
Трос

Изначально у меня была мысль использовать металлический трос в качестве соединения системы с силовым винтом. Однако практика показала полную бесперспективность идеи. Единственное достоинство металлического троса - его термостойкость. В остальном он проигрывает синтетике, как в прочности, так и в пластичности. Применение пламегасителя позволило отказаться от металлического соединительного троса. В рабочей схеме я использовал плетеную ленту, шириной ~10мм, по-видимому, из тонкого стекловолокна. Я говорю, "по-видимому", поскольку затрудняюсь точно назвать состав, из которого выполнена лента. Она оказалась у меня случайно. Знаю только, что прочность ее не менее, если не более, чем у капроновой, такая же гибкость, легкость и довольно высокая термостойкость. Я пытался оплавить зажигалкой, но все чего я добился - небольшое обугливание, не приведшее к серьезной потере прочности. Но на всякий случай, трос я сделал из двойной ленты. Могу только приложить фотку, может поймете о чем идет речь. Если такого троса у вас нет, то думаю вполне можно применить обычный капроновый. Возможно только придется увеличить рабочее тело пламегасителя. Тут надо будет поэкспериментировать.

Одним концом трос (5) соединен с пламегасителем (4). Другим - со следующим элементом системы - поршнем (6). Длина троса должна быть такой, чтобы поршень выходил за пределы фюзеляжа на 10-15см.


Поршень (6) под давлением газов вышибного заряда выходит из фюзеляжа и выталкивает парашют. Он выточен из деревянной пробки от шампанского. Подгонка под диаметр фюзеляжа должна быть довольно точной. Поршень должен свободно ходить внутри фюзеляжа, но при этом не иметь больших зазоров со стенками. Уплотнительным элементом служит шайба из войлока толщиной 4-5мм. По аналогии с пламегасителем поршень с прокладкой одевается на ось из стальной проволоки диаметром 2мм. С двух сторон конструкция также поджимается копеечными шайбами. Ось с обоих сторон загибается на крепежные ушки. Поршень в сборе должен перемещаться с небольшим трением. В качестве проверки можно вставить поршень в фюзеляж и дунуть с нижнего торца. При этом на выталкивание поршня не должно требоваться больших усилий.

Если ракета легкая и в полете не имеет сильной осевой закрутки то вертлюг можно не применять. В данной системе он не использовался.


К верхнему уху поршня крепится центральный строп парашюта. На расстоянии ~15см от места крепления организуем амортизатор (7). Это расстояние, на самом деле зависит от конкретной ракеты. Лучше всего его выбрать таким образом, чтобы при полностью утопленном поршне сам амортизатор оказался у верхнего среза фюзеляжа, но еще не был утоплен. Задача амортизатора смягчить ударные нагрузки при раскрытии парашюта. Он делается из любой прочной кольцевой резинки, например, вырезанной из велокамеры. Резинка привязывается в двух местах к стропу на расстоянии длины резинки в вытянутом состоянии. Получается такая петля, растягивающая резинку при натяжении. В эту петлю на центральный строп можно закрепить обтекатель (8). Для этого в обтекателе с нижней стороны я высверливаю канал диаметром 10мм и глубиной 20-25мм. На расстоянии 10мм от нижнего среза обтекателя вкручиваю винт М3, за который и цепляю обтекатель к системе.
Парашют ПРСК-1

Венец системы спасения - парашют (9). Да, можно сделать купол из пакета для мусора, как я писал в одной из ранних редакций статьи. Но зимние суровые условия полетов все расставили по своим местам. Короче, если хотите сделать безотказную систему спасения, делайте парашют из легкой синтетической ткани. Лучшая ткань для этого конечно легкий капрон от самолетного тормозного парашюта. В свое время мне удалось раздобыть пару метров. Парашюты получаются из него шикарные. Если нет такого, подойдет любая легкая синтетическая ткань. Но даже в случае тканевого парашюта, не рекомендую держать его в упакованном виде при хранеии. Снаряжать систему надо только непосредственно перед полетом.

Лень - двигатель прогресса. Природная лень и отсутствие хорошей швейной машинки заставили меня придумать технологию изготовления тканевого парашюта без шитья. По этой технологии парашют диаметром до 80см, т.е. для небольшой ракеты весом до 700г, делается даже легче, чем из пластикового пакета. Зная вес своей ракеты, вы можете прикинуть в моей программе amo-1 размер парашюта, требуемый для нужной скорости снижения. На "ФЕНИКСЕ", вес которого не превышал 200г был успешно применен плоский шестигранный парашют диаметром всего 46см. По ходу замечу, что гнаться за большими куполами не только не обязательно, но и может выйти боком. Однажды мне уже пришлось отмотать 2км по пересеченке за снесенной ветром ракетой.

Для начала делаем шестигранную, а начиная с диаметра 60см лучше восьмигранную, выкройку из газеты. По выкройке разогретым паяльником вырезаем купол. Стропы делаем из капроновых веревок толщиной где-то около 1мм. Длина строп приблизительно в 2-3 раза больше диаметра купола, плюс запасик на организацию центрального стропа, амортизатора, петли крепления к поршню.


Теперь крепим стропы к куполу. Вот тут-то самая фишка. Никакого шитья. Делаем на стропе простой узел-удавочку и накидываем на сложенный в два раза уголок купола и хорошо так затягиваем на расстоянии 10 мм от вершины угла.


Слегка обрезав лишний конец узелка и уголка, оплавляем их зажигалкой до образования аккуратных круглых галтелей. Оплавляем так, чтобы галтели плотно прилегали к узлу. Все, строп присоединен. Таким же образом крепим все стропы. И затем с небольшим усилием расправляем купол в месте крепления каждой стропы. Один нюанс - сложение всех уголков купола надо делать в одном направлении (вниз). Тогда после закрепления строп, купол будет не плоским, а приобретет некоторый объем, что увеличивает эффективность парашюта.

Если кто-то думает, что такое соединение строп и купола не прочное, тот глубоко заблуждается. В этом я убедился, когда в одном аварийном полете парашют открылся на взлете. Скорость была очень приличная, но ракета быстро затормозила, а для ремонта окзалось достаточным закрепить одну оторвавшуюся стропу.

Собственно, парашют готов, осталось соединить стропы вместе, организовать амортизатор, и прикрепить к поршню.

С момента написания этой статьи прошло немало времени. Парашюты, выполненные по данной авторской технологии, были установлены на все мои ракеты, а это, на данный момент, порядка десятка. Им пришлось поработать в очень разных условиях, в том числе и аварийных и околоаварийных при запредельных нагрузках. Все ипытания они с честью выдержали и в случае срабатывания системы спасения все ракеты были спасены. Многие ракетчики повторили мою конструкцию и остались довольны результатом. Поэтому могу смело рекомендовать этот несложный в исполнении, но очень надежный парашют, к использованию. Совершенно заслуженно присваиваю ему персональное наименование ПРСК-1, или Парашют Ракетный Спасательный К...-1 (К - от автора).

Сборка

Подготовка системы спасения практически завершена. Осталось упаковать все в фюзеляж. Сначала утапливаем трос и поршень. Затем складываем парашют. Для этого расправляем все складки купола как на складном зонтике и укладываем их в одну сторону в стопку. Далее складываем один раз в поперечном направлении и скатываем в "колбаску" начиная с вершины. "Колбаску" обматываем жгутом из строп. Этот способ сложения парашюта не совсем "правильный", но вполне работоспособный. Его преимущество - плотная скрутка парашюта, что очень полезно при недостаточном объеме фюзеляжа. Таким способом мне удалось без проблем оснастить парашютом ракету РК-2-3 "ВИКИНГ", внутренний диаметр фюзеляжа которой всего 20мм. Парашют диаметром 46см был выполнен даже из более толстой ткани - каландра.

Если размеры ракеты не ограничивают, можно применить "правильный" способ. Он основан на стандартной методике сложения запасных спасательных парашютов. Так же складываем купол, как складной зонтик, расправляя складки. Распределяем складки на две равные стопки рис.2. Накладываем одну стопку на другую, сложив конструкцию вдоль оси рис.3.

Далее есть два варианта. Если ширина полученой двойной пачки слишком большая, то верхнюю и нижнюю половины еще раз складываем пополам в обратную сторону наружу, т.е. верхнюю - вверх, нижнюю - вниз, рис.4 . Если небольшая, сразу переходим к следующему этапу - сложению Z-образными мелкими складками в поперечном направлении, начиная с вершины, рис.5. Получается компактная стопочка (см.фото в начале раздела), которую обматываем стропами и упаковываем в фюзеляж.

Для подстраховки можно защитить парашют дополнительно полоской туалетной бумаги. Берется полоска туалетной бумаги в два раза длиннее, чем парашютная "колбаска". Полоску складываем пополам, в сгиб упираем торец скрутки и обминаем бумагу вокруг него. Просто намотать бумагу нельзя, она будет препятствовать раскрытию, а в таком виде она моментально срывается набегающим потоком. Последнее время я этого не делаю, поскольку при наличии хорошего пламегасителя, необходимости в этом нет.

Наконец заправляем в фюзеляж амортизатор и устанавливаем обтекатель. Все, система готова к работе. Хорошо собранная система срабатывает, если просто не очень сильно дунуть с нижней стороны фюзеляжа.

В качестве резюме напомню некоторые нюансы. Система успешно испытана на ракете РК-2-1 "ФЕНИКС", весом ~200г, внутренний диаметр 25мм, потолком 400м. Рабочий объем камеры системы спасения ~145куб.см. Для такого объема необходимая навеска вышибного заряда составляет 0,5г "малинового пороха" или охотничьего пороха "Сокол".

Точную навеску для каждой конкретной ракеты надо определять путем проведения серии наземных стендовых испытаний. Т.е. берете готовую ракету, устанавливаете двигатель без топлива, но с вышибным зарядом и инициируете заряд. И так до тех пор, пока все не будет нормально работать, как на этой видеозаписи стендового испытания. После этого можно лететь.

Не забудьте защитить изнутри пластиковый корпус ракеты вставкой бумажной трубки, по-крайней мере в районе мортирки и пламегасителя. Это нужно, если корпус ракеты сделан из тонкостенной пластиковой трубки (1мм для ФЕНИКСа). Эксперименты с довольно толстостенной полипропиленовой трубкой (2,5мм для ВИКИНГа) показали, что при наличии пламегасителя такую защиту ставить не надо.

Помните, что для нормальной работы необходимо уплотнение при установке двигателя.

Понятно, что систему можно применять для ракет практически любого размера, но при этом надо вносить определенные коррективы.

Многие ракетчики применяют различные механические системы выброса парашюта. В основном это делается с целью избежания тепловых повреждений элементов системы. В остальном механические системы, на мой взгляд, проигрывают пиротехническим. В разработанной мною системе спасения ракеты удалось радикально решить проблему тепловых перегрузок, и в результате получена легкая и надежная конструкция.
/27.11.2007 kia-soft/

P.S.
Содержание может корректироваться по мере накопления экспериментальных данных.

P.P.S.
Последняя серьезная корректировка проведена 12.02.2008г. Корректировкой это назвать трудно, поскольку от старой редакции почти ничего не осталось. Это связано с тем, что конструкция системы спасения радикально переработана, испытана и проверена на практике. Вся беллетристика выкинута и сделано подробное описание рабочей системы спасения для ракеты РК-2-1 "ФЕНИКС".
На этом успешно завершена разработка проекта РК-2. Все задачи, которые ставились в рамках проекта решены. Пора переходить к новому проекту РК-3 ...
***

Водяная ракета выступает отличной самоделкой для веселого времяпрепровождения. Преимуществом ее создания выступает отсутствие необходимости в применении топлива. Основным энергоресурсом здесь выступает сжатый воздух, что нагнетается в пластиковую бутылку с помощью обычного насоса, а также жидкость, которая высвобождается из емкости под давлением. Давайте же выясним, каким образом может быть сконструирована водяная ракета из пластиковой бутылки с парашютом.

Принцип действия

Водяная ракета из пластиковой бутылки своими руками для детей собирается достаточно просто. Требуется лишь подходящая емкость, заполненная жидкостью, автомобильный либо а также устойчивая стартовая площадка, где будет фиксироваться поделка. После установки ракеты насос нагнетает давление в бутылке. Последняя взмывает в воздух, разбрызгивая воду. Весь «заряд» расходуется за первые секунды после взлета. Дальше водяная ракета продолжает движение по

Инструменты и материалы

Водяная ракета из пластиковой бутылки требует наличия следующих материалов:

  • собственно сама емкость из пластика;
  • пробка-клапан;
  • стабилизаторы;
  • парашют;
  • стартовая площадка.

В ходе работ по конструированию водяной ракеты могут потребоваться ножницы, клей либо скотч, ножовка, отвертка, всевозможные крепежи.

Бутылка

Пластиковая емкость для создания ракеты не должна быть чересчур короткой либо длинной. В противном случае готовое изделие может оказаться несбалансированным. В результате водяная ракета будет лететь неровно, заваливаться на бок или же вовсе не сможет подняться в воздух. Как показывает практика, оптимальным здесь выступает соотношение диаметра и длины 1 к 7. Для первоначальных экспериментов вполне сгодится бутылка объемом 1,5 литра.

Пробка

Для создания сопла водяной ракеты достаточно использовать пробку-клапан. Отрезать ее можно от бутылки из-под любого напитка. Крайне важно, чтобы клапан не пропускал воздух. Поэтому извлекать его лучше из новой бутылки. Рекомендуется заранее проверить его герметичность, закрыв емкость и крепко сжав ее руками. Пробку-клапан можно приделать к горлышку пластиковой бутылки с помощью клея, герметизировав стыки скотчем.

Стартовая площадка

Что требуется, чтобы взлетела водяная ракета из пластиковой бутылки? Пусковая площадка играет здесь определяющую роль. Для ее изготовления достаточно использовать лист ДСП. Зафиксировать горлышко бутылки можно металлическими скобами, установленными на деревянной плоскости.

Парашют

Чтобы водяная ракета могла быть использована несколько раз, в целях ее удачной посадки стоит предусмотреть в конструкции самораскрывающийся парашют. Пошить его купол можно из небольшого отрезка плотной ткани. Стропами послужит прочная нить.

Сложенный парашют аккуратно сворачивается и укладывается в консервную банку. Когда ракета взмывает в воздух, крышка емкости остается закрытой. После запуска самодельной ракеты срабатывает механическое устройство, что открывает дверцу банки, и парашют раскрывается под воздействием воздушного потока.

Чтобы осуществить вышеуказанный план, достаточно использовать небольшой редуктор, который можно извлечь из старой либо настенных часов. По сути, сгодится здесь любой электрический моторчик на батарейках. После взлета ракеты валы механизма начинают вращаться, наматывая нитку, соединенную с крышкой вместилища для парашюта. Как только последняя высвободится, купол вылетит наружу, раскроется и ракета плавно спустится вниз.

Стабилизаторы

Чтобы водяная ракета ровно взмывала в воздух, необходимо зафиксировать ее на стартовой площадке. Наиболее простое решение - изготовить стабилизаторы из другой пластиковой бутылки. Работа выполняется в такой последовательности:

  1. Для начала берется пластиковая бутылка объемом не менее 2 литров. Цилиндрическая часть емкости должна быть ровной, не содержать рифлений и фактурных надписей, поскольку их наличие может негативно сказаться на аэродинамике изделия в ходе запуска.
  2. Днище и горловина бутылки обрезается. Полученный цилиндр разделяется на три полосы идентичного размера. Каждая из них складывается пополам в форме треугольника. Собственно, сложенные полоски, вырезанные из цилиндрической части бутылки, и будут играть роль стабилизаторов.
  3. На завершающем этапе от сложенных краев стабилизаторов отрезаются полоски на расстоянии порядка 1-2 см. Образованные выступающие лепестки в центральной части стабилизатора отворачиваются в противоположные стороны.
  4. В основании будущей ракеты проделываются соответствующие прорези, куда будут вставляться лепестки стабилизаторов.

Альтернативой пластиковым стабилизаторам способны послужить отрезки фанеры в форме треугольника. Кроме того, ракета может обойтись и без них. Однако в таком случае придется предусмотреть решения, которые позволят зафиксировать изделие на стартовой площадке в вертикальном положении.

Носовая часть

Поскольку ракета будет устанавливаться пробкой вниз, необходимо надеть на днище перевернутой бутылки обтекаемую носовую часть. В данных целях можно обрезать верхушку от другой подобной бутылки. Последнюю необходимо надеть на днище перевернутого изделия. Зафиксировать такую носовую часть можно с помощью скотча.

Запуск

После вышеописанных действий водяная ракета, по сути, готова. Необходимо лишь наполнить емкость водой примерно на треть. Далее следует установить ракету на стартовую площадку и закачать в нее воздух с помощью насоса, прижимая сопло к пробке руками.

В бутылку емкостью 1,5 литра следует нагнетать давление порядка 3-6 атмосфер. Достичь показателя удобнее, используя автомобильный насос с компрессором. В завершение достаточно высвободить пробку-клапан, и ракета взлетит в воздух под действием бьющего из нее потока воды.

В заключение

Как видно, сделать водяную ракету из пластиковой бутылки не так и сложно. Все, что требуется для ее изготовления, можно отыскать в доме. Единственное, что может вызвать затруднения, - изготовление механической системы раскрытия парашюта. Поэтому, чтобы облегчить задачу, его купол можно попросту надеть на носовую часть ракеты.

Source unknown

Фюзеляж

Фюзеляж ракеты изготовлен из одного листа офисной бумаги формата А3 проклеенной эпоксидной смолой. Несмотря на небольшую толщину стенки фюзеляжа (0.5 мм), обеспечивается достаточная прочность и жесткость всей конструкции. Намазанный тонким слоем эпоксидной смолы лист, наматывается на металлическую оправку диаметром 21 мм, предварительно покрытую слоем парафина. Чтобы намотанная бумага не раскручивалась, ее край надо прихватить полоской скотча в 3 - 4 местах. После отвердения смолы оправка подогревается и труба фюзеляжа легко снимается с оправки. Все потеки и неровности обрабатываются шкуркой.
..

Стабилизаторы

Стабилизаторы вырезаются из листового материала толщиной 0.7 - 1 мм, достаточной прочности. Таким материалом может быть дюралюминий или текстолит. Места крепления стабилизаторов отмечаются на фюзеляже и стабилизаторы закрепляются скотчем в соответствии с разметкой. В места соприкосновения стабилизаторов с фюзеляжем наносится капля эпоксидки. После отвердения эпоксидки скотч удаляется. Место соединения стабилизатора и фюзеляжа промазывается очень густой замазкой, состоящей из алебастра и эпоксидки. Эта замазка должна быть такой густоты, чтобы не стекала с вертикальных поверхностей. Когда замазка отвердеет, надо удалить все потеки и обработать шкуркой все неровности.

Кольца

Кольца изготавливаются из полоски офисной бумаги, шириной 15 мм, подобно фюзеляжу, на оправке диаметром 8 мм. Пара колец приклеивается строго на одной линии к фюзеляжу эпоксидкой.

Обтекатель

Обтекатель вытачивается из дерева. Лучше использовать древесину твердых пород. Вытачивать можно зажав отрезок большого шурупа в патрон дрели и навернув на него заготовку.

Парашют

..
Парашют диаметром 400 мм вырезается из любой тонкой ткани. Если ткань хб, то края парашюта следует обработать на оверлоке. Если ткань синтетическая, то края можно просто опалить. Все стропы и нити изготавливаются сложением в несколько раз хб нитей пропитанных раствором силикатного клея в воде 1:1, это придает огнестойкость. Парашют с фюзеляжем ракеты должен быть соединен через резиновый шнур. При выстреле вышибного заряда, резиновый шнур не даст порваться нитям. Резиновый шнур можно взять рыболовный.

Двигатель

Двигатель изготавливается из гильзы 12 калибра. На оправку диаметром 16.5 мм наматывается полоска офисной бумаги шириной 65 - 70 мм, шириной 210 мм промазанная клеем ПВА. Это будет бронировка топливной шашки. Она нужна чтобы защитить внешнюю поверхность топливной шашки от горения и разрушения самой топливной шашки. Это может случиться при раздуве корпуса за счет рабочего давления. После высыхания клея полученная бумажная трубка должна свободно вставляться в гильзу 12 калибра. Понадобится хомут изготовленный из 0.5 - 1 мм стали, внутренним диаметром равным внешнему диаметру гильзы. Хомут нужен, чтобы гильзу не раздуло при запрессовке топлива. Еще нужен набойник и гвоздь диаметром 4-5 мм.

..
..
На рисунке:
1 - мембрана; 2 - вышибной заряд; 3 - заглушка; 4 - нитяной бандаж; 5 - переходное отверстие; 6 - замедлитель; 7 - бронировка; 8 - топливо; 9 - корпус

Приготовление топлива

В качестве топлива используется смесь 60% нитрата калия и 40% сахара. Нитрат калия еще недавно можно было купить в магазине для садоводов, он там продавался как удобрение - калийная селитра. Ныне это дефицит. Поэтому приведу метод его самостоятельного изготовления. Нитрат калия образуется при реакции хлорида калия и нитрата аммония и то и другое - очень распространенные удобрения аммиачная селитра и хлористый калий. В 220 мл воды при температуре 30С растворяем сколько раствориться хлорида калия. при растворении температура несколько упадет поэтому раствор нужно подогреть, но не выше 33С. Полученный насыщенный раствор, сливаем с осадка, подогреваем градусов до 70С и фильтруем. отфильтрованный раствор должен быть совершенно прозрачен и бесцветен. Нагреваем его до 70С и добавляем 100 г нитрата аммония. Мешаем до полного растворения. Раствор ставим в морозилку и охлаждаем до 0С. В осадок выпадут кристаллы нитрата калия. Раствор сливаем с кристаллов. Кристаллы споласкиваем очень небольшим количеством ледяной воды. Сушим. После сушки нитрат калия растираем в фарфоровой ступке как можно мельче. Отдельно растираем сахар. К 15 г порошка нитрата калия, добавляем 10 г сахарной пудры. Очень тщательно все перемешиваем. Топливо готово.
..

Запрессовка топлива

Гильзу помещаем в хомут и вставляем бронировку. Бронировка будет немного торчать из гильзы, это упрощает прессование. Установив гильзу вместе с хомутом на ровное твердое основание, насыпаем топливо. Топливо следует подсыпать постепенно, небольшими порциями. После каждой порции вставляем набойник и ударяем по нему молотком. Первый удар должен быть не сильный.
..
Последний удар надо наносить весьма сильный. Силу ударов постепенно увеличивайте от первого к последнему. Всего нужно 10-15 ударов молотком. Так делаем, пока не заполним гильзу, так чтобы остался 1 см. После этого сверлом диаметром 3 мм, высверливаем часть топлива через сопло на глубину 30 мм. Набойник вставляем в гильзу и гильзу с набойником переворачиваем, упирая набойник в основание. В сопло вставляем гвоздь и забиваем на глубину 40 мм. Важно следить, чтобы гвоздь зашел по оси двигателя без перекосов. После этого при помощи пассатижей гвоздь удаляем, проще удалить гвоздь, если его немного вращать. Торчащую бронировку аккуратно, чтобы не повредить гильзу, подрезаем скальпелем и удаляем. Торец топливной шашки выравниваем тоже при помощи скальпеля. Хомут снимаем. На этом запрессовка окончена.

Заглушка

..
Заглушка изготавливается из дерева, причем нет особой разницы из какого, я обычно делал из сосны. Любым доступным методом изготавливаем цилиндр, диаметром 18 мм длинной 30 мм. С одного торца сверлим отверстие диаметром 8 мм на глубину 20 мм. Соосно с этим отверстием сверлим еще одно отверстие с другой стороны на глубину 6 мм. Отверстия соединяем отверстием диаметром 2 мм. Со стороны короткого отверстия, по окружности цилиндра отступив от края 4 - 5 мм протачиваем круглым надфилем канавку на глубину 1 мм. Готовим состав замедлителя, смешивая 53% нитрата калия, 22%сахара и 25% эпоксидной смолы разведенной с отвердителем. После перемешивания наполняем этим составом короткое отверстие в заглушке. Сверлом диаметром 2 мм сверлим замедлительный состав через всю заглушку со стороны длинного отверстия так, чтобы толщина слоя замедлительного состава получилась 2 мм.
..
В ступке растираем незначительное количество(не более 100 мг) охотничьего черного, пороха и засыпаем в переходное отверстие, слегка трамбуем. 0.4 - 0.5 г охотничьего, черного пороха засыпаем в длинное отверстие и заклеиваем листочком бумаги. заглушка готова.

Сборка двигателя

Заглушку в месте проточки намазываем эпоксидной смолой и вставляем в гильзу. На то место, где на заглушке есть проточка, с усилием наматываем несколько витков капроновой нити, так чтобы она продавила гильзу. Нить завязываем и тоже смазываем эпоксидкой. Когда эпоксидка схватится, двигатель готов.

Как бы высоко модель ракеты не взлетела, ей предстоит падение и встреча с землей. Если не предпринять мер по снижению скорости соприкосновения с планетой, то потери неизбежны…

Как правило, для замедления снижения используется парашют.

Интерес представляет устройство механизма выброса парашюта. Обычно используется пиротехническая система. В корпусе ракеты создается избыточное давление, приводящее к «разлому» корпуса и высвобождению из него парашюта. Для создания повышенного давления .

Схема системы спасения «пиро 1» изображена на рисунке…

Парашют(12) вместе с обтекателем(11) «выстреливается» из корпуса ракеты(8) с помощью поршня(10). Все подвижные детали удерживаются вместе резинкой(7), которая закреплена в корпусе(8) винтом М5(4). Он же является верхним, удерживающим ракету на пусковой направляющей, устройством.

Мортира(6) (буду использовать термины Rocki) в которую закладывается заряд(5) выполнена из бумажной трубки диаметром 20мм (существенно меньше диаметра корпуса ракеты). Низ мортиры(6) упирается в винт(4). между мортирой и корпусом ракеты — уплотнение из вспененного полиэтилена. Провода(3) питания подводятся к заряду через разъем(9).

Напряжение батареи(1) 6F22(Крона) подается на блок управления(2), где транзисторный ключ коммутирует его на пиропатрон(5).

Пламягаситель выполнен из проволочной мочалки для мытья посуды.

В нужный момент напряжение подается на запал порохового заряда. Происходит «маленький взрыв» внутри мортиры. Избыточное давление газов выталкивает поршень, а тот, в свою очередь — парашют и обтекатель.

Видеозапись теста системы — ниже…

Вроде бы все сработало как надо! Но осмотр внутренностей ракеты показал сильную закопченность,
практически полное выгорание уплотнителя поршня(10),
сильно обожженную резинку(7) амортизатора.
Пламягаситель — не справился с задачей «пламягашения».

Ниже — видео повторного теста системы. Здесь использованы все элементы системы из первого опыта без замены.

Видно что система не сработала. Уплотнение поршня не работает, поэтому все газы нашли выход из ракеты без отстрела обтекателя…

Вывод: система работоспособна, но требует существенного восстановления элементов после срабатывания.

Как обеспечить надежную и безаварийную посадку моделей ракет? Над решением этой технической задачи бьются многие моделисты. Согласно статистике более половины моделей после спуска имеют поломки. Но идет время, приобретается опыт, все разнообразнее становятся способы спасения моделей.

И хотя мы все еще надеемся на парашют, продолжаются работы по созданию и других систем спасения. Это во многом диктуется тем, что появились многоступенчатые модели, модели-копии ракет-носителей космических кораблей: на их изготовление моделисты затрачивают много сип и времени.

Одним из обязательных требований «Правил проведения соревнований по ракетному моделизму» является спуск ступеней на замедляющем падение устройстве. Стали применяться ленточные парашюты, вымпелы. За рубежом проводятся даже международные соревнования на продолжительность спуска моделей ракет на ленте размером 50X500 мм. В соревнованиях моделей на продолжительность спуска на парашюте советские моделисты достигли высоких результатов - более 20 мин.

В Московской области решили усложнить соревнования на продолжительность спуска - впервые стали проводить старты в несколько туров с ограниченным числом моделей. Такой порядок вызвал необходимость «сажать» модели через определенное время и доставлять их судьям для контроля.

Выходом из этого затруднительного положения может стать, как считают ведущие моделисты, применение таймера. Следует отметить, что впервые примитивный таймер (тлеющий фитиль) был использован гомельскими ракетомоделистами в 1970 году на Всесоюзных соревнованиях в Житомире.

1 - двигательный отсек, 2 - втулка двигательного отсека, 3 - нихромовая нить, 4 - крышка, 5 - имитационный шпангоут, 6 - втулка парашютного отсека, 7 - парашютный отсек, 8 - амортизатор, 9 - парашют.

Безаварийное приземление - проблема номер один для ракетомоделистов, строящих модели-копии. Они демонстрируют попеты, очень схожие с полетом прототипов: натурное деление ступеней, отделение боковых блоков. А для повторного запуска необходимо обеспечить надежную посадку модели.

Интересная работа в этом направлении ведется в кружке ракетного моделизма филиала ЦСЮТ Латвийской ССР. Предлагаемые разработки, на наш взгляд, представляют интерес для читателей.

Анализ причин отказа систем спасения побудил нас разработать и опробовать несколько новых вариантов. Наиболее интересный - спасение боковых блоков ракет-носителей - показан на рисунке 1.

Боковой блок в зоне размещения шпангоута разрезается на две части: нижняя - двигательный отсек, верхняя - парашютный. Разделяются они крышкой, которая вставляется во втулку после того, как уложен парашют Втулка вклеивается в верхнюю часть бокового блока. Стыкуются (соединяются) верхняя и нижняя части втулкой, вклеенной в нижнюю часть. Место стыковки двух частей закрыто имитационным шпангоутом, выполненным в виде полоски из бумаги, половина которой приклеена к парашютному отсеку, а вторая как бы свисает над линией разъема, закрывая ее.

Работает система так: по окончании работы двигателей боковых блоков последние отделяются от центрального блока второй ступени, и по истечении одной секунды (а именно таким должен быть замедлитель) срабатывает вышибной заряд. Верхняя часть вылетает вместе с крышкой из втулки, но ни-хромовые нити резко тормозят ее движение, вырывая крышку и парашют.

Теперь разберем конструкцию системы спасения первой ступени на примере ракеты «Космос». Как видно из рисунка 2, на боковой поверхности цилиндрического корпуса вырезано овальное отверстие, куда вклеивают контейнер. Снаружи контейнер закрыт крышкой, которая плотно подогнана по его периметру и благодаря этому удерживается в контейнере. Крышка приклеена нитью к корпусу, чтобы при отстреле парашюта она не терялась. Сам механизм отстрела напоминает рогатку, с той лишь разницей, что стреляет парашютом.

1 - корпус, 2 - контейнер, 3 - крышка, 4 - парашют, 5 - ферма первой ступени, 6 - вторая ступень, 7 - бусинка, 8 - дистанционная трубка, 9 - нить, 10 - кронштейн, 11 - резинки рогатки.

Конструкция этого механизма такова: две резинки крепятся диаметрально противоположно внутри контейнера парашютного отсека на расстоянии до 1 мм от горца вставленной крышки. К месту скрещения резинок с наружной стороны привязывают стропы парашюта, а с внутренней - нить (леска 0,5 мм), которая проходит через отверстия в кронштейне, закрепленном на корпусе ракеты, и выводится наружу.

Кронштейн нужно установить гак, чтобы резинки проходили сбоку от дистанционной трубки. К концу нити можно привязать бусинку, чтобы после состыковки со второй ступенью ракеты она вместе с нитью как бы заклинивалась между корпусом второй ступени и фермой. При этом длина нити должна быть такой, чтобы резинки были в растянутом состоянии. Теперь нужно сложить парашют и поместить его в контейнер, закрыть крышку - и модель готова к запуску. После расстыковки ступеней нить освобождает резинки, которые она удерживала, и происходит отстрел парашюта. Этот вариант спасения удобен для моделей-копий тем, что хорошо подогнанная крышка контейнера не портит общего вида модели и не влияет на ее копийность. Обратите внимание на то, чтобы посадка крышки в контейнере не была слишком плохой. Система легко проверяется без работающих двигателей.

И еще один вариант спасения первой ступени модели-копии, где нет места для установки контейнера, то есть случай, когда диаметр корпуса ракеты больше диаметра двигательного отсека всего на несколько миллиметров. Схема стыковки и сравнительные размеры ступени на примере ЗУРа (рис. 3).

А - стартовое положение, Б - момент раскрытия парашюта. 1 - корпус, 2 - двигатель, 3 - трубка, 4 - парашют, 5 - упорное кольцо, 6-7 - направляющие втулки, 8 - ограничительное кольцо.

В этом случае место для установки парашюта имеется только в кольцевом зазоре, между корпусом ракеты и втулкой двигателя.

Конструкция системы спасения такова. В корпусе помещен двигатель, вставленный в трубку, к концам которой приклеены направляющие втулки. Упорное кольцо прикреплено к внутренней поверхности корпуса у самого основания. Лучше всего кольцо изготовить из дюралюминия Д16Т. Его нужно вклеить только после того, как в корпус будет вставлена трубка с втулками. Парашют привязан к трубке и укладывается в кольцевой зазор между корпусом и трубкой. Упором для предотвращения перемещения работающего двигателя может служить ограничительное кольцо. Чтобы втулка легко перемещалась в корпусе, натрите ее парафином. К запуску ступень готовят так: нужно вытянуть трубку наружу до упора, уложить вокруг нее парашют, затем аккуратно, чтобы не порвать парашют, поместить ее в корпус, установить двигатель. После установки других ступеней можно произвести запуск модели. Как только заработает двигатель второй ступени, над втулкой образуется повышенное давление, которое вытолкнет трубку с уложенным вокруг нее парашютом. При этом втулка упрется в упорное кольцо. Парашют, выйдя из зоны корпуса, раскроется. Одновременно происходит и расстыковка ступеней. Перемещение трубки происходит мгновенно, в связи с чем удар втулки о кольцо может привести к отскоку парашютного отсека обратно в корпус. Поэтому сопрягаемые поверхности втулки и кольца сделаны конусными, чтобы, во-первых, парашют не зацепился за края кольца, во-вторых, чтобы уменьшить вертикальную составляющую при ударе, и в-третьих, чтобы зафиксировать крайнее положение парашютного отсека за счет «заклинивания» втулки в кольце. Эта система работает надежно, однако необходимо аккуратно укладывать парашют. Не следует обматывать двигательный отсек стропами. Несколько пробных запусков - и гарантирована безотказная работа предлагаемой системы.

И. РОМАНОВ, инженер



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: