Митохондриальные заболевания. Митохондриальная патология у детей. Митохондриальные болезни у детей

пост обновлен 28.02.2019

Введение (особенности митохондрий человека) . Особенностью функционирования митохондрий является наличие собственного митохондриального генома - кольцевой митохондриальной ДНК (мтДНК), содержащей 37 генов, продукты которых участвуют в процессе выработки энергии в дыхательной цепи митохондрий. мтДНК располагается во внутренней мембране митохондрий и состоит из пяти сопряженно функционирующих ферментных комплексов, которые в целом насчитывают 86 субъединиц. В основном они кодируются ядерными генами (яДНК), но семь субъединиц первого ферментного комплекса (ND1, 2, 3, 4, 4L, 5, 6), один - третьего (цитохром b), три - четвертого (COI, COII, COIII) и две - пятого (АТФазы 6 и 8) кодируются структурными генами мтДНК. Таким образом, в обеспечении многообразных биохимических функций митохондрий участвуют ферментные комплексы (т.е. белки), кодируемые как ядерными (яДНК), так и митохондриальными генами (мтДНК).

Обратите внимание ! Основными биохимическими процессами, которые имеют отношение к энергетическому обмену и происходят в митохондриях, являются: цикл трикарбоновых кислот (цикл Кребса), бета-окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи и окислительное фосфорилирование. Любой из указанных процессов может нарушаться и быть причиной митохондриальной недостаточности.

Причина возникновения митохондриальных болезней (далее МБ). Главные свойства митохондриального генома - это цитоплазматическое наследование генов, отсутствие рекомбинаций (т.е. реорганизации генетического материала посредством обмена отдельными сегментами, участками, двойных спиралей ДНК) и высокая скорость мутирования. Митохондриальный геном отличается выраженной нестабильностью и высокой скоростью нуклеотидных замен, в среднем в 10 - 17 раз выше скорости мутирования ядерных генов, и в течение жизни индивида в нем нередко возникают соматические мутации. Непосредственная причина возникновения и развития дисфункции митохондрий кроется в дефектах системы окислительного фосфорилирования, несовершенстве репарационных механизмов, отсутствии гистонов и присутствии свободных радикалов кислорода – побочных продуктов аэробного дыхания.

Для мутаций митохондриального генома характерно явление [!!! ] гетероплазмии, при котором (благодаря специфичности митохондриального наследования) в результате клеточного деления распределение (варьирующее в широких пределах - от 1 до 99%) мутантных мтДНК между дочерними клетками происходит случайно и неравномерно, вследствие чего в дочерних клетках одновременно присутствуют копии мтДНК, несущие нормальный и/или мутантный аллель. При этом различные ткани организма или соседние участки одной и той же ткани могут различаться по степени гетероплазмии, т.е. по степени присутствия и соотношения в клетках организма митохондрий как с мутантной, так и с нормальной мтДНК (в последующих поколениях часть клеток может обладать только нормальной мтДНК, другая часть только мутантной, а третья часть - и тем и другим типом мтДНК). Содержание митохондрий с мутантной мтДНК нарастает постепенно. Благодаря этому «лаг периоду» (от англ. «lag» - запаздывание), будущие пациенты нередко достигают половозрелого возраста (и дают потомство, почти всегда несущее те же мутации в мтДНК). Когда количество мутантных копий мтДНК достигает в клетке определенного порога концентрации, энергетический метаболизм в клетках оказывается значительно нарушенным и проявляется в виде заболевания (обратите внимание: особенностью наследственных МБ зачастую является полное отсутствие каких-либо патологических признаков в начале жизни больного).

Обратите внимание ! Гетероплазмия характеризуется одновременным существованием мутантных и нормальных мтДНК в одной клетке, ткани, органе, что определяет тяжесть, характер и возраст манифестации МБ. Количество измененных мтДНК также может увеличиваться с возрастом под влиянием различных факторов и постепенно достигать уровня, способного вызвать клиническое проявления заболевания.

В соответствии с вышеупомянутыми особенностями двойного генома митохондрий тип наследования МБ может быть различным. Поскольку мтДНК в организме имеет почти исключительно материнское происхождение, при передаче митохондриальной мутации потомству в родословной имеет место материнский тип наследования - болеют все дети больной матери. Если мутация происходит в ядерном гене (яДНК), кодирующем синтез митохондриального белка, заболевание передается по классическим менделевским законам. Иногда мутация мтДНК (обычно - делеция) возникает de novo на ранней стадии онтогенеза, и тогда заболевание проявляется как спорадический случай.

Обратите внимание ! В настоящее время известно более 100 точечных мутаций и несколько сотен структурных перестроек мтДНК, ассоциированных с характерными нейромышечными и другими митохондриальными синдромами - от летальных в неонатальном периоде жизни до заболеваний с поздним началом.

Дефиниция . МБ могут быть охарактеризованы как заболевания, обусловленные генетическими и структурно-биохимическими дефектами митохондрий и сопровождающиеся нарушением тканевого дыхания и, как следствие, системным дефектом энергетического метаболизма, вследствие чего поражаются в различной комбинации наиболее энергозависимые ткани и органы-мишени: мозг, скелетные мышцы и миокард (митохондриальные энцефаломиопатии), поджелудочная железа, орган зрения, почки, печень. Клинически нарушения в указанных органах могут реализоваться в любом возрасте. При этом гетерогенность симптоматики затрудняет клиническую диагностику этих заболеваний. Необходимость исключения МБ возникает при наличии мультисистемных проявлений, которые не укладываются в обычный патологический процесс. Частоту дисфункции дыхательной цепи оценивают от 1 на 5 - 10 тыс. до 4 - 5 на 100 тыс. новорожденных.

Семиотика . Нервно-мышечная патология при МБ обычно бывает представлена деменцией, судорогами, атаксией, оптической нейропатией, ретинопатией, нейросенсорнуой глухотой, периферической нейропатией, миопатией. Однако около 1/3 пациентов с МБ имеют нормальный интеллект, а нервно-мышечные проявления у них отсутствуют. К МБ относят, в частности, энцефалокардиомиопатию Kearns - Sayre (пигментный ретинит, наружная офтальмоплегия, полная блокада сердца); синдром MERRF (миоклонус-эпилепсия, «рваные» красные волокна); (митохондриальная энцефало-миопатия, лактат-ацидоз, инсультоподобные эпизоды); синдром Pearson (энцефаломиопатия, атаксия, деменция, прогрессирующая наружная офтальмоплегия); синдром NAPR (невропатия, атаксия, пигментный ретинит); и некоторые формы офтальмопатической миопатии. Все эти формы объединены выраженным в той или иной степени миопатическим синдромом.

Обратите внимание ! Двумя основными клиническими признаками МБ являются увеличение с течением времени числа вовлеченных в патологический процесс органов и тканей, а также практически неизбежное поражение центральной нервной системы. Полиморфизм клинических проявлений, включая поражение органов, на первый взгляд физиологически и морфологически не связанных, в сочетании с различными сроками манифестации и неуклонным прогрессированием симптоматики заболевания с возрастом и позволяет заподозрить [генетическую] мутацию мтДНК.

Обратите внимание ! В клинической практике большое значение имеет умение дифференцировать клиническую картину МБ от более распространенных соматических, аутоиммунных, эндокринных и других патологических состояний, большинство из которых поддаются лечению. Необходимо проводить тщательную оценку семейного анамнеза, данных рутинных клинических и лабораторно-инструментальных методов обследования, прежде чем назначать пациенту специфические генетические и биохимические тесты, направленные на поиск митохондриальной патологии.

Диагностика . Алгоритм диагностики любой МБ должен включать следующие этапы: [1 ] выявление типичной клинической картины митохондриального синдрома либо «необъяснимой» мультисистемности поражения и наследственного анамнеза, подтверждающего материнский тип наследования; [2 ] дальнейший диагностический поиск должен быть направлен на обнаружение общих маркеров митохондриальной дисфункции: повышение уровня лактата/пирувата в сыворотке крови и цереброспинальной жидкости, нарушение углеводного, белкового, аминокислотного обменов, а также клинической картины с вовлечением в патологический процесс как минимум трех из указанных систем: ЦНС, сердечно-сосудистой системы, мышечной, эндокринной, почечной, органов зрения и слуха; [3 ] при клинических и подтвержденных лабораторно-инструментальных признаках митохондриальной патологии проводят ПЦР-анализ лимфоцитов крови для прицельного поиска точковых мутаций мтДНК; исследование, которое считается золотым стандартом диагностики МБ [цитопатий], - биопсия скелетных мышц с проведением гистохимического, электронно-микроскопического, иммунологического и молекулярно-генетического анализов, характерные изменения в которых будут при любой МБ (см. далее); [5 ] наиболее чувствительными тестами для диагностики МБ служат методы оценки уровня гетероплазмии патологических мтДНК в различных органах и тканях: флуоресцентная ПЦР, клонирование, денатурирующая высокоразрешающая жидкостная хроматография, секвенирование, саузерн-блот-гибридизация и т.д.

Гистохимическое исследование биоптатов мышц пациентов, включающее окраску трихромом по методу Гомори, демонстрирует изменения, характерные для МБ, - рваные красные волокна миофибриллы, которые содержат большое количество пролиферирующих и поврежденных митохондрий, образующих агломераты по периферии мышечного волокна. При этом количество рваных красных волокон в биопсии должно быть ≥ 2%. Ферменто-гистохимический анализ показывает дефицит цитохром-С-оксидазы в 2 и 5% миофибрилл (для пациентов моложе 50 и старше 50 лет) их общего числа в биоптатах. Гистохимический анализ сукцинатдегидрогеназной (СДГ) активности демонстрирует CДГ-положительное окрашивание миофибрилл – рваные синие волокна (ragged blue fibers), что в сочетании с СДГ-позитивным окрашиванием стенок артерий, кровоснабжающих мышцы, свидетельствует о высокой степени повреждения митохондрий миоцитов. При проведении электронной микроскопии биоптатов мышц определяют патологические включения, структурные перестройки митохондрий, изменение их формы, размера и числа.

Обратите внимание ! Несмотря на значительный прогресс, достигнутый с момента открытия генетических мутаций мтДНК, большинство из используемых в клинической практике диагностических методов обладают низкой степенью специфичности в отношении отдельных МБ. Поэтому диагностические критерии для той или иной МБ, в первую очередь, складываются из сочетания специфической клинической и морфологической картин.

Принципы лечения . Терапия МБ (цитопатий) носит исключительно симптоматический характер и направлена на снижение скорости прогрессирования заболевания, а также улучшение качества жизни пациентов. С этой целью больным назначают стандартную комбинацию препаратов, включающую коэнзим Q10, идебенон - синтетический аналог СоQ10, креатин, фолиевую кислоту, витамины В2, В6, В12 и другие лекарственные средства, улучшающие окислительно-восстановительные реакции в клетках (препараты-переносчики электронов в дыхательной цепи и кофакторы энзимных реакций энергетического обмена). Эти соединения стимулируют синтез молекул АТФ и снижают активность свободно-радикальных процессов в митохондриях. Между тем, по данным систематического обзора, большинство из препаратов, обладающих антиоксидантным и метаболическим действием и применяемых при МБ, не оценивали в масштабных рандомизированных плацебо-контролируемых исследованиях. Поэтому сложно оценить выраженность их терапевтического эффекта и наличие значительных побочных эффектов.

Подробнее о МБ в следующих источниках :

статья «Нервно-мышечная патология при митохондриальных болезнях» Л.А. Сайкова, В.Г. Пустозеров; Санкт Петербургская медицинская академия последипломного образования Росздрава (журнал «Вестник Санкт-Петербургской медицинской академии последипломного образования» 2009) [читать ];

статья «Хроническиe заболевания невоспалительного генезa и мутации митохондриального генома человека» К.Ю. Митрофанов, А.В. Желанкин, М.А. Сазонова, И.А. Собенин, А.Ю. Постнов; Инновационный центр Сколково. Научно-исследовательский институт атеросклероза, Москва; ГБОУ Научно-исследовательский институт общей патологии и патофизиологии РАМН, Москва; Институт клинической кардиологии им. А.Л.Мясникова ФГБУ РКНПК Минздравсоцразвития РФ (журнал «Кардиологический вестник» №1, 2012) [читать ];

статья «Митохондриальная днк и наследственная патология человека» Н.С. Прохорова, Л.А. Демиденко; Кафедра медицинской биологии, ГУ «Крымский государственный медицинскый университет им. С.И. Георгиевского», г. Симферополь (журнал «Таврический медико-биологический вестник» №4, 2010) [читать ];

статья «Митохондриальный геном и митохондриальные заболевания человека» И.О. Мазунин, Н.В. Володько, Е.Б. Стариковская, Р.И. Сукерник; Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук, Новосибирск (журнал «Молекулярная биология» №5, 2010) [читать ];

статья «Перспективы митохондриальной медицины» Д.Б. Зоров, Н.К. Исаев, Е.Ю. Плотников, Д.Н. Силачев, Л.Д. Зорова, И.Б. Певзнер, М.А. Моросанова, С.С. Янкаускас, С.Д. Зоров, В.А. Бабенко; Московский государственный университет им. М.В. Ломоносова, Институт физико-химической биологии им. А.Н. Белозерского, НИИ Митоинженерии, Лазерный Научный Центр, факультет биоинженерии и биоинформатики; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова (журнал «Биохимия» №9, 2013) [читать ];

статья «Инсульты при митохондриальных заболеваниях» Н.В. Пизова; Кафедра нервных болезней с курсами нейрохирургии и медицинской генетики ГБОУ ВПО «Ярославская государственная медицинская академия» (журнал «Неврология, нейропсихиатрия, психосоматика» №2, 2012) [читать ];

статья «Диагностика и профилактика ядерно-кодируемых митохондриальных заболеваний у детей» Е.А. Николаева; Научно-исследовательский клинический институт педиатрии, Москва (журнал «Российский вестник перинатологии и педиатрии» №2, 2014) [читать ];

статья «Эпилепсия у детей с митохондриальными заболеваниями: особенности диагностики и лечения» Заваденко Н.Н., Холин А.А.; ГБОУ ВПО Российский национальный исследовательский медицинский университет им. Н.И. Пирогова Минздравсоцразвития России, Москва (журнал «Эпилепсия и пароксизмальные состояния» №2, 2012) [читать ];

статья «Митохондриальная патология и проблемы патогенеза психических нарушений» В.С. Сухоруков; Московский НИИ педиатрии и детской хирургии Росмедтехнологий (Журнал неврологии и психиатрии, №6, 2008) [читать ];

статья «Алгоритм диагностики митохондриальных энцефаломиопатий» С.Н. Иллариошкин (журнал «Нервные болезни» №3, 2007) [читать ];

статья «Актуальные вопросы лечения митохондриальных нарушений» В.С. Сухоруков; ФГБУ «Московский НИИ педиатрии и детской хирургии» Минздрава России (журнал «Эффективная фармакотерапия. Педиатрия» №4, 2012 [читать ];

статья «Лейкоэнцефалопатия с преимущественным поражением ствола мозга, спинного мозга и повышенным лактатом при МР-спектроскопии (клиническое наблюдение)» В.И. Гузева, Е. А. Ефет, О. М. Николаева; Санкт-Петербургский педиатрический медицинский университет, Санкт-Петербург, Россия (журнал «Нейрохирургия и неврология детского возраста» №1, 2013) [читать ];

учебно-методическое пособие для студентов третьего курса медико-диагностического факультета медицинских вузов «Наследственные митохондриальные заболевания» Т.С. Угольник, И. В. Манаенкова; Учреждение образования «Гомельский государственный медицинский университет», кафедра патологической физиологии, 2012 [читать ];

пост: Митохондриальне заболевания (нейродегенерация) - на сайт c 17-ю ссылками на источники (статьи, презентации и т.д.) .


© Laesus De Liro

Важными особенностями митохондриального типа наследования патологии являются: – наличие патологии у всех детей больной матери; рождение здоровых детей у больного отца и здоровой матери. Указанные особенности объясняются тем, что митохондрии наследуются только от матери. Доля отцовского митохондриального генома в зиготе составляет ДНК от 0 до 4 митохондрий, а материнского генома - ДНК примерно от 2500 митохондрий. К тому же, после оплодотворения репликация отцовской ДНК блокируется.

В настоящее время геном митохондрий секвенирован. Он содержит 16 569 пар оснований и кодирует две рибосомные РНК (12S и 16S), 22 транспортные РНК и 13 полипептидов субъединиц ферментативных комплексов окислительного фосфорилирования. Другие 66 субъединиц дыхательной цепи кодируются в ядре.

Примеры заболеваний с митохондриальным типом наследования (митохондриальные болезни): атрофия зрительного нерва Лебера , синдромы Лея (митохондриальная миоэнцефалопатия), MERRF (миоклоническая эпилепсия), кардиомиопатия дилатационная семейная. Родословная пациента с митохондриальным типом наследования патологии (атрофия зрительного нерва Лебера) в четырёх поколениях представлена на рис. 4–13.

Ы ВЁРСТКА вставить файл «ПФ Рис 04 13 Родословная с митохондриальным типом наследования заболевания»

Рис .4–13 .Родословная с митохондриальным типом наследования заболевания . Кружок - пол женский, квадрат - пол мужской, тёмный кружок и/или квадрат - больной.

Примеры моногенных заболеваний, наиболе часто встречающихся в клинической практике

Фенилкетонурия

Все формы фенилкетонурии являются результатом недостаточности ряда ферментов. Их гены транскрибируются в гепатоцитах и наследуются по аутосомно‑рецессивному типу. Наиболее частая форма фенилкетонурии возникает при мутациях гена фенилаланин 4‑монооксигеназы (фенилаланин 4-гидроксилаза, фенилаланиназа). Самый распространённый тип мутаций однонуклеотидные замены (миссенс‑, нонсенс‑мутации и мутации в сайтах сплайсинга). Ведущее патогенетическое звено фенилкетонурии гиперфенилаланинемия с накоплением в тканях токсических продуктов метаболизма (фенилпировиноградной, фенилуксусной, фенилмолочной и других кетокислот). Это ведёт к поражению ЦНС, нарушению функции печени, обмена белков, липо- и гликопротеинов, метаболизма гормонов.

Проявляется фенилкетонурия : повышенной возбудимостью и гипертонусом мышц, гиперрефлексией и судорогами, признаками аллергического дерматита, гипопигментацией кожи, волос, радужки; «мышиным» запахом мочи и пота, задержкой психомоторного развития. У нелеченых детей формируется микроцефалия и умственная отсталость. С этим связано другое название заболевания фенилпируватная олигофрения.

Лечение фенилкетонурии проводится с помощью диетотерапии (исключением или снижением содержания в пище фенилаланина). Диету необходимо соблюдать с момента установления диагноза (первые сутки после рождения) и контролировать содержание фенилаланина в крови не менее 8–10 лет.Гемофилия А(см. статью «Гемофилия» в приложении «Справочник терминов»)

Синдром Марфана

Частота синдрома Марфана находится в диапазоне 1:10 000–15 000. Наследуется синдром по аутосомно‑доминантному типу. Причина синдрома мутация гена фибриллина (FBN1 ). Идентифицировано около 70 мутаций этого гена (преимущественно миссенс‑типа). Мутации различных экзонов гена FBN1 вызывают разные изменения фенотипа, от умеренно выраженных (субклинических) до тяжёлых.

Проявляется синдром Марфана генерализованным поражением соединительной ткани (поскольку фибриллин широко представлен в матриксе соединительной ткани кожи, лёгких, сосудов, почек, мышц, хрящей, сухожилий, связок); поражением скелета, высоким ростом, диспропорционально длинными конечностями, арахнодактилией, поражениями сердечно‑сосудистой системы, расслаивающимися аневризмами аорты, пролапсом митрального клапана, поражением глаз: вывихами или подвывихами хрусталика, дрожанием радужки.

Гемоглобинопатия S

Гемоглобинопатия S (аутосомно‑рецессивное наследование) распространена в странах так называемого малярийного пояса Земли. Это объясняется тем, что гетерозиготы по HbS резистентны к тропической малярии. В частности, носители HbS распространены в Закавказье и Средней Азии, в России максимальная частота гетерозиготных носителей HbS отмечена в Дагестане.

Причиной HbS является замещение одного основания в 6м триплете (миссенс‑мутация)  цепи глобина. Это приводит к замене глутаминовой кислоты на валин. Такой Hb имеет крайне низкую растворимость. Внутриклеточно из HbS образуются кристаллические тактоиды. Они и придают эритроцитам форму серпа. Отсюда название болезни «серповидно-клеточная анемия».

Гетерозиготные носители HbS в обычных условиях здоровы, но при пониженном pO 2 (кессонные работы, условия высокогорья и т.д.) или при гипоксемии (ВПР сердца, дыхательная недостаточность, длительный наркоз и т.п.) развивается гемолитическая анемия.

Гомозиготы страдают тяжёлой гемолитической анемией с 4–6месячного возраста. В результате тромбоза капилляров или венул серповидными эритроцитами развиваются трофические язвы (часто на голени), боли в животе, поражение сердца, глаз. Характерны поражения костно‑суставной системы, гепатоспленомегалия.

Муковисцидоз

Муковисцидоз - множественное поражение экзокринных желёз, сопровождающееся накоплением и выделением ими вязких секретов. Среди новорождённых частота муковисцедоза составляет 1:1500–1:2000. Кистозный фиброз является одним из самых распространённых моногенных заболеваний в Европе. Наследуется муковисцидоз по аутосомно‑рецессивному типу. Известно более 130 мутантных аллелей; наиболее частая мутация delF508. Она приводит к отсутствию фенилаланина в 508-м положении трансмембранного регуляторного белка. В зависимости от типа мутаций и их локализации функция гена может быть полностью или частично нарушена. При этом расстраивается регуляция переноса Cl – через мембраны эпителиальных клеток (транспорт Cl – тормозится, а Na + усиливается).

Болезнь характеризуется закрытием протоков желёз вязким секретом, который образуется в связи с повышенной резорбцией Na + клетками протоков экзокринных желёз. Нередко в протоках образуются кисты и развивается воспаление. При хроническом течении в железах развивается избыток соединительной ткани (склероз). У новорождённых нередко выявляется непроходимость кишечника (мекониальный илеус). У детей наиболее часто развивается лёгочная или лёгочно‑кишечная форма заболевания. Оно проявляются повторными бронхитами, пневмониями, эмфиземой лёгких, а также нарушениями полостного и пристеночного пищеварения, вплоть до развития синдрома мальабсорбции (синдром нарушенного всасывания). При длительном течении развиваются дыхательная недостаточность, цирроз печени, портальная гипертензия, нередко приводящие к смерти.

Генетическая информация очень нестабильна. Один из основных постулатов генетики гласит, что изменчивость — это основной фактор развития всего живого. Мутации необходимы для выживания вида. Однако некоторые изменчивости, в частности в митохондриях, приводят к негативным видоизменениям в генетической природе. Такова причина заболевания, носящее название митохондриальный синдром.

Такие заболевания не так часто встречаются, но исход большинства синдромов митохондриальной ДНК крайне неблагоприятен.

Митохондрии. Их функции в клетке

Напомним биологические азы. Митохондрия — это органелла в человеческой клетке, у которой наличествует свой ДНК-код. Передается всегда митохондрия от матери. Несет ее в себе материнская яйцеклетка. Митохондрии самостоятельно делятся в клетке, и многократно повторяют свой набор ДНК, копий которого имеет около 30.

Геном митохондрий имеет в своем распоряжении 22 гена для «собственных» транспортных РНК; 13 - для полипептидов, входящих в надмолекулярные комплексы, обеспечивающих дыхание органеллы; 2 гена для личных РНК.

Самое важное значение этой органеллы в том, что она вырабатывает АТФ. Проще говоря, является «электростанцией» в нашем организме, без нее клетки не могут полноценно функционировать; быстро «старятся» и погибают.

Что такое митохондриальный синдром?

При нарушении работы этих маленьких «энергоблоков» начинаются проблемы с энергообменом в клетке. При легких формах нарушения человек просто не выдерживает физических нагрузок, которые ему положено переносить по возрасту.

Однако более серьезные нарушения провоцируют необратимые изменения в энергообмене, и как следствие, сильные нарушения в работе клеток.

Митохондриальный синдром — это комплекс заболеваний, связанный с различными врожденными повреждениями митохондрий.

Причины синдрома

Такие органеллы как митохондрии делятся по-иному. Для них не присуще рекомбинирование генов, но при этом скорость мутации значительно выше. Во время деления митохондрии распределение генов между новыми клетками имеет совершенно случайный характер. Вероятность возникновение мутации от 1 до 99%. Причем спрогнозировать ее нет никакой возможности.

И чем больше больных генов, тем больше вероятность нарушения. Так как митохондрии наследуются по матери, то вследствие их мутирования в ее организме страдают дети обоих полов. Причем не избирательно, 1 или 2. Есть вероятность что все дети будут с аномалиями развития органов.

Мутации делят на два типа. Большинство белков «зашифровано» ядерной ДНК, которая также может видоизменяться по неясным причинам. Поэтому разделяют синдромы, вызванные как мутацией обычной митохондриальной кольцевой ДНК, так и ядерной.

Симптоматика

Определить четкий набор симптомов, присущих такой болезни, как митохондриальный синдром довольно сложно. Дело в том, что мутировавшие органеллы могут находиться в абсолютно любой клетке любого органа. И чем больше их накапливается, тем сильнее нарушается работа и этого органа, и всей системы, к которой он относится. В митохондрологии принято распределять синдромы в зависимости от вида пораженных тканей и от типа митохондриальной мутации.

Обычно страдают те органы и системы, которые сильнее всего нуждаются в постоянной подаче кислорода - это мозг и центральная нервная система, печень, сердце, мышцы. Недополучая энергию, скелетные мышцы не поддерживают тело в вертикальном положении. В некоторых случаях появляются даже мышечные судороги.

Бывает, митохондрии настолько слабы в своей работе, что человек, получивший такой набор органелл от матери, полностью прикован к постели. При некоторых синдромах, о которых мы расскажем, человек страдает миоклонусами, гепатопатией, эпилептическими припадками и со временем деменцией, причем в совсем юном возрасте. Такие симптомы указывают на синдром митохондриального истощения.

Наиболее вероятные нарушения при мутациях митохондрий

Всего на сегодняшний день уже выявлено множество форм заболеваний, которые вызывает мутация митохондрий. Например, когда затрагивается мышечный каркас, диагностируют эпилептические приступы на фоне мышечного недоразвития. Причем мышечная структура не просто повреждена, она выглядит под микроскопом как недоразвитые волокна красного цвета. Мышечная атрофия в таком случае называется митохондриальной миопатией. Это наиболее частое нарушение при митохондриальной недостаточности. Если затронута именно сердечная мышца — кардиомиопатия, обнаружены патологические процессы в головном мозге — регистрируется энцефалопатия.

Что такое синдром митохондриальной энцефалопатии? Синдром диагностируют, когда есть нарушения в генах — tRNAs, MTND1, 4-6, MTCYB. При этом нарушается работа всей нервной системы.

Вместе с энцефалопатией наблюдаются и такой симптом, как лактат-ацидоз — или молочнокислая кома. Это осложнение, при котором молочная кислота начинает попадать в кровь.

Опасны и такие состояния у больных с синдромом митохондриальной недостаточности, как частые и злокачественные мигрени, у детей наблюдаются задержки психического и моторного развития, глухота, атаксия (проблемы с равновесием).

Симптомы не так хорошо изучены, поскольку заболевания, связанные с митохондриями не так давно открыты. Но об известных синдромах, клинические проявления которых пытаются лечить, мы расскажем.

Синдром МЕЛАС

МЕЛАС (MELAS)энцефалопатия (проблемы с ЦНС), лактат-ацидоз, и в дополнение инсульты. Встречается синдром, как у младенцев, так и у взрослых людей. Но чаще симптомы начинают проявляться где-то с 5 до 15 лет. Что это за симптомы? Они перечислены в названии синдрома. У больного внезапно начинаются множественные инсульты — в височной и ли теменной зонах мозга. Присоединяются к инсультам и неврологические проблемы. Затем возникает мышечная слабость, сенсорная тугоухость. Возможны частые мышечные судороги.

Причиной синдрома считается подмена митохондриального гена в 3243-м положении. И лечение возможно только симптоматическое, то есть поддерживающая терапия.

Синдромы делеции митохондриальной ДНК

Начнем описание с такого заболевания, как синдром Кернса-Сейра, начинающийся с 4 лет. Синдром проявляется следующим образом:

  • офтальмоплегия прогрессирующая;
  • атаксия;
  • атриовентрикулярная блокада сердца (замедление передачи импульса от одной сердечной камеры к другой);
  • ретинит пигментный;
  • те же красные рваные мышечные ткани.

Следующий синдром, имеющий те же «корни» — синдром Пирсона, который проявляется иначе:

  • анемия гипопластическая, самый первый и опасный симптом;
  • нарушение функций поджелудочной;
  • позже возможны нарушения зрения;
  • нарушения в костном мозге;
  • появление деменции.

Синдром Пирсона обусловлен, как и синдром Кернса-Сейра, делециями митохондриальной ДНК. Делеции — это такие изменения в хромосомном наборе гена, при которых часть генного материала полностью утеряна.

Те аллели, которые мутировали, или потеряли части хромосом, не должны проявляться как доминантные. Но в митохондриальной ДНК все процессы хаотичны, мутирование происходит слишком быстро. Некоторые ученые даже считают, что митохондрии - это не органеллы, а бактерии, которые когда-то попали в человеческий организм и полностью прижились, создали симбиотическую связь с клеткой и начали служить ей. На такую теорию наталкивает тот факт, что у митохондрии свои, отдельные кольцевые ДНК.

Точковые мутации

К синдромам, обусловленным точковыми изменениями в материнской митохондрии относят синдром MERRF, NAPR, упомянутый MELAS и такое заболевание, как атрофия зрительного нерва Лебера.

Митохондриальный синдром MERRF — какие у него особенности?

  • Наличествует атаксия — это нарушение координации, возможно, связанное с проблемами мозжечка. Человек плохо контролирует свои движения в пространстве.
  • Симптомы миоклонической эпилепсии.
  • Атрофия зрительного нерва (слепота от рождения) и глухота.
  • Лактоацидоз.
  • Нарушения чувствительности.
  • Старт заболевания приходится на возраст от 3 лет.

Следующий вид заболевания NAPR— расшифровывается как невропатия, плюс атаксия, и плюс пигментный ретинит. При данном синдроме у ребенка прогрессируют нарушения в психомоторном развитии и деменция.

Синдром истощения ДНК

Синдром митохондриального истощения ДНК — весьма редкое заболевание. Ребенок с такой наследственной болезнью — инвалид с детства. Эти синдромы также подразделяются на множество видов.

Многие дети погибают от множественных дефектов развития внутренних органов, не дожив до 3 лет. Получение таких «покалеченных» митохондрий от матери происходит по аутосомно-рецессивному типу наследования. Генетики уверены, что в таких случаях имеют место множественные делеции.

Синдром также называют в научных кругах — синдром истощения митохондриальной ДНК. Заболевание проявляется у новорожденного сразу. У больного младенца наличествуют такие аномалии развития:

  1. Тяжелая гепатопатия — нарушение работы печени.
  2. Врожденная миопатия, выраженная в значительной слабости мышц.
  3. Кардиомиопатия — проблемы в работе сердечной мышцы.
  4. Атрофия мышц и отсутствие сухожильных рефлексов.

Основная причина таких заболеваний — это дефект межгеномной взаимосвязи (коммуникации).

Существует в генетике и такое понятие как синдром деплеции митохондриальной ДНК. Деплеция — это синоним истощения в генетике. При таком тяжелом синдроме генетический материал митохондрий истощен на 70-98%. Описан впервые не так давно, в 1991 году.

Что происходит с ребенком? В новорожденном периоде уже проявляется лактоацидоз, гипоальбуминемия (резкое снижение альбумина в крови), отеки и выраженная печеночная недостаточность. Наблюдались у некоторых больных и судороги. Симптом, который виден невооруженным взглядом — выраженная мышечная гипотония. Все дети, рожденные с такими признаками, не доживали и до года.

Причиной считается нарушение гена, который ответственен за репликацию ДНК. Его «неверная» работа приводит к тому, что практически все митохондрии мутируют и не выполняют свои функции. Тип наследования делеции митохондриальной ДНК может быть как аутосомно-рецессивным, так и аутосомно-доминантным.

Нарушения в ядерной ДНК

Кроме перечисленных митохондриальных синдромов есть другие, связанные с нарушениями в ядерной ДНК. Их тоже немало: Менкеса, Лея, Альперса, различные дефицитные состояния. Все они имеют прогрессирующее течение. Наиболее опасным считается синдром Лея, при котором ребенок практически не жизнеспособен уже с рождения.

Митохондриальный синдром у детей

Большинство заболеваний начинается с раннего детского возраста. В основном распространена миопатия, из-за которой дети не могут самостоятельно передвигаться и страдают мышечными болями. Кардиомиопатия — нарушения функции миокарда, также встречается довольно часто.

Митохондриальный синдром у ребенка, если недомогания не слишком серьезны и не угрожают здоровью, на протяжении всей жизни будет причинять беспокойства и мешать нормальному развитию. Таким детям нужны мероприятия по социализации. Им важно развивать скелетные мышцы, но не спортивными методами (так как у многих поражен миокард), а благодаря плаванию с дельфинами. Поэтому создан специальный фонд для таких детей, куда поступают деньги от благотворительности.

Одной из форм синдрома митохондриального истощения ДНК болеет мальчик по имени Чарли Гард, рожденный в 2016 году. Он с рождения не может самостоятельно глотать, пищу, дышать. Его состояние полностью контролируется врачами, и родители отчаянно борются за его жизнь. Хотя надежды мало. У него врожденная гепатопатия, он слеп и имеет тугоухость. Его родители надеются на современные методы лечения. Синдром получил также «народное» название — митохондриальный синдром Чарли.

Однако синдром митохондриального истощения ДНК однозначно приводит к летальному исходу. Врачи предупреждают об этом родителей сразу после установления диагноза. Множественные поражения органов и систем исключают нормальную жизнь для таких детей. Поэтому исключительно важно женщине перед беременностью пройти генетический анализ на мутации в митохондриях.

Тесты для диагностики

Диагностика подобных синдромов - это сложное задание для медиков. При постановке диагноза значение имеет комплексный анализ различных показателей. Проводится отдельно генетическое исследование, биохимическое, морфологическое, затем все данные сводятся воедино. Исследуется даже генеалогия ребенка.

Для точного медицинского заключения нужно провести также множество тестов для измерения различных соотношений. Например, проверяется пропорция в плазме крови лактат/пируват. Ведь недостаток пируватов и преобладание лактатов может означать начало лактоацидоза. Очень важно знать доктору о соотношении кетоновых тел в плазме. Но наиболее эффективным методом диагностики является биопсия мышц. Форму мутации можно узнать благодаря молекулярно-генетическому анализу ДНК.

Лечение синдромов

Трудность лечения заключается в отсутствии каких-нибудь механизмов, которые смогли бы заново «перестроить» мутировавшие гены. Врачи в таких случаях ничего не могут предпринять, кроме того, что назначить пируваты и некоторые витаминные комплексы. Особенно сложно помочь детям с множественными делециями генов. И если в карточке ребенка значится терминальная стадия синдрома митохондриального истощения ДНК, то это значит, что врачи полностью расписываются в своем бессилии.

Единственное, что может предложить медицина, это выявление митохондриальных мутаций у матери до беременности. Тогда можно попробовать пойти на экстракорпоральное зачатие, чтобы выносить здорового ребенка.

Врачи начали наблюдать за тем, как проявляются митохондриальные заболевания ещё в 20-м веке. Стремясь определить, от чего может быть любая из митохондриальных болезней, специалисты обнаружили более 50 разновидностей болезней, которые имеют связь с нарушениями, затрагивающими митохондрии.

В зависимости от причин, различают три основных подгруппы митохондриальных заболеваний, а именно:

  • Болезни, вызванные мутациями митохондриальной ДНК. Подобные дефекты имеют связь с точечной мутацией различных элементов и наследуются преимущественно от матери. Также, болезни может вызвать структурная дислокация. К этой категории болезней относятся такие наследственные синдромы Кернса-Сейра, Пирсона, Лебера и т. д.
  • Болезни, вызванные дефектами на уровне ядерной ДНК. Мутации влекут за собой нарушение функционирования митохондрий. Кроме того, они могут вызывать негативные изменения ферментов, участвующих в циклическом биохимическом процессе, в частности - обеспечении клеток в организме кислородом. Сюда можно отнести синдромы Люфта и Альперса, диабетические заболевания и т. д.
  • Болезни, вызванные дефектами на уровне ядерной ДНК и, как следствие, вызывающие вторичную деформацию ДНК митохондрий. К списку вторичных изменений относятся печеночная недостаточности и синдромы, типа того что был выявлен Де Тони-Дебре-Фанкони.

Симптомы

На протяжении длительного срока времени, мутации и, как следствие, митохондриальные болезни, могут не проявляться у несовершеннолетнего пациента. Однако, с течением времени, скопление нездоровых органелл увеличивается, в результате, начинаются проявления первых признаков того или иного заболевания.

Так как заболевания митхондриальной группы представляют собой целую группу патологий, то и признаки этих болезней существенно различаются в зависимости от того, какие органы и системы детского организма были повреждены. Учитывая связь между дефектами митохондрий и энергетической функцией, можно определить особенную подверженность поражению нервной и мышечной систем.

Среди характерных признаков патологии мышечной системы можно распознать:

  • Ограничение или полное отсутствие двигательной активности в связи с невозможностью выполнять обычные действия из-за ослабленности мышц или, как называют это состояние - миопатии.
  • Пониженное артериальное давление.
  • Болевой синдром или мышечные спазмы, сопровождаемые сильными болями.

У детей в первую очередь проявляется головная боль, интенсивная и повторяющаяся рвота, ослабленность после минимальных физических нагрузок.

Если речь идёт о поражении нервной системы, то здесь имеют место быть следующие проявления:

  • отставание в психомоторном развитии;
  • неспособность выполнять действия, с которыми ребёнок справлялся ранее - регресс развития;
  • судорожные припадки;
  • периодические проявления апноэ и тахипноэ;
  • частая потеря сознания и впадение в кому;
  • изменения на уровне кислотно-щелочного баланса;
  • изменение походки.

У детей старшего возраста можно заметить онемение, паралич, потерю чувствительности, инсультоподобные приступы, патологии в виде непроизвольных движений и т. д.

Затрагивание органов чувств выражается в ухудшении зрительной функции, птозах, катарактах, дефектах глазной сетчатки и поля зрения, ухудшении слуха или полной глухоте нейросенсорного характера. Поражение органов в детском организме проявляются в виде проблем с сердцем, печенью, почками, поджелудочной железой. Что касается болезней, связанных с эндокринной системой, то здесь отмечаются:

  • отставание в росте и половом развитии,
  • пониженная выработка глюкозы организмом,
  • дисфункция щитовидки,
  • прочие проблемы с метаболизмом.

Диагностика митохондриальных заболеваний у ребёнка

Для того чтобы диагностировать наличие митохондриальных болезней, врач изучает анамнез, проводит физикальный осмотр, исследуя в первую очередь силу ребёнка и его выносливость. Дополнительно назначается обследование у невропатолога, включая оценку зрения, рефлексов, речевой и познавательной способностей. С помощью специализированных анализов - мышечная биопсия, МРС и так далее, - подтверждают имеющиеся подозрения. Также выполняется компьютерная и магнитно-резонансная томография и ДНК-диагностика с консультацией у генетиков.

Осложнения

То, чем опасны дефекты митохондрий, зависит от вида болезни. Например, при поражении мышечной системы, имеет место быть полный паралич и инвалидизация, в том числе интеллектуальный регресс.

Лечение

Что можете сделать вы

Первая помощь со стороны родителей зависит от того, в чём именно заключаются проявления заболевания. В любом случае, при наличии малейших подозрений и отклонений от нормы, необходимо обратиться к специалисту и узнать, что делать с болезнью при её наличии.

Что делает врач

Вне зависимости от вида болезни, лечить её можно методом введения препаратов, нормализующих энергетический обмен. Также, ребёнку назначается симптоматическое и специализированное лечение в порядке, установленном для конкретного заболевания. Вылечить патологии быстрее или нормализовать состояние пациента помогают физические упражнения и физиотерапевтические процедуры.

Профилактика

Предотвратить митохондриальные болезни невозможно, так как они происходят на генетическом уровне. Единственный способ, позволяющий несколько минимизировать риски - это ведение здорового образа жизни без вредных привычек.



Митохондриальная патология и проблемы патогенеза психических нарушений

В.С. Сухоруков

The mitochondrial pathology and problems of pathophysiology of mental disorders

V.S. Sukhorukov
Московский НИИ педиатрии и детской хирургии Росмедтехнологий

В течение последних десятилетий в медицине активно развивается новое направление, связанное с изучением роли нарушений клеточного энергообмена - процессов, затрагивающих универсальные клеточные органеллы - митохондрии. В связи с этим появилось понятие «митохондриальные болезни».

Митохондрии выполняют много функций, однако их основная задача - образование молекул АТФ в биохимических циклах клеточного дыхания. Основными происходящими в митохондриях процессами являются цикл трикарбоновых кислот, окисление жирных кислот, карнитиновый цикл, транспорт электронов в дыхательной цепи (с помощью I-IV ферментных комплексов) и окислительное фосфорилирование (V ферментный комплекс) . Нарушения функций митохондрий относятся к важнейшим (часто ранним) этапам повреждения клеток. Эти нарушения ведут к недостаточности энергообеспечения клеток, нарушению многих других важных обменных процессов, дальнейшему развитию клеточного повреждения вплоть до гибели клетки. Для клинициста оценка степени митохондриальной дисфункции имеет существенное значение как для формирования представлений о сути и степени происходящих на тканевом уровне процессов, так и для разработки плана терапевтической коррекции патологического состояния .

Понятие «митохондриальные болезни» сформировалось в медицине в конце ХХ века благодаря открытым незадолго до этого наследственным заболеваниям, основными этиопатогенетическими факторами которых являются мутации генов, ответственных за синтез митохондриальных белков . В первую очередь были изучены болезни, связанные с мутациями открытой в начале 60-х годов митохондриальной ДНК. Эта ДНК, имеющая относительно простое строение и напоминающая кольцевую хромосому бактерий, была детально изучена. Полная первичная структура митохондриальной ДНК (митДНК) человека была опубликована в 1981 г.), и уже в конце 80-х годов была доказана ведущая роль ее мутаций в развитии ряда наследственных заболеваний. К последним относятся наследственная атрофия зрительных нервов Лебера, синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром MERRF (миоклонус эпилепсия с «рваными» красными волокнами в скелетных мышцах), синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз, инсультоподобные эпизоды), синдром Кернса-Сейра (пигментный ретинит, наружная офтальмоплегия, блокада сердца, птоз, мозжечковый синдром), синдром Пирсона (поражение костного мозга, панкреатическая и печеночная дисфункции) и др. Число описаний таких болезней увеличивается с каждым годом. По последним данным, совокупная частота наследственных болезней, связанных с мутациями митДНК, достигает 1:5000 человек общего населения.

В меньшей степени изучены наследственные митохондриальные дефекты, связанные с повреждением ядерного генома. На сегодняшний день их известно сравнительно немного (различные формы младенческих миопатий, болезни Альперса, Лея, Барта, Менкеса, синдромы недостаточности карнитина, некоторых ферментов цикла Кребса и дыхательной цепи митохондрий). Можно предположить, что их число должно быть гораздо больше, поскольку гены, кодирующие информацию 98% митохондриальных белков, находятся именно в ядре.

В целом можно сказать, что изучение болезней, причиной которых являются наследственные нарушения митохондриальных функций, произвело своего рода революцию в современных представлениях о медицинских аспектах энергетического обмена человека. Помимо вклада в теоретическую патологию и медицинскую систематику, одним из главных достижений медицинской «митохондриологии» явилось создание эффективного диагностического инструментария (клинические, биохимические, морфологические и молекулярногенетические критерии полисистемной митохондриальной недостаточности), позволившего оценивать полисистемные нарушения клеточного энергообмена.

Что касается психиатрии, то уже в 30-е годы ХХ столетия были получены данные о том, что у больных шизофренией после физической нагрузки резко повышается уровень молочной кислоты. Позднее в виде оформленного научного предположения появился постулат о том, что какие-то регулирующие энергообмен механизмы ответственны за отсутствие «психической энергии» при этом заболевании . Однако еще довольно долго такие предположения воспринимались как, мягко говоря, «малоперспективные с научной точки зрения». В 1965 г. S. Kеty писал: «Трудно представить, что генерализованный дефект энергетического метаболизма - процесс, имеющий фундаментальное значение для каждой клетки тела, - может нести ответственность за высокоспециализированные особенности шизофрении ». Тем не менее в последующее 40 лет ситуация изменилась. Успехи «митохондриальной медицины» были столь убедительны, что стали привлекать внимание более широкого круга врачей, в том числе и психиатров. Итог последовательному росту числа соответствующих исследований был подведен в работе A. Gardner и R. Boles «Есть ли будущее у «митохондриальной психиатрии»?» . Вопросительная форма вынесенного в название постулата несла в себе оттенок преувеличенной скромности. Объем информации, приведенный в статье, был настолько большим, а логика авторов - так безупречна, что сомневаться в перспективности «митохондриальной психиатрии» уже не приходилось.

На сегодняшний день существует несколько групп доказательств участия нарушения энергетических процессов в патогенезе психических заболеваний. Ниже рассматривается каждая из групп доказательств.

Нарушения психики при митохондриальных болезнях

Различия в пороговой чувствительности тканей к недостаточности продукции АТФ накладывает существенный отпечаток на клиническую картину митохондриальных болезней. В этом отношении в первую очередь представляет интерес нервная ткань как наиболее энергозависимая. От 40 до 60% энергии АТФ в нейронах тратится на поддержание ионного градиента на их наружной оболочке и осуществление передачи нервного импульса. Поэтому нарушения функции центральной нервной системы при классических «митохондриальных болезнях» имеют первостепенное значение и дают основание называть основной симптомокомплекс «митохондриальными энцефаломиопатиями». Клинически на первый план при этом вышли такие мозговые нарушения, как умственная отсталость, судороги и инсультоподобные эпизоды. Выраженность этих форм патологии в сочетании с тяжелыми соматическими расстройствами может быть настолько большой, что другие, более мягкие нарушения, связанные, в частности, с личностными или эмоциональными изменениями, остаются в тени.

Накопление сведений о психических расстройствах при митохондриальных болезнях стало происходить в сравнении с указанными выше нарушениями значительно позднее. Тем не менее сейчас имеется достаточное число доказательств их существования. Были описаны депрессивные и биполярные аффективные расстройства, галлюцинации и личностные изменения при синдроме Кернса-Сейра , синдроме MELAS , хронической прогрессирующей наружной офтальмоплегии и наследственной оптической нейропатии Лебера .

Достаточно часто развитию классических признаков митохондриального заболевания предшествуют умеренно выраженные психические расстройства. Поэтому больные могут первоначально наблюдаться у психиатров. В этих случаях другие симптомы митохондриальной болезни (фотофобия, вертиго, повышенная утомляемость, мышечная слабость и др.) иногда расцениваются как психосоматические нарушения . Известный исследователь митохондриальной патологии P. Chinnery в статье, написанной совместно с D. Turnbull указывает: «Психиатрические осложнения постоянно сопутствуют митохондриальному заболеванию. Обычно они принимают форму реактивной депрессии... Мы неоднократно наблюдали случаи тяжелой депрессии и суицидальных попыток еще до того (курсив авторов статьи), как был установлен диагноз».

Трудности в установлении истинной роли психических расстройств при рассматриваемых болезнях бывают связаны также с тем, что психиатрические симптомы и синдромы могут расцениваться в одних случаях как реакция на трудную ситуацию, в других - как следствие органического поражения головного мозга (в последнем случае термин «психиатрия» вообще не используется).

По материалам ряда обзоров приведем список психических нарушений, описанных у больных с доказанными формами митохондриальных заболеваний 1 . Эти нарушения можно разделить на три группы. I. Психотические расстройства - галлюцинации (слуховые и зрительные), симптомы шизофрении и шизофреноподобных состояний, делирий. В ряде случаев указанные расстройства следуют за прогрессирующими когнитивными нарушениями. II. Аффективные и тревожные расстройства - биполярные и униполярные депрессивные состояния (они описываются наиболее часто), панические состояния, фобии. III. Когнитивные нарушения в виде синдрома дефицита внимания с гиперактивностью. Этот синдром был описан не только у больных с диагнозом «митохондриального» заболевания, но и у их родственников. Описан , в частности, случай, когда заболевание, в основе которого лежала делеция одной нуклеотидной пары митДНК в области гена транспортной РНК, впервые проявилось в школьные годы у мальчика в виде синдрома дефицита внимания с гиперактивностью. Прогрессирование митохондриальной энцефаломиопатии привело к смерти этого больного в возрасте 23 лет. IV. Расстройства личности. Такие расстройства были описаны в ряде случаев с подтвержденным молекулярногенетическими исследованиями диагнозом. Как правило, расстройства личности развиваются после когнитивных нарушений. Описан случай аутизма у больного с точковой мутацией митДНК в области гена транспортной РНК .

Общие признаки, характерные для митохондриальных и психических заболеваний

Речь идет об определенном клиническом сходстве некоторых психических заболеваний и митохондриальных синдромов, а также общих типах их наследования.

Прежде всего обращают на себя внимание данные о превалировании случаев наследования по материнской линии некоторых психических заболеваний, в частности биполярных расстройств . Такое наследование не может быть объяснено с позиций аутосомных механизмов, а равное количество мужчин и женщин среди пациентов с биполярными нарушениями делает маловероятным предположение о возможности в данном случае Х-сцепленного наследования. Наиболее адекватным объяснением при этом может быть концепция передачи наследственной информации через митДНК. Существует также тенденция к материнскому типу наследования и у больных шизофренией . Правда, в этом отношении имеется альтернативное используемому в нашем контексте объяснение: предполагается, что данная тенденция может обусловливаться неравными условиями больных разного пола в поиске партнера .

Косвенным подтверждением связи митохондриальных и некоторых психических заболеваний, является также тенденция к цикличности их клинических проявлений . В отношении таких болезней, как биполярные расстройства, это общеизвестно. Однако в настоящее время и в митохондриологии начинают накапливаться данные об ультра-, циркадианных и сезонных ритмах клинических проявлений дизэнергетических состояний. Эта особенность даже определила название одной из их нозологических митохондриальных цитопатий - «синдром циклической рвоты» («cyclic vomiting syndrome»).

Наконец, рассматриваемое сходство двух групп заболеваний выступает в сопутствующих их соматических признаках. Такие хорошо знакомые психиатрам психосоматические симптомы, как нарушения слуха, мышечная боль, утомляемость, мигрени, синдром раздраженного кишечника , постоянно описываются в симптомокомплексе митохондриальных заболеваний. Как пишут A. Gardner и R. Bоles , «если митохондриальная дисфункция является одним из факторов риска развития некоторых психиатрических заболеваний, эти коморбидные соматические симптомы скорее могут быть следствием именно митохондриальной дисфункции, а не проявлением «коммуникативного дистресса», «ипохондриального паттерна» или «вторичного приобретения» («secondary gain»)». Иногда такие термины используются для обозначения феномена соматизации психических расстройств .

В заключение укажем еще на одно сходство: определяемое с помощью магниторезонансной томографии повышение плотности белого вещества отмечается не только при биполярных аффективных нарушениях и большой депрессии с поздним дебютом , но и в случаях развития ишемических изменений при митохондриальных энцефалопатиях .

Признаки митохондриальной дисфункции при психических заболеваниях

Шизофрения

Как говорилось выше, упоминания о признаках лактатацидоза и некоторых других биохимических изменений, свидетельствующие о нарушении энергообмена при шизофрении, начали появляться с 30-х годов ХХ века. Но только начиная с 90-х годов число соответствующих работ стало нарастать особенно заметно, причем вырос и методический уровень лабораторных исследований, что нашло отражение в ряде обзорных публикаций .

На основе опубликованных работ D. Ben-Shachar и D. Laifenfeld разделили все признаки митохондриальных нарушений при шизофрении на три группы: 1) морфологические нарушения митохондрий; 2) признаки нарушения системы окислительного фосфорилирования; 3) нарушения экспрессии генов, ответственных за митохондриальные белки. Это деление может быть подкреплено примерами из других работ.

При аутопсии мозговой ткани больных шизофренией L. Kung и R. Roberts было выявлено снижение числа митохондрий во фронтальной коре, хвостатом ядре и скорлупе. При этом было отмечено, что оно было менее выражено у больных, получавших нейролептики, в связи с чем авторы сочли возможным говорить о нормализации митохондриальных процессов в мозге под влиянием нейролептической терапии. Это дает основание упомянуть и статью Н.С. Коломеец и Н.А. Урановой о гиперплазии митохондрий в пресинаптических терминалях аксонов в области substantia nigra при шизофрении.

L. Cavelier и соавт. , исследуя аутопсийный материал мозга больных шизофренией, выявили снижение активности IV комплекса дыхательной цепи в хвостатом ядре.

Приведенные результаты позволили выдвинуть предположение о первичной или вторичной роли митохондриальной дисфункции в патогенезе шизофрении. Однако исследованный аутопсийный материал относился к больным, получавшим лечение нейролептиками, и, естественно, митохондриальные нарушения были связаны с лекарственным воздействием. Отметим, что подобные предположения, часто небезосновательные, сопровождают всю историю обнаружения митохондриальных изменений в различных органах и системах при психических и других заболеваниях. Что касается возможного влияния собственно нейролептиков, то следует напомнить, что склонность к лактат-ацидозу у больных шизофренией обнаружена еще в 1932 г., почти за 20 лет до их появления.

Снижение активности различных компонентов дыхательной цепи было обнаружено во фронтальной и височной коре, а также базальных ганглиях мозга и иных тканевых элементах - тромбоцитах и лимфоцитах больных шизофренией. Это позволило говорить о полисистемном характере митохондриальной недостаточности . S. Whatlеy и соавт. , в частности, показали, что во фронтальной коре снижается активность IV комплекса, в височной - I, III и IV комплексов; в базальных ганглиях - I и III комплексов, никаких изменений при этом не было обнаружено в мозжечке. Следует отметить, что во всех исследованных участках активность внутримитохондриального фермента - цитратсинтазы - соответствовала контрольным значениям, что дало основание говорить о специфичности полученных результатов для шизофрении.

Дополнительно к рассмотренным исследованиям можно привести выполненную в 1999-2000 гг. работу J. Prince и соавт. , которые исследовали активность дыхательных комплексов в разных участках мозга больных шизофренией. Эти авторы не обнаружили признаков изменения активности I комплекса, однако активность IV комплекса была снижена в хвостатом ядре. При этом последняя, так же как и активность II комплекса, была повышена в скорлупе и в прилежащем ядре. Причем повышение активности IV комплекса в скорлупе достоверно коррелировало с выраженностью эмоциональной и когнитивной дисфункции, но не со степенью моторных нарушений.

Следует отметить, что авторы большинства приведенных выше работ признаки нарушений энергообмена объясняли воздействием нейролептиков. В 2002 г. были опубликованы очень интересные в этом отношении данные A. Gardner и соавт. о митохондриальных ферментах и продукции АТФ в мышечных биоптатах у больных шизофренией, лечившихся нейролептиками и не лечившихся ими. Они установили, что снижение активности митохондриальных ферментов и продукции АТФ было обнаружено у 6 из 8 не получавших нейролептики больных, а у находящихся на нейролептической терапии больных было установлено повышение продукции АТФ. Эти данные в определенной степени подтвердили сделанные ранее выводы в работе L. Kung и R. Roberts .

В 2002 г. были опубликованы результаты еще одной примечательной работы . В ней была изучена активность I комплекса дыхательной цепи в тромбоцитах 113 больных шизофренией в сравнении с 37 здоровыми. Больные были разделены на три группы: 1-я - с острым психотическим эпизодом, 2-я - с хронической активной формой и 3-я - с резидуальной шизофренией. Результаты показали, что активность I комплекса была достоверно повышена по сравнению с контролем у больных групп 1 и 2 и снижена у больных группы 3. Более того, была выявлена достоверная корреляция между полученными биохимическими показателями и тяжестью клинических симптомов заболевания. Аналогичные изменения были получены при исследовании в этом же материале РНК и белка флавопротеиновых субъединиц I комплекса. Результаты этого исследования, таким образом, не только подтвердили высокую вероятность полисистемной митохондриальной недостаточности при шизофрении, но и позволили авторам рекомендовать соответствующие лабораторные методы для мониторинга заболевания.

Спустя 2 года в 2004 г. D. Ben-Shachar и соавт. опубликовали интересные данные о влиянии на дыхательную цепь митохондрий дофамина, которому отводят существенную роль в патогенезе шизофрении . Было установлено, что дофамин может ингибировать активность I комплекса и продукцию АТФ. При этом активность IV и V комплексов не изменяется. Оказалось, что в отличие от дофамина норадреналин и серотонин на продукцию АТФ не влияют.

Примечателен сделанный в указанных выше работах акцент на дисфункции I комплекса дыхательной цепи митохондрий. Такого рода изменение может отражать относительно умеренные нарушения митохондриальной активности, более значимые с точки зрения функциональной регуляции энергообмена, чем грубые (близкие к летальным для клетки) падения активности цитохромоксидазы .

Кратко остановимся теперь на генетическом аспекте митохондриальной патологии при шизофрении.

В 1995-1997 гг. L. Cavelier и соавт. было установлено, что уровень «обычной делеции» митДНК (наиболее часто встречающаяся делеция 4977 пар нуклеотидов, затрагивающая гены субъединиц I, IV и V комплексов и лежащая в основе нескольких тяжелых митохондриальных заболеваний, таких как синдром Кернса-Сейра и др.) не изменен в аутопсийном материале мозга больных шизофренией, не накапливается с возрастом и не коррелирует с измененной активностью цитохромоксидазы. Секвенируя митохондриальный геном у больных шизофренией, исследователи этой группы показали наличие отличного от контроля полиморфизма гена цитохрома b.

В указанные годы была опубликована также серия работ группы R. Marchbanks и соавт. , изучавших экспрессию как ядерной, так и митохондриальной РНК во фронтальной коре в случаях шизофрении. Они выявили, что все количественно увеличенные по сравнению с контролем последовательности имели отношение к митохондриальным генам. Была существенно повышена, в частности, экспрессия митохондриального гена 2-й субъединицы цитохромоксидазы. Четыре других гена имели отношение к рибосомальной РНК митохондрий.

Японские исследователи , исследуя 300 случаев шизофрении, не нашли признаков мутации 3243AG (вызывающей нарушение в I комплексе при синдроме MELAS). Не было обнаружено повышенной мутационной частоты в митохондриальных генах 2-й субъединицы I комплекса, цитохрома b и митохондриальных рибосом при шизофрении в работе K. Gentry и V. Nimgaonkar .

R. Marchbanks и соавт. обнаружили мутацию в 12027 паре нуклеотидов митДНК (ген 4-й субъединицы I комплекса), которая имелась у больных шизофренией мужчин и которой не было у женщин.

Характеристика трех ядерных генов комплекса I была изучена в префронтальной и зрительной коре больных шизофренией R. Karry и соавт. . Они установили, что транскрипция и трансляция некоторых субъединиц была снижена в префронтальной коре и повышена - в зрительной (авторы интерпретировали эти данные в соответствии с представлениями о «гипофронтальности» при шизофрении). При изучении же генов (включая гены митохондриальных белков) в ткани гиппокампа у получавших лечение нейролептиками больных шизофренией никаких изменений выявлено не было .

Японские исследователи K. Iwamoto и соавт. , изучая изменения в генах, ответственных за наследственную информацию для митохондриальных белков, в префронтальной коре при шизофрении в связи с лечением нейролептиками, получили доказательства в пользу лекарственного воздействия на клеточный энергообмен.

Приведенные выше результаты могут быть дополнены данными прижизненных исследований, которые были приведены в обзоре W. Kаton и соавт. : при изучении с помощью магнитно-резонансной спектроскопии распределения фосфорного изотопа 31Р было выявлено снижение уровня синтеза АТФ в базальных ганглиях и височной доле головного мозга больных шизофренией.

Депрессия и биполярные аффективные расстройства

Японскими исследователями T. Kato и соавт. при магнитно-резонансной спектроскопии было установлено снижение внутриклеточной рН и уровня фосфокреатина в лобной доле головного мозга у больных с биполярными расстройствами, в том числе не получавших лечения. Этими же авторами снижение уровня фосфокреатина в височной доле было выявлено у резистентных к литиевой терапии больных. Другие авторы нашли снижение уровня АТФ в лобной доле и базальных ганглиях больных с большой депрессией. Заметим, что сходные признаки наблюдались у больных некоторыми митохондриальными болезнями .

Что касается молекулярно-генетических данных, сразу следует отметить, что результаты ряда работ свидетельствуют об отсутствии доказательств участия делеций митДНК в развитии расстройств настроения.

Ряд исследований полиморфизма митДНК, помимо самого факта различия ее гаплотипов у больных с биполярными нарушениями и обследуемых из контрольной группы, выявили некоторые мутации, характерные для первых, в частности, в позициях 5178 и 10398 - обе позиции находятся в зоне генов I комплекса .

Имеются сообщения о наличии мутаций в генах I комплекса, причем не только в митохондриальных, но и ядерных. Так, в культурах лимфобластоидных клеток, полученных от больных с биполярными расстройствами, была обнаружена мутация в гене NDUFV2, локализованного в 18-й хромосоме (18р11), и кодирующего одну из субъединиц I комплекса . При секвенировании митДНК больных с биполярными нарушениями была выявлена характерная для них мутация в позиции 3644 гена субъединицы ND1, также относящейся к I комплексу . Повышение уровня трансляции (но не транскрипции) было обнаружено в отношении некоторых субъединиц I комплекса в зрительной коре больных с биполярными расстройствами . Среди других исследований приведем две работы , в которых были исследованы гены дыхательной цепи и найдены их молекулярногенетические нарушения в префронтальной коре и гиппокампе больных с биполярными расстройствами. В одной из работ A. Gardner и соавт. у больных с большой депрессией был выявлен ряд нарушений митохондриальных ферментов и снижение уровня продукции АТФ в скелетно-мышечной ткани, при этом была обнаружена достоверная корреляция между степенью снижения продукции АТФ и клиническими проявлениями психического расстройства.

Другие психические расстройства

Исследований, касающихся митохондриальной дисфункции при других психических расстройствах, немного. Часть из них упоминалась в предыдущих разделах обзора. Здесь же специально упомянем работу P. Filipek и соавт. , в которой были описаны 2 ребенка с аутизмом и мутацией в 15-й хромосоме, в участке 15q11-q13. У обоих детей выявлены умеренная моторная задержка развития, летаргия, выраженная гипотония, лактат-ацидоз, снижение активности III комплекса и митохондриальная гиперпролиферация в мышечных волокнах. Эта работа примечательна тем, что в ней впервые были описаны митохондриальные нарушения в симптомокомплексе заболевания, этиологически связанного с определенным участком генома.

Генеалогические данные, касающиеся возможной роли митохондриальных нарушений в патогенезе психических заболеваний

Выше мы уже упоминали о такой особенности ряда психических болезней, как повышенная частота случаев наследования по материнской линии, которая может косвенно указывать на участие митохондриальной патологии в их патогенезе. Однако в литературе существуют и более убедительные доказательства последнего.

В 2000 г. были опубликованы данные, полученные F. McMahon и соавт. , секвенировавших весь митохондриальный геном у 9 неродственных пробандов, каждый из которых происходил из большой семьи с передачей биполярных расстройств по материнской линии. Явных отличий гаплотипов по сравнению с контрольными семьями выявлено не было. Однако по некоторым позициям митДНК (709, 1888, 10398 и 10463) была обнаружена диспропорция между больными и здоровыми. При этом можно отметить совпадение данных по позиции 10398 с уже упоминавшимися данными японских авторов , которые предположили, что 10398А-полиморфизм митДНК является фактором риска развития биполярных нарушений.

Наиболее существенным генеалогическим доказательством роли митохондриальных дисфункций в развитии психических расстройств являются факты наличия у больных с классическими митохондриальными болезнями родственников (чаще по материнской линии) с умеренными психическими нарушениями. Среди таких нарушений часто упоминаются тревога и депрессия . Так, в работе J. Shoffner и соавт. было установлено, что выраженность депрессии у матерей «митохондриальных» больных в 3 раза превышает показатели контрольной группы.

Заслуживает внимания работа B. Burnet и соавт. , которые в течение 12 мес проводили анонимный опрос больных с митохондриальными заболеваниями, а также членов их семей. В числе вопросов были касающиеся состояния здоровья родителей и ближайших родственников больных (по отцовской и материнской линиям). Были, таким образом, исследованы 55 семей (группа 1) с предполагаемым материнским и 111 семей (группа 2) с предполагаемым нематеринским типом наследования митохондриального заболевания. В результате у родственников пациентов по материнской линии, по сравнению с отцовской, была выявлена большая частота нескольких патологических состояний. Среди них наряду с мигренями и синдромом раздраженного кишечника была и депрессия. В группе 1 кишечные дисфункции, мигрень и депрессия наблюдались у бoльшего процента матерей из обследованных семей - 60, 54 и 51% соответственно; во 2-й группе - у 16, 26 и 12% соответственно (р<0,0001 для всех трех симптомов). У отцов из обеих групп это число составляло примерно 9-16%. Достоверное преобладание указанных признаков имело место и у других родственников по материнской линии. Этот факт является существенным подтверждением гипотезы о возможной связи депрессии с неменделевским наследованием, в частности с дисфункцией митохондрий.

Фармакологические аспекты митохондриальной патологии при психических заболеваниях

Влияние применяемых в психиатрии лекарственных средств на функции митохондрий

В предыдущих разделах обзора мы уже кратко касались вопросов терапии. Обсуждался, в частности, вопрос о возможном действии нейролептиков на митохондриальные функции. Было установлено, что хлорпромазин и другие производные фенотиазина, а также трициклические антидепрессанты, способны влиять на энергообмен в ткани мозга : они могут снижать уровень окислительного фосфорилирования в отдельных участках мозга, способны разобщать окисление и фосфорилирование, снижать активность I комплекса и АТФазы, понижать уровень утилизации АТФ. Однако интерпретация фактов в этой области требует большой осторожности. Так, разобщение окисления и фосфорилирования под влиянием нейролептиков отмечено отнюдь не во всех областях мозга (она не определяется в коре, таламусе и хвостатом ядре). Кроме того, существуют экспериментальные данные о стимулировании митохондриального дыхания нейролептиками . В предыдущих разделах обзора мы также приводим работы, свидетельствующие о позитивном действии нейролептиков на функцию митохондрий.

Карбамазепин и вальпроаты известны своей способностью подавлять функции митохондрий. Карбамазепин приводит к повышению уровня лактата в мозге, а вальпроаты способны ингибировать процессы окислительного фосфорилирования . Такого же рода эффекты (правда, только в высоких дозах) были выявлены при экспериментальном изучении ингибиторов обратного захвата серотонина .

Литий, достаточно широко используемый при лечении биполярных расстройств , также, по-видимому, может оказывать положительное влияние на процессы клеточного энергообмена. Он конкурирует с ионами натрия, участвуя в регуляции работы кальциевых насосов в митохондриях. A. Gardner и R. Boles в своем обзоре приводят слова T. Gunter - известного специалиста по обмену кальция в митохондриях, который полагает, что литий «может воздействовать на скорость, с которой эта система адаптируется к различным состояниям и различной потребности в АТФ». Кроме того, предполагается, что литий снижает активацию апоптозного каскада .

A. Gardner и R. Boles приводят в упомянутом обзоре много косвенных клинических свидетельств позитивного эффекта психотропных препаратов на симптомы, предположительно зависящие от дизэнергетических процессов. Так, внутривенное введение аминазина и других нейролептиков снижает головную боль при мигрени . Хорошо известна эффективность трициклических антидепрессантов в лечении мигрени , синдрома циклической рвоты и синдрома раздраженного кишечника . Карбамазепин и вальпроаты используются в лечении невралгий и других болевых синдромов, включая мигрень . При лечении мигрени также эффективны литий и ингибиторы обратного захвата серотонина .

Анализируя приведенную выше достаточно противоречивую информацию, можно сделать вывод, что психотропные средства, несомненно, способны влиять на процессы энергообмена головного мозга и митохондриальную активность. Причем влияние это - не однозначно стимулирующее или ингибирующее, а, скорее, «регулирующее». Оно при этом может быть разным в нейронах различных отделов мозга.

Сказанное выше позволяет предположить, что недостаточность энергии в мозге, возможно, касается в первую очередь областей особо затронутых патологическим процессом.

Эффективность энерготропных препаратов при психических расстройствах

В аспекте рассматриваемой проблемы важно получение свидетельств об уменьшении или исчезновении психопатологических составляющих митохондриальных синдромов.

В указанном аспекте в первую очередь заслуживает внимания сообщение T. Suzuki и соавт. о больном с шизофреноподобными расстройствами на фоне синдрома MELAS. После применения коэнзима Q10 и никотиновой кислоты у пациента на несколько дней исчез мутизм. Имеется также работа , в которой приведены данные об успешном применении дихлорацетата (часто употребляемого в «митохондриальной медицине» для снижения уровня лактата) у 19-летнего мужчины с синдромом MELAS, в отношении влияния на картину делирия со слуховыми и зрительными галлюцинациями.

В литературе имеется также описание истории больного с синдромом MELAS с выявленной точковой мутацией 3243 митДНК. У этого пациента развился психоз со слуховыми галлюцинациями и бредом преследования, который удалось купировать в течение недели низкими дозами галоперидола. Однако позднее у него развились мутизм и аффективная тупость, которые не поддавались лечению галоперидолом, но исчезли после лечения в течение месяца идебеноном (синтетический аналог коэнзима Q10) в дозе 160 мг/сут . Еще у одной пациентки с синдромом MELAS коэнзим Q10 в дозе 70 мг/сут помог справиться с манией преследования и агрессивным поведением. Успешность применения коэнзима Q10 при лечении синдрома MELAS констатирована и в работе : речь идет о больном, у которого не только предотвратили инсультоподобные эпизоды, но и купировали головные боли, тиннит и психотические эпизоды.

Имеются сообщения и об эффективности энерготропной терапии у больных при психических заболеваниях . Так, был описан 23-летний больной с терапевтически резистентной депрессией, выраженность которой существенно уменьшилась после 2-месячного применения коэнзима Q10 в дозе 90 мг в сутки . Подобный же случай описан и в работе . Применение карнитина в комплексе с кофакторами энергообмена оказалось эффективным при лечении аутизма .

Таким образом, в современной литературе имеются определенные доказательства существенной роли митохондриальных нарушений в патогенезе психических расстройств. Отметим, что в этом обзоре мы не останавливались на нейродегенеративных болезнях пожилого возраста, для большинства которых важное значение митохондриальных нарушений уже доказано, и их рассмотрение требует отдельной публикации.

На основании приведенных данных можно утверждать, что назрела необходимость объединения усилий психиатров и специалистов, занимающихся митохондриальными болезнями, направленных как на изучение дизэнергетических основ нарушений высшей нервной деятельности, так и анализ психопатологических проявлений болезней, связанных с нарушениями клеточного энергообмена. В этом аспекте требуют внимания как новые диагностические (клинические и лабораторные) подходы, так и разработка новых способов лечения.

1 Следует отметить, что среди cоответствующих описаний большое место занимают случаи с выявленной мутацией митДНК 3243AG - общепризнанной причиной развития синдрома MELAS.

Литература

  1. Кнорре Д.Г., Мызина С.Д. Биологическая химия. М: Наука 2002.
  2. Ленинджер А. Основы биохимии. Под ред. В.А. Энгельгардта. М: Мир 1985.
  3. Лукьянова Л.Д. Митохондриальная дисфункция - типовой патологический процесс, молекулярный механизм гипоксии. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б. Ушакова. М - Воронеж: Истоки 2004; 8-50.
  4. Северин Е.С., Алейникова Т.Л., Осипов Е.В. Биохимия. М: Медицина 2000.
  5. Сухоруков В.С. Врожденные дисфункции митохондриальных ферментов и их роль в формировании тканевой гипоксии и связанных с ней патологических состояний. В кн.: Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. Под ред. Л.Д. Лукьяновой, И.Б.Ушакова. М: Истоки 2004; 439-455.
  6. Сухоруков В.С. К разработке рациональных основ энерготропной терапии. Рациональная фармакотер 2007; 2: 40-47.
  7. Altschule M.D. Carbohydrate metabolism in mental disease: associated changes in phosphate metabolism. In: H.E. Himwich (ed.). Biochemistry, schizophrenias, and affective illnesses. Baltimore 1979; 338-360.
  8. Altshuler L.L., Curran J.G., Hauser P. et al. T2 hyperintensities in bi polar disorder; magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiat 1995; 152: 1139-1144.
  9. Andersen J.M., Sugerman K.S., Lockhart J.R., Weinberg W.A. Effective prophylactic therapy for cyclic vomiting syndrome in children using amitri ptyline or cyproheptadine. Pediatrics 1997; 100: 977-81.
  10. Baldassano C.F., Ballas C.A., O’Reardon J.P. Rethinking the treatment paradigm for bi polar depression: the importance of longterm management. CNS Spectr 2004; 9: Suppl 9: 11-18.
  11. Barkovich A.J., Good W.V., Koch T.K., Berg B.O. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol 1998; 14: 1119-1137.
  12. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem 2002; 83: 1241-1251.
  13. Ben-Shachar D., Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol 2004; 59: 273-296.
  14. Ben-Shachar D., Zuk R., Gazawi H., Ljubuncic P. Dopamine toxicity involves mitochondrial complex I inhibition: implications to dopamine-related neuropsychiatric disorders. Biochem Pharmacol 2004; 67: 1965-1974.
  15. Berio A., Piazzi A. A case of Kearns-Sayre syndrome with autoimmune thyroiditis and possible Hashimoto encephalopathy. Panminerva Med 2002; 44: 265-269.
  16. Boles R.G., Adams K., Ito M., Li B.U. Maternal inheritance in cyclic vomiting syndrome with neuromuscular disease. Am J Med Genet A 2003; 120: 474-482.
  17. Boles R.G., Burnett B.B., Gleditsch K. et al. A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet Neuropsychiatr Genet 2005; 137: 20-24.
  18. Brown F.W., Golding J.M., Smith G.R.Jr. Psychiatric comorbidity in primary care somatization disorder. Psychosom Med 1990; 52: 445- 451.
  19. Burnet B.B., Gardner A., Boles R.G. Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 2005; 88: 109- 116.
  20. Cavelier L., Jazin E.E., Eriksson I. et al. Decreased cytochrome-c oxidase activity and lack of age-related accumulation of mitochondrial DNA deletions in the brains of schizophrenics. Genomics 1995; 29: 217-224.
  21. Chang T.S., Johns D.R., Walker D. et al. Ocular clinicopathologic study of the mitochondrial encephalomyopathy overlap syndromes. Arch Ophthalmol 1993; 111: 1254-1262.
  22. Chinnery P.F., Turnbull D.M. Mitochondrial medicine. Q J Med 1997; 90: 657-667.
  23. Citrome L. Schizophrenia and valproate. Psychopharmacol Bull 2003;7: Suppl 2: 74-88.
  24. Corruble E., Guelfi J.D. Pain complaints in depressed inpatients. Psychopathology 2000; 33: 307-309.
  25. Coulehan J.L., Schulberg H.C., Block M.R., Zettler-Segal M. Symptom patterns of depression in ambulatory medical and psychiatric patients. J Nerv Ment Dis 1988; 176: 284-288.
  26. Crowell M.D., Jones M.P., Harris L.A. et al. Antidepressants in the treatment of irritable bowel syndrome and visceral pain syndromes. Curr Opin Investig Drugs 2004; 5: 736-742.
  27. Curti C., Mingatto F.E., Polizello A.C. et al. Fluoxetine interacts with the li pid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 1999; 199: 103-109.
  28. Decsi L. Biochemical effects of drugs acting on the central nervous system. Chlorpromazine. In: E. Jucker (ed.). Progress in drug research. Basel und Stuttgart: Birkhauser Verlag 1965; 139-145.
  29. Domino E.F., Hudson R.D., Zografi G. Substituted phenothiazines: pharmacology and chemical structure. In: A. Burger (ed.). Drugs affecting the central nervous system. London: Edward Arnold 1968; 327-397.
  30. Dror N., Klein E., Karry R. et al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peri pheral marker for schizophrenia. Mol Psychiat 2002; 7: 995-1001.
  31. Easterday O.D., Featherstone R.M., Gottlieb J.S. et al. Blood glutathione, lactic acid and pyruvic acid relationshi ps in schizophrenia. AMA Arch Neurol Psychiat 1952; 68: 48-57.
  32. Fabre V., Hamon M. Mechanisms of action of antidepressants: new data from Escitalopram . Encephale 2003; 29: 259-265.
  33. Fadic R., Johns D.R. Clinical spectrum of mitochondrial diseases. Semin Neurol 1996; 16: 11-20.
  34. Fattal O., Budur K., Vaughan A.J., Franco K. Review of the literature on major mental disorders in adult patients with mitochondrial diseases. Psychosomatics 2006; 47:1-7.
  35. Fili pek P.A., Juranek J., Smith M. et al. Mitochondrial disfunction in autistic patients with 15q inverted duplication. Ann Neurol 2003; 53: 801-804.
  36. Fisher H. A new approach to emergency department therapy of migraine headache with intravenous haloperidol: a case series. J Emerg Med 1995; 13: 119-122.
  37. Fuxe K., Rivera A., Jacobsen K.X. et al. Dynamics of volume transmission in the brain. Focus on catecholamine and opioid peptide communication and the role of uncoupling protein 2. J Neural Transm 2005; 112: 65-76.
  38. Gardner A., Wibom R., Nennesmo I. et al. Mitochondrial function in neuroleptic-free and medicated schizophrenia . Eur Psychiat 2002; 17: Suppl 1: 183s.
  39. Gardner A., Johansson A., Wibom R. et al. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 2003; 76: 55-68.
  40. Gardner A., Pagani M., Wibom R. et al. Alterations of rcbf and mitochondrial dysfunction in major depressive disorder: a case report. Acta Psychiat Scand 2003; 107: 233-239.
  41. Gardner A. Mitochondrial dysfunction and alterations of brain HMPAO SPECT in depressive disorder - perspectives on origins of “somatization” . Karolinska Institutet, Neurotec Institution, Division of Psychiatry, Stockholm, 2004. http:// diss.kib.ki.se/2004/91-7349-903-X/thesis.pdf 42. Gardner A., Boles R.G. Is a “Mitochondrial Psychiatry” in the Future? A Review. Current Psychiat Rev 2005; 1: 255-271.
  42. Gentry K.M., Nimgaonkar V.L. Mitochondrial DNA variants in schizophrenia: association studies. Psychiat Genet 2000; 10: 27-31.
  43. Ghribi O., Herman M.M., Spaulding N.K., Savory J. Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase3 activation. J Neurochem 2002; 82: 137-145.
  44. Goldstein J.M., Faraone S.V., Chen W.J. et al. Sex differences in the familial transmission of schizophrenia. Br J Psychiat 1990; 156: 819- 826.
  45. Graf W.D., Marin-Garcia J., Gao H.G. et al. Autism associated with the mitochondrial DNA G8363A transfer RNA(Lys) mutation. J Child Neurol 2000; 15: 357-361.
  46. Hardeland R., Coto-Montes A., Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Chronobiol Int 2003; 20: 921-962.
  47. Holt I.J., Harding A.E., Morgan-Hughes J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717-719.
  48. Inagaki T., Ishino H., Seno H. et al. Psychiatric symptoms in a patient with diabetes mellitus associated with point mutation in mitochondrial DNA. Biol Psychiat 1997; 42: 1067-1069.
  49. Iwamoto K., Bundo M., Kato T. Altered expression of mitochondriarelated genes in postmortem brains of patients with bi polar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 2005; 14: 241-253.
  50. Karry R., Klein E., Ben Shachar D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol Psychiat 2004; 55: 676-684.
  51. Kato T., Takahashi S., Shioiri T., Inubushi T. Alterations in brain phosphorous metabolism in bi polar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 1993; 27: 53-60.
  52. Kato T., Takahashi S., Shioiri T. et al. Reduction of brain phosphocreatine in bi polar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 1994; 31: 125-133.
  53. Kato T., Takahashi Y. Deletion of leukocyte mitochondrial DNA in bi polar disorder. J Affect Disord 1996; 37: 67-73.
  54. Kato T., Stine O.C., McMahon F.J., Crowe R.R. Increased levels of a mitochondrial DNA deletion in the brain of patients with bi polar disorder. Biol Psychiat 1997a; 42: 871-875.
  55. Kato T., Winokur G., McMahon F.J. et al. Quantitative analysis of leukocyte mitochondrial DNA deletion in affective disorders. Biol Psychiat 1997; 42: 311-316.
  56. Kato T., Kato N. Mitochondrial dysfunction in bi polar disorder. Bipolar Disorder 2000; 2: 180-190.
  57. Kato T., Kunugi H., Nanko S., Kato N. Association of bi polar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 2000; 96: 182-186.
  58. Kato T. The other, forgotten genome: mitochondrial DNA and mental disorders. Mol Psychiat 2001; 6: 625-633.
  59. Kato T., Kunugi H., Nanko S., Kato N. Mitochondrial DNA polymorphisms in bi polar disorder. J Affect Disord 2001; 52: 151-164.
  60. Katon W., Kleinman A., Rosen G. Depression and somatization: a review. Am J Med 1982; 72: 127-135.
  61. Kegeles L.S., Humaran T.J., Mann J.J. In vivo neurochemistry of the brain in schizophrenia as revealed by magnetic resonance spectroscopy. Biol Psychiat 1998; 44: 382-398.
  62. Kety S.S. Biochemical theories of schizophrenia. Int J Psychiat 1965; 51: 409-446.
  63. Kiejna A., DiMauro S., Adamowski T. et al. Psychiatric symptoms in a patient with the clinical features of MELAS. Med Sci Monit 2002; 8: CS66-CS72.
  64. Kirk R., Furlong RA., Amos W. et al. Mitochondrial genetic analyses suggest selection against maternal lineages in bi polar affective disorder. Am J Hum Genet 1999; 65: 508-518.
  65. Koller H., Kornischka J., Neuen-Jacob E. et al. Persistent organic personality change as rare psychiatric manifestation of MELAS syndrome. J Neurol 2003; 250: 1501-1502.
  66. Kolomeets N.S., Uranova N.A. Synaptic contacts in schizophrenia: studies using immunocytochemical identification of dopaminergic neurons. Neurosci Behav Physiol 1999; 29: 217-221.
  67. Konradi C., Eaton M., MacDonald M.L. et al. Molecular evidence for mitochondrial dysfunction in bi polar disorder. Arch Gen Psychiat 2004; 61: 300-308.
  68. Kung L., Roberts R.C. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse 1999; 31: 67-75.
  69. Lenaerts M.E. Cluster headache and cluster variants. Curr Treat Options Neurol 2003; 5: 455-466.
  70. Lestienne P., Ponsot G. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. Lancet 1988; 1: 885.
  71. Lindholm E., Cavelier L., Howell W.M. et al. Mitochondrial sequence variants in patients with schizophrenia. Eur J Hum Genet 1997; 5: 406-412.
  72. Lloyd D., Rossi E.L. Biological rhythms as organization and information. Biol Rev Camb Philos Soc 1993; 68: 563-577.
  73. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci USA 1994; 8731-8738.
  74. Luhrs W., Bacigalupo G., Kadenbach B., Heise E. Der einfluss von chlorpromazin auf die oxydative phosphoryliering von tumormitochondrien . Experientia 1959; 15: 376-377.
  75. Marchbanks R.M., Mulcrone J., Whatley S.A. Aspects of oxidative metabolism in schizophrenia. Br J Psychiat 1995; 167: 293-298.
  76. Marchbanks R.M., Ryan M., Day I.N. et al. A mitochondrial DNA sequence variant associated with schizophrenia and oxidative stress. Schizophr Res 2003; 65: 33-38.
  77. Matsumoto J., Ogawa H., Maeyama R. et al. Successful treatment by direct hemoperfusion of coma possibly resulting from mitochondrial dysfunction in acute valproate intoxication. Epilepsia 1997; 38: 950- 953.
  78. Maurer I., Zierz S., Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res 2001; 48: 125-136.
  79. McMahon F.J., Chen Y.S., Patel S. et al. Mitochondrial DNA sequence diversity in bi polar affective disorder. Am J Psychiat 2000; 157: 1058-1064.
  80. Miyaoka H., Suzuki Y., Taniyama M. et al. Mental disorders in diabetic patients with mitochondrial transfer RNA(Leu) (UUR) mutation at position 3243. Biol Psychiat 1997; 42: 524-526.
  81. Moldin S.O., Scheftner W.A., Rice J.P. et al. Association between major depressive disorder and physical illness. Psychol Med 1993; 23: 755- 761.
  82. Molnar G., Fava G.A., Zielezny M. et al. Measurement of subclinical changes during lithium prophylaxis: a longitudinal study. Psychopathology 1987; 20: 155-161.
  83. Moore C.M., Christensen J.D., Lafer B. et al. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous- 31 magnetic resonance spectroscopy study. Am J Psychiat 1997; 154: 116-118.
  84. Mulcrone J., Whatley S., Ferrier I., Marchbanks R.M. A study of altered gene expression in frontal cortex from schizophrenic patients using differential screening. Schizophr Res 1995; 14: 203-213.
  85. Munakata K., Tanaka M., Mori K. et al. Mitochondrial DNA 3644T>C mutation associated with bi polar disorder. Genomics 2004; 84: 1041- 1050.
  86. Murashita J., Kato T., Shioiri T. et al. Altered brain energy metabolism in lithium-resistant bi polar disorder detected by photic stimulated 31P-MR spectroscopy. Psychol Med 2000; 30: 107-115.
  87. Newman-Toker D.E., Horton J.C., Lessell S. Recurrent visual loss in Leber hereditary optic neuropathy. Arch Ophthalmol 2003; 121: 288-291.
  88. Norby S., Lestienne P., Nelson I. et al. Juvenile Kearns-Sayre syndrome initially misdiagnosed as a psychosomatic disorder. J Med Genet 1994; 31: 45-50.
  89. Odawara M., Arinami T., Tachi Y. et al. Absence of association between a mitochondrial DNA mutation at nucleotide position 3243 and schizophrenia in Japanese. Hum Genet 1998; 102: 708-709.
  90. Odawara M. Mitochondrial gene abnormalities as a cause of psychiatric diseases. Nucleic Acids Res 2002; Suppl 2: 253-254.
  91. Oexle K., Zwirner A. Advanced telomere shortening in respiratory chain disorders. Hum Mol Genet 1997; 6: 905-908.
  92. Onishi H., Kawanishi C., Iwasawa T. et al. Depressive disorder due to mitochondrial transfer RNALeu(UUR) mutation. Biol Psychiat 1997; 41: 1137-1139.
  93. Orsulak P.J., Waller D. Antidepressant drugs: additional clinical uses. J Fam Pract 1989; 28: 209-216.
  94. Prayson R.A., Wang N. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch Pathol Lab Med 1998; 122: 978-981.
  95. Prince J.A., Blennow K., Gottfries C.G. et al. Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology 1999; 21: 372-379.
  96. Prince J.A., Harro J., Blennow K. et al. Putamen mitochondrial energy metabolism is highly correlated to emotional and intellectual impairment in schizophrenics. Neuropsychopharmacology 2000; 22: 284-292.
  97. Rajala U., Keinanen-Kiukaanniemi S., Uusimaki A., Kivela S.L. Musculoskeletal pains and depression in a middle-aged Finnish population. Pain 1995; 61: 451-457.
  98. Rango M., Bozzali M., Prelle A. et al. Brain activation in normal subjects and in patients affected by mitochondrial disease without clinical central nervous system involvement: a phosphorus magnetic resonance spectroscopy study. J Cereb Blood Flow Metab 2001; 21: 85-91.
  99. Rathman S.C., Blanchard R.K., Badinga L. et al. Dietary carbamazepine administration decreases liver pyruvate carboxylase activity and biotinylation by decreasing protein and mRNA expression in rats. J Nutr 2003; 133: 2119-2124.
  100. Ritsner M. The attribution of somatization in schizophrenia patients: a naturalistic follow-up study. J Clin Psychiat 2003; 64: 1370-1378.
  101. Rumbach L., Mutet C., Cremel G. et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270-273.
  102. Saijo T., Naito E., Ito M. et al. Therapeutic effects of sodium dichloroacetate on visual and auditory hallucinations in a patient with MELAS. Neuropediatrics 1991; 22: 166-167.
  103. Scheffler L.E. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2001; 1: 1: 3-31.
  104. Seeman P. Tardive dyskinesia, dopamine receptors, and neuroleptic damage to cell membranes. J Clin Psychopharmacol 1988; 8: 4 Suppl: 3S-9S.
  105. Shanske A.L., Shanske S., Silvestri G. et al. MELAS point mutation with unusual clinical presentation. Neuromuscul Disord 1993; 3: 191-193.
  106. Shapira A.H.V. Mitochondrial disorders. Biochim Biophys Acta 1999; 1410: 2: 99-102.
  107. Shimizu A., Kurachi M., Yamaguchi N. et al. Morbidity risk of schizophrenia to parents and siblings of schizophrenic patients. Jpn J Psychiat Neurol 1987; 41: 65-70.
  108. Shinkai T., Nakashima M., Ohmori O. et al. Coenzyme Q10 improves psychiatric symptoms in adult-onset mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: a case report. Aust N Z J Psychiat 2000; 34: 1034-1035.
  109. Shoffner J.M., Bialer M.G., Pavlakis S.G. et al. Mitochondrial encephalomyopathy associated with a single nucleotide pair deletion in the mitochondrial tRNALeu(UUR) gene. Neurology 1995; 45: 286-292.
  110. Shoffner J.M., Wallace D.C. Oxidative phosphorylation diseases. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, D. Valle (eds.). The metabolic and molecular bases of inherited disease. 7th edition, McGraw-Hill, New York 1995; 1535-1629.
  111. Sillanpaa M. Carbamazepine, pharmacological and clinical uses. Acta Neurol Scand 1981; 64: Suppl 88: 11-13.
  112. Souza M.E., Polizello A.C., Uyemura S.A. et al. Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 1994; 48: 535-541.
  113. Spellberg B., Carroll RM., Robinson E., Brass E. mtDNA disease in the primary care setting. Arch Intern Med 2001; 161: 2497-2500.
  114. Spina E., Perugi G. Antiepileptic drugs: indications other than epilepsy. Epileptic Disord 2004; 6: 57-75.
  115. Spinazzola A., Carrara F., Mora M., Zeviani M. Mitochondrial myopathy and ophthalmoplegia in a sporadic patient with the 5698G>A mitochondrial DNA mutation. Neuromuscul Disord 2004; 14: 815- 817.
  116. Starkov A.A., Simonyan R.A., Dedukhova V.I. et al. Regulation of the energy coupling in mitochondria by some steroid and thyroid hormones. Biochim Biophys Acta 1997; 1318: 173-183.
  117. Stine O.C., Luu S.U., Zito M. The possible association between affective disorder and partially deleted mitochondrial DNA. Biol Psychiat 1993; 33: 141-142.
  118. Stone K.J., Viera A.J., Parman C.L. Off-label applications for SSRIs. Am Fam Physician 2003; 68: 498-504.
  119. Sugimoto T., Nishida N., Yasuhara A. et al. Reye-like syndrome associated with valproic acid. Brain Dev 1983; 5: 334-347.
  120. Suzuki T., Koizumi J., Shiraishi H. et al. Mitochondrial encephalomyopathy (MELAS) with mental disorder. CT, MRI and SPECT findings. Neuroradiology 1990; 32:1: 74-76.
  121. Suzuki Y., Taniyama M., Muramatsu T. et al. Diabetes mellitus associated with 3243 mitochondrial tRNA(Leu(UUR)) mutation: clinical features and coenzyme Q10 treatment. Mol Aspects Med 1997; Suppl 18: S181-188.
  122. Swerdlow R.H., Binder D., Parker W.D. Risk factors for schizophrenia. N Engl J Med 1999; 341: 371-372.
  123. Thomeer E.C., Verhoeven W.M., van de Vlasakker C.J., Klompenhouwer J.L. Psychiatric symptoms in MELAS; a case report. J Neurol Neurosurg Psychiat 1998; 64: 692-693.
  124. Volz H.P., Rzanny R., Riehemann S. et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiat Clin Neurosci 1998; 248: 289-295.
  125. Wallace D.C., Singh G., Lott M.T. et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242: 1427-1430.
  126. Wang Q., Ito M., Adams K. et al. Mitochondrial DNA control region sequence variation in migraine headache and cyclic vomiting syndrome. Am J Med Genet 2004; 131A: 50-58.
  127. Washizuka S., Kakiuchi C., Mori K. et al. Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bi polar disorder. Am J Med Genet 2003; 120B: 72-78.
  128. Whatley S.A., Curti D., Marchbanks R.M. Mitochondrial involvement in schizophrenia and other functional psychosis. Neurochem Res 1996; 21: 995-1004.
  129. Whatley S.A., Curti D., Das Gupta F. et al. Superoxide, neuroleptics and the ubiquinone and cytochrome b5 reductases in brain and lymphocytes from normals and schizophrenic patients. Mol Psychiat 1998; 3: 227-237.
  130. Wolyniec P.S., Pulver A.E., McGrath J.A., Tam D. Schizophrenia gender and familial risk. J Psychiat Res 1992; 26: 17-27.
  131. Yovell Y., Sakeim H.A., Epstein D.G. et al. Hearing loss and asymmetry in major depression. J Neuropsychiat 1995; 7: 82-89.
  132. Zeviani M., Moraes C.T., DiMauro S. et al. Deletions of mitochondrial DNA in Kearns-Seyre syndrome. Neurology 1988; 38: 1339-1346.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: