Как найти начало функции парабола. Как найти вершину параболы: три формулы

Инструкция

Квадратичная функция в общем виде записывается уравнением: y = ax² + bx + c. Графиком этого уравнения является , ветви которой направлены вверх (при a > 0) или вниз (при a < 0). Школьникам предлагается просто запомнить формулу вычисления координат вершины . Вершина параболы в точке x0 = -b/2a. Подставив это значение в квадратное , получите y0: y0 = a(-b/2a)² - b²/2a + c = - b²/4a + c.

Людям, знакомым с понятием производной, легко найти вершину параболы. Независимо от положения ветвей параболы ее вершина является точкой (минимума, если ветви направлены вверх, или , когда ветви направлены вниз). Чтобы найти точки предполагаемого экстремума любой , надо вычислить ее первую производную и приравнять ее к нулю. В общем виде производная равна f"(x) = (ax² + bx + c)" = 2ax + b. Приравняв к нулю, вы получите 0 = 2ax0 + b => x0 = -b/2a.

Парабола - симметричная линия. Ось проходит через вершину параболы. Зная точки параболы с осью координат X, можно легко найти абсциссу вершины x0. Пусть x1 и x2 - корни параболы (так называют точки пересечения параболы с осью абсцисс, поскольку эти значения обращают квадратное уравнение ax² + bx + c в ноль). При этом пусть |x2| > |x1|, тогда вершина параболы лежит посередине между ними и может быть найдена из следующего выражения: x0 = ½(|x2| - |x1|).

Видео по теме

Источники:

  • Квадратичная функция
  • формула нахождения вершины параболы

Парабола – это график квадратичной функции, в общем виде уравнение параболы записывается y=aх^2+bх+с, где а≠0. Это универсальная кривая второго порядка, которая описывает многие явления в жизни, например, движение подбрасываемого и затем падающего тела, форму радуги, поэтому умение найти параболу может очень пригодиться в жизни.

Вам понадобится

  • - формула квадратичного уравнения;
  • - лист бумаги с координатной сеткой;
  • - карандаш, ластик;
  • - компьютер и программа Excel.

Инструкция

В первую очередь найдите вершину параболы. Чтобы найти абсциссу этой точки, возьмите коэффициент перед х, разделите его на удвоенный коэффициент перед х^2 и умножьте на -1 ( х=-b/2a). Ординату найдите, подставив полученное значение в уравнение или по формуле у=(b^2-4ac)/4a. Вы получили координаты точки вершины параболы.

Вершину параболы можно найти и другим способом. Так как является экстремумом функции, то для ее вычисления вычислите первую производную и приравняйте ее к нулю. В общем виде вы получите формулу f(x)" = (ax? + bx + c)" = 2ax + b. А приравняв ее к нулю, вы придете к той же самой формуле - х=-b/2a.

Узнайте, направлены ли ветви параболы вверх или вниз. Для этого посмотрите на коэффициент перед х^2, то есть на а. Если а>0, то ветви направлены вверх, если а

Координаты вершины параболы найдены. Запишите их в виде координат одной точки (x0,y0).

Видео по теме

Для функций (точнее их графиков) используется понятие наибольшего значения, в том числе и локального максимума. Понятие же «вершина» скорее связано с геометрическими фигурами. Точки максимумов гладких функций (имеющих производную) легко определить с помощью нулей первой производной.

Инструкция

Для точек, в которых функция не дифференцируема, но непрерывна, наибольшее на промежутке значение может иметь вид острия (на y=-|x|). В таких точках к функции можно провести сколь угодно касательных для нее просто не существует. Сами функции такого типа обычно задаются на отрезках. Точки, в которых производная функции равна нулю или не существует, называются критическими.

Реение. y=x+3 при x≤-1 и y=((x^2)^(1/3)) –х при x>-1. Функция задана на отрезках умышленно, так как в данном случае преследуется цель отобразить все в одном примере. Легко , что при х=-1 функция остается непрерывной.y’=1 при x≤-1 и y’=(2/3)(x^(-1/3))-1=(2-3(x^(1/3))/(x^(1/3)) при x>-1. y’=0 при x=8/27. y’ не существует при x=-1 и x=0.При этом y’>0 если x

Видео по теме

Парабола – одна из кривых второго порядка, ее точки построены в соответствии с квадратным уравнением. Главное в построении этой кривой – найти вершину параболы . Это можно сделать несколькими способами.

Инструкция

Чтобы найти координаты вершины параболы , воспользуйтесь следующей формулой: х=-b/2а, где а – коэффициент перед х в , а b – коэффициент перед х. Подставьте ваши значения и рассчитайте его . Затем подставьте полученное значение вместо х в уравнение и посчитайте ординату вершины. Например, если вам дано уравнение у=2х^2-4х+5, то абсциссу найдите следующим образом: х=-(-4)/2*2=1. Подставив х=1 в уравнение, рассчитайте значение у для вершины параболы : у=2*1^2-4*1+5=3. Таким образом, вершина параболы имеет координаты (1;3).

Значение ординаты параболы можно найти и без предварительного расчета абсциссы. Для этого воспользуйтесь формулой у=-b^2/4ас+с.

Если вы знакомы с понятием производной, найдите вершину параболы при помощи производных, воспользовавшись следующим свойством любой : первая производная функции, приравненная к нулю, указывает на . Так как вершина параболы , независимо от того, направлены ее ветви вверх или вниз, точкой , вычислите производную для вашей функции. В общем виде она будет иметь вид f(х)=2ах+b. Приравняйте ее к нулю и получите координаты вершины параболы , соответствующей вашей функции.

Попробуйте найти вершину параболы , воспользовавшись таким ее свойством, как симметричность. Для этого найдите точки пересечения параболы с осью ох, приравняв функцию к нулю (подставив у=0). Решив квадратное уравнение, вы найдете х1 и х2. Так как парабола симметрична относительно директрисы, проходящей через вершину , эти точки будут равноудалены от абсциссы вершины. Чтобы ее найти, разделим

Парабола присутствует в мире математики, физики и других наук. По траектории параболы передвигаются искусственные спутники, которые стремятся покинуть пределы Солнечной системы, мяч при игре в волейбол тоже описывает её траекторию. Нужно уметь строить параболу. А чтобы это не составляло труда, надо знать, как найти вершину параболы.

График функции y = ax 2 + bx + c, где a - первый коэффициент, b — второй коэффициент, c — свободный член, называется параболой. Но обратите внимание на тот факт, что a ≠0.

У каждой точки параболы есть симметричная ей, кроме одной точки, и эта точка называется вершиной. Для того чтобы найти точку, которая является вершиной, нужно определиться, что такое точка на графике. Точка на графике – это определённая координата по оси абсцисс и по оси ординат. Она обозначается как (x; y). Давайте разбираться, как найти заветные числа.

Первый способ

Если вы хотите знать, как необходимо правильно вычислять координаты вершины, то нужно только выучить формулу x0 = -b/2a. Подставляя полученное число в функцию, получим y0 .

Например, y =x 2 –8 x +15;

находим первый, второй коэффициенты и свободный член;

  • a =1, b =-8, c =15;

подставляем значения a и b в формулу;

  • x0=8/2=4;

вычисляем значения y;

  • y0 = 16–32+15 = -1;

Значит, вершина находится в точке (4;-1).

Ветви параболы симметричны относительно оси симметрии, которая идёт через вершину параболы. Зная корни уравнения, можно без особых трудностей посчитать абсциссу вершины параболы. Предположим, что k и n — корни квадратичного уравнения. Тогда точка x0 равноудалена от точек k и n, и её можно вычислить по формуле: x0 = (k + n)/2.

Рассмотрим на примере y =x 2 –6x+5

1) Приравниваем к нулю:

  • x 2 –6x+5=0.

2) Находим дискриминант, используя формулу: D = b 2 –4 ac:

  • D =36–20=16.

3) Находим корни уравнения по формуле (-b±√ D)/2a:

  • 1 — первый корень;
  • 5 — второй корень.

4) Вычисляем:

  • x0 =(5+1)/2=3

Второй способ

Дополнение до полного квадрата – отличный способ узнать, где располагается вершина. Используя этот способ, вы сможете вычислить точки x и y одновременно, без нужды подставлять x в начальный пример. Рассмотрим этот метод на примере функции: y=x 2 +8 x +10.

1. Сначала нужно приравнять выражение с переменной к 0. Потом перенести c в правую сторону с противоположным знаком, то есть у нас получается выражение x 2 + 8x = -10.

2. Теперь в левой части нужно сделать полный квадрат. Для этого посчитайте (b/2) 2 и увеличьте обе части уравнения результат. В этом случае нужно подставит 8 вместо b.

У нас получается 16. Теперь прибавьте это число к обеим частям уравнения:

x 2 + 8x +16= 6.

3. Видно, что полученное выражение – полный квадрат. Его можно представить в форме: (x + 4) 2 = 6.

4. Используйте это выражение для поиска координат вершины параболы. Чтобы посчитать x, нужно приравнять его к 0. Получаем, x =-4. Координата y равна тому, что находится в правой части, то есть y =6. Вершина параболы этого уравнения (-4, 6).

Третий способ

Если вы знаете, что такое производная, то для вас есть другая формула. Несмотря на то, куда смотрят «рога» параболы, её вершина - точка экстремума. Для этого способа надо применить следующий алгоритм:

1. Нахождение первой производной по формуле f"(x) = (ax² + bx + c)’ = 2ax + b.

2. Приравнивание производной к 0. В итоге вы получите 0 = 2ax + b, отсюда можно найти то, что нас интересует.

Рассмотрим этот способ подробнее.

Дана функция y = 4x²+16x-17;

  • Записываем производную и приравниваем к нулю.

f"(x) = (4x²+16x-17)’ = 8x+16 =0

Самое трудное при построении – это верно найти точки функции. Для подробного построения нужно просчитать 5–7 точек (для школьного курса хватит этого). Для этого выбираем какое-либо значение x и подставляем его в данную функцию. Итогом подсчётов будет число точки по оси ординат. После этого ставим на координатную плоскость полученные нами точки. В итоге у нас получается парабола.

Рассмотрим подробнее вопрос о нахождении точек, которые нужно отметить. Для примера возьмём функцию y =-x 2 +11 x -24 с вершиной в точке (5,5;-6,25).

1) Строим таблицу

Правильно находите коэффициенты .

Пишите промежуточные вычисления на бумаге. Это не только облегчит нахождение вершины, но и поможет найти свои ошибки.

Делайте всё поэтапно. Следуйте алгоритму.

Обратите ваше внимание на то, что:

  • Нужно проверять правильно ли ваше решение.
  • Необходимо успокоиться. Решение любых задач по математике требует опыта. Просто нужно отработать данную тему, и тогда непременно у вас всё получится.

Видео

Это видео поможет вам научиться находить вершину параболы

Не получили ответ на свой вопрос? Предложите авторам тему.

Функция вида , где называется квадратичной функцией .

График квадратичной функции – парабола .


Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА

То есть , ,

Для построения заполняем таблицу, подставляя значения x в формулу:


Отмечаем точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х (в данном случае шаг 1), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:


Нетрудно заметить, что если мы возьмем случай , , , то есть , то мы получим параболу, симметричную относительно оси (ох). Убедиться в этом несложно, заполнив аналогичную таблицу:


II СЛУЧАЙ, «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать , , ? Как изменится поведение параболы? При title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;"> парабола изменит форму, она “похудеет” по сравнению с параболой (не верите – заполните соответствующую таблицу – и убедитесь сами):


На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях ордината каждой точки умножилась на 4. Это произойдет со всеми ключевыми точками исходной таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при парабола «станет шире» параболы :


Давайте подытожим:

1) Знак коэффициента отвечает за направление ветвей. При title="Rendered by QuickLaTeX.com" height="14" width="47" style="vertical-align: 0px;"> ветви направлены вверх, при - вниз.

2) Абсолютная величина коэффициента (модуля) отвечает за “расширение”, “сжатие” параболы. Чем больше , тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ «С»

Теперь давайте введем в игру (то есть рассматриваем случай, когда ), будем рассматривать параболы вида . Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы вдоль оси вверх или вниз в зависимости от знака :



IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси и будет, наконец, “гулять” по всей координатной плоскости? Когда перестанет быть равным .

Здесь для построения параболы нам понадобится формула для вычисления вершины: , .

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу , что уже нам по силам. Если имеем дело со случаем , то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с , например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы :

Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы , ведь в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку . Действительно, подставив в формулу x=0, получим, что . То есть ордината точки пересечения параболы с осью (оу), это . В нашем примере (выше), парабола пересекает ось ординат в точке , так как .

2) осью симметрии параболы является прямая , поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая к , мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение . В зависимости от дискриминанта, будем получать одну (, ), две ( title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">, ) или нИсколько () точек пересечения с осью (ох) . В предыдущем примере у нас корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения с осью (ох) у нас будут (так как title="Rendered by QuickLaTeX.com" height="14" width="54" style="vertical-align: 0px;">), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана в виде

1) определяем направление ветвей (а>0 – вверх, a<0 – вниз)

2) находим координаты вершины параболы по формуле , .

3) находим точку пересечения параболы с осью (оу) по свободному члену , строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу . Если title="Rendered by QuickLaTeX.com" height="20" width="55" style="vertical-align: -5px;">, то парабола становится у’же по сравнению с , если , то парабола расширяется по сравнению с

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение

Пример 1


Пример 2


Замечание 1. Если же парабола изначально нам задана в виде , где – некоторые числа (например, ), то построить ее будет еще легче, потому что нам уже заданы координаты вершины . Почему?

Возьмем квадратный трехчлен и выделим в нем полный квадрат: Посмотрите, вот мы и получили, что , . Мы с вами ранее называли вершину параболы , то есть теперь , .

Например, . Отмечаем на плоскости вершину параболы , понимаем, что ветви направлены вниз, парабола расширена (относительно ). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому (то есть представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Парабола – одна из кривых второго порядка, ее точки построены в соответствии с квадратным уравнением. Главное в построении этой кривой – найти вершину параболы . Это можно сделать несколькими способами.

Инструкция

Чтобы найти координаты вершины параболы , воспользуйтесь следующей формулой: х=-b/2а, где а – коэффициент перед х в квадрате, а b – коэффициент перед х. Подставьте ваши значения и рассчитайте его значение. Затем подставьте полученное значение вместо х в уравнение и посчитайте ординату вершины. Например, если вам дано уравнение у=2х^2-4х+5, то абсциссу найдите следующим образом: х=-(-4)/2*2=1. Подставив х=1 в уравнение, рассчитайте значение у для вершины параболы : у=2*1^2-4*1+5=3. Таким образом, вершина параболы имеет координаты (1-3).

Значение ординаты параболы можно найти и без предварительного расчета абсциссы. Для этого воспользуйтесь формулой у=-b^2/4ас+с.

Если вы знакомы с понятием производной, найдите вершину параболы при помощи производных, воспользовавшись следующим свойством любой функции: первая производная функции, приравненная к нулю, указывает на точки экстремума. Так как вершина параболы , независимо от того, направлены ее ветви вверх или вниз, является точкой экстремума, вычислите производную для вашей функции. В общем виде она будет иметь вид f(х)=2ах+b. Приравняйте ее к нулю и получите координаты вершины параболы , соответствующей вашей функции.

Попробуйте найти вершину параболы , воспользовавшись таким ее свойством, как симметричность. Для этого найдите точки пересечения параболы с осью ох, приравняв функцию к нулю (подставив у=0). Решив квадратное уравнение, вы найдете х1 и х2. Так как парабола симметрична относительно директрисы, проходящей через вершину , эти точки будут равноудалены от абсциссы вершины. Чтобы ее найти, разделим расстояние между точками пополам: х=(Iх1-х2I)/2.

Если какой-либо из коэффициентов равен нулю (кроме а), рассчитайте координаты вершины параболы по облегченным формулам. Например, если b=0, то есть уравнение имеет вид у=ах^2+с, то вершина будет лежать на оси оу и ее координаты будут равны (0-с). Если же не только коэффициент b=0, но и с=0, то вершина параболы находится в начале координат, точке (0-0).

Нагаева Светлана Николаевна, учитель математики МАОУ « Лицей №1» города Березники.

Проект урока по алгебре в 9 классе (гуманитарный профиль).

«Наиболее глубокий след оставляет то, что человек открыл сам».(Д. Пойя.)

Тема урока: «Вывод формул для вычисления координат вершины параболы».

Цели урока : познавательные :

Ожидаемый результат:

- осознание, принятие и разрешение проблемы учащимися;

Формирование способов получения новых знаний через сравнение и сопоставления фактов, способа от частного к общему;

Узнают формулы нахождения координат вершины и оси симметрии параболы для функций вида y = ax 2 +bx+c.

Тип урока: урок постановки учебной задачи. Методы обучения – наглядно-иллюстративный, словесный, обучение в сотрудничестве, проблемный, элементы технологии критического мышления.

Оборудование: компьютер, мультимедийный проектор, демонстрационный экран, слайды презентации по теме: «Формулы для нахождения координат вершины параболы»; листы формата А3; цветные маркеры.

Технология - системно-деятельностный подход.

Этапы урока:

    Психологический настрой(мотивация).

    Актуализация опорных знаний(создание ситуации успеха).

    Постановка проблемы.

    Формулирование темы и цели урока.

    Решение проблемы.

    Анализ хода решения проблемы.

    Применение результатов решения проблемы в последующей деятельности.

    Подведение итогов урока (итог «глазами» ученика, итог «глазами» учителя.).

    Домашнее задание.

Ход урока:

    Психологический настрой.

Задача: Учится решать общую задачу и работать в коллективе(работа в группах по 5 чел.).

Ребята, на протяжении последних четырёх уроков мы занимались изучением квадратичной функции, но знания наши пока ещё не совсем полные, поэтому мы продолжаем изучать квадратичную функцию с целью узнать что-то новое об этой функции.

Мотивация учащихся к самостоятельной постановке темы и цели урока.

Функция
и ее график.

;
;

Не выполняя построения графика функций, можем ли мы ответить на вопросы:

    Что является графиком функций?

    Какая прямая является осью симметрии (если она существует)?

3. Есть ли вершина, каковы её координаты?

Хочу узнать

Таблица заполняется по ходу проведения урока.

    Актуализация опорных знаний и умений учащихся. Разминка. 1. Вынести за скобки старший коэффициент: 5x 2 + 25x -5; ax 2 + bx + c. 2.Выделить удвоенное произведение: ab; ax; b/a. 3.Возвести в квадрат: b/2; c 2 /a; 2a/3b. 4.Представить в виде алгебраической суммы: а – в; x –(- b/2a).

Объясните, как, зная вид графика функции y =ƒ( x ) , построить графики функций:

а) y =ƒ(x - a ) , - с помощью параллельного переноса на а единиц вправо вдоль оси х ;

б) y =ƒ(x ) + b , - с помощью параллельного переноса на b единиц вверх вдоль оси y ;

в) y =ƒ(x - а) + b , ↔ на а единиц, ↕ на b единиц;

г) Как построить график функции y = (x - 2) 2 + 3 ? Что является ее графиком?

Назовите вершину параболы.
Графиком является парабола y = x 2 с вершиной в точке (2; 3).

Назовите координаты вершины параболы: y =x- 4x + 5 ( проблема). Почему нельзя определить координаты вершины параболы по виду функции? (другой вид имеет квадратичная функция).

Деятельность учащихся:

Строят речевые конструкции с использованием функциональной терминологии.

Обсуждение ответов. Сравнивают, сопоставляют с ранее изученными функциями, выбирают и записывают на доске знания и умения, которые им могут понадобиться для решения проблемы в столбик «ЗНАЮ»:

2.

3.

4.

В столбик «Хочу узнать»:вершину, ось симметрии параболы
.

Учащиеся могут записывать в столбики «ЗНАЮ» и «ХОЧУ ЗНАТЬ» функции как в общем виде, так и частные случаи. Постановка учебной задачи: найти координаты вершины параболы, если квадратичная функция задана в общем виде y = ax+ bx + c . Учащиеся формулируют и записывают в тетрадь тему и цель урока. (Вывод формул для вычисления координат вершины параболы. Научиться находить координаты вершины параболы новым способом – по формулам).

Решение проблемы.

Деятельность учащихся: Сравнивая «старые» знания с новыми знаниями учащиеся предлагают выделить полный квадрат. На конкретных примерах
;
и получают соответственно
;
. Находят координаты вершины и уравнение оси симметрии, Понимают, что с задачей справились, т.к. привели новую функцию к знакомому виду.

Учащиеся выделяют полный квадрат для функции
; , сравнивают полученный результат, делают вывод по данной функции. Находят координаты вершины и ось симметрии.

Сможете ли вы назвать вершину и ось параболы, если функция задана в общем виде
, не выделяя полного квадрата? Как вы будете действовать в этом случае? И как применить ваш предыдущий опыт по нахождению вершины и оси параболы?

Деятельность учащихся:

Опираясь на уже имеющиеся знания, опыт учащиеся начинают понимать, что нужно идти дальше, от частного к общему, проводят доказательства в общем виде.

Появляются новые затруднения. В группах появляется решение: . Анализ хода решения проблемы. Заслушивается один представитель от каждой группы.

Сравнивают, анализируют записи
и
, записывается в тетрадь одно общее решение поставленной задачи - формулы координат вершины параболы
.

Учащиеся делают вывод: координаты вершины и ось параболы для функции
можно найти рациональным способом.

Применение результатов по решению проблемы в последующей деятельности.

Деятельность учащихся:

Решение заданий из учебника №121; 123. Найдите координаты вершины параболы новым рациональным способом. Запишите уравнение прямой, которая является осью симметрии параболы.

Подведение итогов (рефлексия учебной деятельности на уроке).

Вернемся к таблице и заполним столбик «УЗНАЛ».

Итог урока «глазами» учащихся:

ХОЧУ УЗНАТЬ

2.

3.

4.

5. знаю, как построить графики этих функций

6. знаю, как найти координаты вершины этих парабол и ось параболы

7. метод выделения полного квадрата

8. как находить координаты вершин, ось параболы.


2. уравнение оси симметрии параболы

1. координаты вершины параболы

2 .как вывести формулу

3. рациональный способ нахождения оси параболы и координат вершины параболы

Итог « глазами учителя»:

    Цель урока достигнута.

    Учащиеся осознали, приняли и разрешили возникшую проблему.

    В процессе решения учебно-проблемной задачи учащиеся не только приобрели новые знания: зависимость коэффициентов квадратного трехчлена и координат вершины параболы, уравнения оси симметрии, но самое главное на уроке – формирование обобщенных способов приобретения новых знаний, самостоятельного анализа проблемы и нахождения неизвестного.

Домашнее задание : п.7 №122 ;127(б) ;128.

P.S. Представленный урок проведен 15 октября 2014 года в рамках городского семинара учителей математики по теме «Формирование УУД на уроках математики».

На этапе «Применение результатов…» при решении заданий из учебника некоторые учащиеся начали понимать ценность своего «открытия»: более простого способа нахождения координат вершины и уравнения оси симметрии, а другие не скрывали радости, ведь не надо «мучаться» с выделением полного квадрата. Но самое главное – сделали все сами!



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: