Частная производная функции от 2 переменных. Решение производной для чайников: определение, как найти, примеры решений. Задачи с показательными функциями и логарифмами

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.



Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

Или – частная производная по «икс»

Или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменнаясчитается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для(и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и .

Итак, частные производные первого порядка найдены

Рассмотрим функцию от двух переменных:

Поскольку переменные $x$ и $y$ являются независимыми, для такой функции можно ввести понятие частной производной:

Частная производная функции $f$ в точке $M=\left({{x}_{0}};{{y}_{0}} \right)$ по переменной $x$ — это предел

\[{{{f}"}_{x}}=\underset{\Delta x\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}}+\Delta x;{{y}_{0}} \right)}{\Delta x}\]

Аналогично можно определить частную производную по переменной $y$ :

\[{{{f}"}_{y}}=\underset{\Delta y\to 0}{\mathop{\lim }}\,\frac{f\left({{x}_{0}};{{y}_{0}}+\Delta y \right)}{\Delta y}\]

Другими словами, чтобы найти частную производную функции нескольких переменных, нужно зафиксировать все остальные переменные, кроме искомой, а затем найти обычную производную по этой искомой переменной.

Отсюда вытекает основной приём для вычисления таких производных: просто считайте, что все переменные, кроме данной, являются константой, после чего дифференцируйте функцию так, как дифференцировали бы «обычную» — с одной переменной. Например:

$\begin{align}& {{\left({{x}^{2}}+10xy \right)}_{x}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{x}+10y\cdot {{\left(x \right)}^{\prime }}_{x}=2x+10y, \\& {{\left({{x}^{2}}+10xy \right)}_{y}}^{\prime }={{\left({{x}^{2}} \right)}^{\prime }}_{y}+10x\cdot {{\left(y \right)}^{\prime }}_{y}=0+10x=10x. \\\end{align}$

Очевидно, что частные производные по разным переменным дают разные ответы — это нормально. Куда важнее понимать, почему, скажем, в первом случае мы спокойно вынесли $10y$ из-под знака производной, а во втором — вовсе обнулили первое слагаемое. Всё это происходит из-за того, что все буквы, кроме переменной, по которой идёт дифференцирование, считаются константами: их можно выносить, «сжигать» и т.д.

Что такое «частная производная»?

Сегодня мы поговорим о функциях нескольких переменных и о частных производных от них. Во-первых, что такое функция нескольких переменных? До сих пор мы привыкли считать функцию как $y\left(x \right)$ или $t\left(x \right)$, или любую переменную и одну-единственную функцию от нее. Теперь же функция у нас будет одна, а переменных несколько. При изменении $y$ и $x$ значение функции будет меняться. Например, если $x$ увеличится в два раза, значение функции поменяется, при этом если $x$ поменяется, а $y$ не изменится, значение функции точно так же изменится.

Разумеется, функцию от нескольких переменных, точно так же как и от одной переменной, можно дифференцировать. Однако поскольку переменных несколько, то и дифференцировать можно по разным переменным. При этом возникают специфические правила, которых не было при дифференцировании одной переменной.

Прежде всего, когда мы считаем производную функции от какой-либо переменной, то обязаны указывать, по какой именно переменной мы считаем производную — это и называется частной производной. Например, у нас функция от двух переменных, и мы можем посчитать ее как по $x$, так и по $y$ — две частных производных у каждой из переменных.

Во-вторых, как только мы зафиксировали одну из переменных и начинаем считать частную производную именно по ней, то все остальные, входящие в эту функцию, считаются константами. Например, в $z\left(xy \right)$, если мы считаем частную производную по $x$, то везде, где мы встречаем $y$, мы считаем ее константой и обращаемся с ней именно как с константой. В частности при вычислении производной произведения мы можем выносить $y$ за скобку (у нас же константа), а при вычислении производной суммы, если у нас где-то получается производная от выражения, содержащего $y$ и не содержащего $x$, то производная этого выражения будет равна «нулю» как производная константы.

На первый взгляд может показаться, что я рассказываю о чем-то сложном, и многие ученики по началу путаются. Однако ничего сверхъестественного в частных производных нет, и сейчас мы убедимся в этом на примере конкретных задач.

Задачи с радикалами и многочленами

Задача № 1

Чтобы не терять время зря, с самого начала начнем с серьезных примеров.

Для начала напомню такую формулу:

Это стандартное табличное значение, которое мы знаем из стандартного курса.

В этом случае производная $z$ считается следующим образом:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}\]

Давайте еще раз, поскольку под корнем стоит не $x$, а некое другое выражение, в данном случае $\frac{y}{x}$, то сначала мы воспользуемся стандартным табличным значением, а затем, поскольку под корнем стоит не $x$, а другое выражение, нам необходимо домножить нашу производную на еще одну из этого выражения по той же самой переменной. Давайте для начала посчитаем следующее:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{{{{{y}"}}_{x}}\cdot x-y\cdot {{{{x}"}}_{x}}}{{{x}^{2}}}=\frac{0\cdot x-y\cdot 1}{{{x}^{2}}}=-\frac{y}{{{x}^{2}}}\]

Возвращаемся к нашему выражению и записываем:

\[{{{z}"}_{x}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)\]

В принципе, это все. Однако оставлять ее в таком виде неправильно: такую конструкцию неудобно использовать для дальнейших вычислений, поэтому давайте ее немного преобразуем:

\[\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \left(-\frac{y}{{{x}^{2}}} \right)=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \frac{y}{{{x}^{2}}}=\]

\[=-\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{{{y}^{2}}}{{{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{x\cdot {{y}^{2}}}{y\cdot {{x}^{4}}}}=-\frac{1}{2}\sqrt{\frac{y}{{{x}^{3}}}}\]

Ответ найден. Теперь займемся $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}\]

Выпишем отдельно:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{{{{{y}"}}_{y}}\cdot x-y\cdot {{{{x}"}}_{y}}}{{{x}^{2}}}=\frac{1\cdot x-y\cdot 0}{{{x}^{2}}}=\frac{1}{x}\]

Теперь записываем:

\[{{{z}"}_{y}}={{\left(\sqrt{\frac{y}{x}} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot {{\left(\frac{y}{x} \right)}^{\prime }}_{y}=\frac{1}{2\sqrt{\frac{y}{x}}}\cdot \frac{1}{x}=\]

\[=\frac{1}{2}\cdot \sqrt{\frac{x}{y}}\cdot \sqrt{\frac{1}{{{x}^{2}}}}=\frac{1}{2}\sqrt{\frac{x}{y\cdot {{x}^{2}}}}=\frac{1}{2\sqrt{xy}}\]

Все сделано.

Задача № 2

Этот пример одновременно и проще, и сложней, чем предыдущий. Сложнее, потому что здесь больше действий, а проще, потому что здесь нет корня и, кроме того, функция симметрична относительно $x$ и $y$, т.е. если мы поменяем $x$ и $y$ местами, формула от этого не изменится. Это замечание в дальнейшем упростит нам вычисление частной производной, т.е. достаточно посчитать одну из них, а во второй просто поменять местами $x$ и $y$.

Приступаем к делу:

\[{{{z}"}_{x}}={{\left(\frac{xy}{{{x}^{2}}+{{y}^{2}}+1} \right)}^{\prime }}_{x}=\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

Давайте посчитаем:

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{\left(x \right)}^{\prime }}=y\cdot 1=y\]

Однако многим ученикам такая запись непонятна, поэтому запишем вот так:

\[{{\left(xy \right)}^{\prime }}_{x}={{\left(x \right)}^{\prime }}_{x}\cdot y+x\cdot {{\left(y \right)}^{\prime }}_{x}=1\cdot y+x\cdot 0=y\]

Таким образом, мы еще раз убеждаемся в универсальности алгоритма частных производных: каким бы мы образом их не считали, если все правила применяются верно, ответ будет один и тот же.

Теперь давайте разберемся еще с одной частной производной из нашей большой формулы:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}={{\left({{x}^{2}} \right)}^{\prime }}_{x}+{{\left({{y}^{2}} \right)}^{\prime }}_{x}+{{{1}"}_{x}}=2x+0+0\]

Подставим полученные выражения в нашу формулу и получим:

\[\frac{{{\left(xy \right)}^{\prime }}_{x}\left({{x}^{2}}+{{y}^{2}}+1 \right)-xy{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\cdot \left({{x}^{2}}+{{y}^{2}}+1 \right)-xy\cdot 2x}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\]

\[=\frac{y\left({{x}^{2}}+{{y}^{2}}+1-2{{x}^{2}} \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}=\frac{y\left({{y}^{2}}-{{x}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

По $x$ посчитано. А чтобы посчитать $y$ от того же самого выражения, давайте не будем выполнять всю ту же последовательность действий, а воспользуемся симметрией нашего исходного выражения — мы просто заменим в нашем исходном выражении все $y$ на $x$ и наоборот:

\[{{{z}"}_{y}}=\frac{x\left({{x}^{2}}-{{y}^{2}}+1 \right)}{{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{2}}}\]

За счет симметрии мы посчитали это выражение гораздо быстрее.

Нюансы решения

Для частных производных работают все стандартные формулы, которые мы используем для обычных, а именно, производная частного. При этом, однако, возникают свои специфические особенности: если мы считаем частную производную $x$, то когда мы получаем ее по $x$, то рассматриваем ее как константу, и поэтому ее производная будет равна «нулю».

Как и в случае с обычными производными, частную (одну и ту же) можно посчитать несколькими различными способами. Например, ту же конструкцию, которую мы только что посчитали, можно переписать следующим образом:

\[{{\left(\frac{y}{x} \right)}^{\prime }}_{x}=y\cdot {{\left(\frac{1}{x} \right)}^{\prime }}_{x}=-y\frac{1}{{{x}^{2}}}\]

\[{{\left(xy \right)}^{\prime }}_{x}=y\cdot {{{x}"}_{x}}=y\cdot 1=y\]

Вместе с тем, с другой стороны, можно использовать формулу от производной суммы. Как мы знаем, она равна сумме производных. Например, запишем следующее:

\[{{\left({{x}^{2}}+{{y}^{2}}+1 \right)}^{\prime }}_{x}=2x+0+0=2x\]

Теперь, зная все это, давайте попробуем поработать с более серьезными выражениями, поскольку настоящие частные производные не ограничиваются одними лишь многочленами и корнями: там встречаются и тригонометрия, и логарифмы, и показательная функция. Сейчас этим и займемся.

Задачи с тригонометрическими функциями и логарифмами

Задача № 1

Запишем следующие стандартные формулы:

\[{{\left(\sqrt{x} \right)}^{\prime }}_{x}=\frac{1}{2\sqrt{x}}\]

\[{{\left(\cos x \right)}^{\prime }}_{x}=-\sin x\]

Вооружившись этими знаниями, попробуем решить:

\[{{{z}"}_{x}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{x}={{\left(\sqrt{x} \right)}^{\prime }}_{x}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=\]

Отдельно выпишем одну переменную:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{x}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=-\frac{1}{y}\cdot \sin \frac{x}{y}\]

Возвращаемся к нашей конструкции:

\[=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \left(-\frac{1}{y}\cdot \sin \frac{x}{y} \right)=\frac{1}{2\sqrt{x}}\cdot \cos \frac{x}{y}-\frac{\sqrt{x}}{y}\cdot \sin \frac{x}{y}\]

Все, по $x$ мы нашли, теперь давайте займемся вычислениями по $y$:

\[{{{z}"}_{y}}={{\left(\sqrt{x}\cdot \cos \frac{x}{y} \right)}^{\prime }}_{y}={{\left(\sqrt{x} \right)}^{\prime }}_{y}\cdot \cos \frac{x}{y}+\sqrt{x}\cdot {{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=\]

Опять же посчитаем одно выражение:

\[{{\left(\cos \frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=-\sin \frac{x}{y}\cdot x\cdot \left(-\frac{1}{{{y}^{2}}} \right)\]

Возвращаемся к исходному выражению и продолжаем решение:

\[=0\cdot \cos \frac{x}{y}+\sqrt{x}\cdot \frac{x}{{{y}^{2}}}\sin \frac{x}{y}=\frac{x\sqrt{x}}{{{y}^{2}}}\cdot \sin \frac{x}{y}\]

Все сделано.

Задача № 2

Запишем необходимую нам формулу:

\[{{\left(\ln x \right)}^{\prime }}_{x}=\frac{1}{x}\]

Теперь посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{x}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{x}=\]

\[=\frac{1}{x+\ln y}\cdot \left(1+0 \right)=\frac{1}{x+\ln y}\]

По $x$ найдено. Считаем по $y$:

\[{{{z}"}_{y}}={{\left(\ln \left(x+\ln y \right) \right)}^{\prime }}_{y}=\frac{1}{x+\ln y}.{{\left(x+\ln y \right)}^{\prime }}_{y}=\]

\[=\frac{1}{x+\ln y}\left(0+\frac{1}{y} \right)=\frac{1}{y\left(x+\ln y \right)}\]

Задача решена.

Нюансы решения

Итак, от какой бы функции мы не брали частную производную, правила остаются одними и теми же, независимо от того, работаем ли мы с тригонометрией, с корнями или с логарифмами.

Неизменными остаются классические правила работы со стандартными производными, а именно, производная суммы и разности, частного и сложной функции.

Последняя формула чаще всего и встречается при решении задач с частными производными. Мы встречаемся с ними практически везде. Ни одной задачи еще не было, чтобы там нам она не попадалась. Но какой бы мы формулой не воспользовались, нам все равно добавляется еще одно требование, а именно, особенность работы с частными производными. Как только мы фиксируем одну переменную, все остальные оказываются константами. В частности, если мы считаем частную производную выражения $\cos \frac{x}{y}$ по $y$, то именно $y$ и является переменной, а $x$ везде остается константой. То же самое работает и наоборот. Ее можно выносить за знак производной, а производная от самой константы будет равна «нулю».

Все это приводит к тому, что частные производные от одного и того же выражения, но по разным переменным могут выглядеть совершенно по-разному. Например, посмотрим такие выражения:

\[{{\left(x+\ln y \right)}^{\prime }}_{x}=1+0=1\]

\[{{\left(x+\ln y \right)}^{\prime }}_{y}=0+\frac{1}{y}=\frac{1}{y}\]

Задачи с показательными функциями и логарифмами

Задача № 1

Для начала запишем такую формулу:

\[{{\left({{e}^{x}} \right)}^{\prime }}_{x}={{e}^{x}}\]

Зная этот факт, а также производную сложной функции, давайте попробуем посчитать. Я сейчас решу двумя различными способами. Первый и самый очевидный — это производная произведения:

\[{{{z}"}_{x}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\]

Давайте решим отдельно следующее выражение:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{x}=\frac{{{{{x}"}}_{x}}\cdot y-x.{{{{y}"}}_{x}}}{{{y}^{2}}}=\frac{1\cdot y-x\cdot 0}{{{y}^{2}}}=\frac{y}{{{y}^{2}}}=\frac{1}{y}\]

Возвращаемся к нашей исходной конструкции и продолжаем решение:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\left(1+\frac{1}{y} \right)\]

Все, по $x$ посчитано.

Однако как я и обещал, сейчас постараемся посчитать эту же частную производную другим способом. Для этого заметим следующее:

\[{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}={{e}^{x+\frac{x}{y}}}\]

В этом запишем так:

\[{{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot {{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}\cdot \left(1+\frac{1}{y} \right)\]

В результате мы получили точно такой же ответ, однако объем вычислений оказался меньшим. Для этого достаточно было заметить, что при произведении показатели можно складывать.

Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}={{\left({{e}^{x}} \right)}^{\prime }}_{y}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{y}=\]

\[=0\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot {{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\]

Давайте решим одно выражение отдельно:

\[{{\left(\frac{x}{y} \right)}^{\prime }}_{y}=\frac{{{{{x}"}}_{y}}\cdot y-x\cdot {{{{y}"}}_{y}}}{{{y}^{2}}}=\frac{0-x\cdot 1}{{{y}^{2}}}=-\frac{1}{{{y}^{2}}}=-\frac{x}{{{y}^{2}}}\]

Продолжим решение нашей исходной конструкции:

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \left(-\frac{x}{{{y}^{2}}} \right)=-\frac{x}{{{y}^{2}}}\cdot {{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\]

Разумеется, эту же производную можно было бы посчитать вторым способом, ответ получился бы таким же.

Задача № 2

Посчитаем по $x$:

\[{{{z}"}_{x}}={{\left(x \right)}_{x}}\cdot \ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\]

Давайте посчитаем одно выражение отдельно:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{2x}{{{x}^{2}}+y}\]

Продолжим решение исходной конструкции: $$

Вот такой ответ.

Осталось по аналогии найти по $y$:

\[{{{z}"}_{y}}={{\left(x \right)}^{\prime }}_{y}.\ln \left({{x}^{2}}+y \right)+x\cdot {{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\]

Одно выражение посчитаем как всегда отдельно:

\[{{\left({{x}^{2}}+y \right)}^{\prime }}_{y}={{\left({{x}^{2}} \right)}^{\prime }}_{y}+{{{y}"}_{y}}=0+1=1\]

Продолжаем решение основной конструкции:

Все посчитано. Как видите, в зависимости от того, какая переменная берется для дифференцирования, ответы получаются совершенно разные.

Нюансы решения

Вот яркий пример того, как производную одной и той же функции можно посчитать двумя различными способами. Вот смотрите:

\[{{{z}"}_{x}}=\left({{e}^{x}}\cdot {{e}^{\frac{x}{y}}} \right)={{\left({{e}^{x}} \right)}^{\prime }}_{x}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{\left({{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{\frac{x}{y}}}+{{e}^{x}}\cdot {{e}^{\frac{x}{y}}}\cdot \frac{1}{y}={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

\[{{{z}"}_{x}}={{\left({{e}^{x}}.{{e}^{\frac{x}{y}}} \right)}^{\prime }}_{x}={{\left({{e}^{x+\frac{x}{y}}} \right)}^{\prime }}_{x}={{e}^{x+\frac{x}{y}}}.{{\left(x+\frac{x}{y} \right)}^{\prime }}_{x}=\]

\[={{e}^{x}}\cdot {{e}^{^{\frac{x}{y}}}}\left(1+\frac{1}{y} \right)\]

При выборе разных путей, объем вычислений может быть разный, но ответ, если все выполнено верно, получится одним и тем же. Это касается как классических, так и частных производных. При этом еще раз напоминаю: в зависимости от того, по какой переменной идет взятие производной, т.е. дифференцирование, ответ может получиться совершенно разный. Посмотрите:

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{x}=\frac{1}{{{x}^{2}}+y}\cdot 2x\]

\[{{\left(\ln \left({{x}^{2}}+y \right) \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot {{\left({{x}^{2}}+y \right)}^{\prime }}_{y}=\frac{1}{{{x}^{2}}+y}\cdot 1\]

В заключение для закрепления всего этого материала давайте попробуем посчитать еще два примера.

Задачи с тригонометрической функция и функцией с тремя переменными

Задача № 1

Давайте запишем такие формулы:

\[{{\left({{a}^{x}} \right)}^{\prime }}={{a}^{x}}\cdot \ln a\]

\[{{\left({{e}^{x}} \right)}^{\prime }}={{e}^{x}}\]

Давайте теперь решать наше выражение:

\[{{{z}"}_{x}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{x}={{3}^{x.\sin y}}\cdot \ln 3\cdot {{\left(x\cdot \sin y \right)}^{\prime }}_{x}=\]

Отдельно посчитаем такую конструкцию:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{x}={{{x}"}_{x}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{x}=1\cdot \sin y+x\cdot 0=\sin y\]

Продолжаем решать исходное выражение:

\[={{3}^{x\sin y}}\cdot \ln 3\cdot \sin y\]

Это окончательный ответ частной переменной по $x$. Теперь посчитаем по $y$:

\[{{{z}"}_{y}}={{\left({{3}^{x\sin y}} \right)}^{\prime }}_{y}={{3}^{x\sin y}}\cdot \ln 3\cdot {{\left(x\sin y \right)}^{\prime }}_{y}=\]

Решим одно выражение отдельно:

\[{{\left(x\cdot \sin y \right)}^{\prime }}_{y}={{{x}"}_{y}}\cdot \sin y+x{{\left(\sin y \right)}^{\prime }}_{y}=0\cdot \sin y+x\cdot \cos y=x\cdot \cos y\]

Решаем до конца нашу конструкцию:

\[={{3}^{x\cdot \sin y}}\cdot \ln 3\cdot x\cos y\]

Задача № 2

На первый взгляд этот пример может показаться достаточно сложным, потому что здесь три переменных. На самом деле, это одна из самых простых задач в сегодняшнем видеоуроке.

Находим по $x$:

\[{{{t}"}_{x}}={{\left(x{{e}^{y}}+y{{e}^{z}} \right)}^{\prime }}_{x}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{x}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{x}=\]

\[={{\left(x \right)}^{\prime }}_{x}\cdot {{e}^{y}}+x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{x}=1\cdot {{e}^{y}}+x\cdot o={{e}^{y}}\]

Теперь разберемся с $y$:

\[{{{t}"}_{y}}={{\left(x\cdot {{e}^{y}}+y\cdot {{e}^{z}} \right)}^{\prime }}_{y}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{y}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{y}=\]

\[=x\cdot {{\left({{e}^{y}} \right)}^{\prime }}_{y}+{{e}^{z}}\cdot {{\left(y \right)}^{\prime }}_{y}=x\cdot {{e}^{y}}+{{e}^{z}}\]

Мы нашли ответ.

Теперь остается найти по $z$:

\[{{{t}"}_{z}}={{\left(x\cdot {{e}^{y}}+{{y}^{z}} \right)}^{\prime }}_{z}={{\left(x\cdot {{e}^{y}} \right)}^{\prime }}_{z}+{{\left(y\cdot {{e}^{z}} \right)}^{\prime }}_{z}=0+y\cdot {{\left({{e}^{z}} \right)}^{\prime }}_{z}=y\cdot {{e}^{z}}\]

Мы посчитали третью производную, на чем решение второй задачи полностью завершено.

Нюансы решения

Как видите, ничего сложного в этих двух примерах нет. Единственное, в чем мы убедились, так это в том, что производная сложной функции применяется часто и в зависимости от того, какую частную производную мы считаем, мы получаем разные ответы.

В последней задаче нам было предложено разобраться с функцией сразу от трех переменных. Ничего страшного в этом нет, однако в самом конце мы убедились, что все они друг от друга существенно отличаются.

Ключевые моменты

Окончательные выводы из сегодняшнего видеоурока следующие:

  1. Частные производные считаются так же, как и обычные, при этом, чтобы считать частную производную по одной переменной, все остальные переменные, входящие в данную функцию, мы принимаем за константы.
  2. При работе с частными производными мы используем все те же стандартные формулы, что и с обычными производными: сумму, разность, производную произведения и частного и, разумеется, производную сложной функции.

Конечно, просмотра одного этого видеоурока недостаточно, чтобы полностью разобраться в этой теме, поэтому прямо сейчас на моем сайте именно к этому видео есть комплект задач, посвященных именно сегодняшней теме — заходите, скачивайте, решайте эти задачи и сверяйтесь с ответом. И после этого никаких проблем с частными производными ни на экзаменах, ни на самостоятельных работах у вас не будет. Конечно, это далеко не последний урок по высшей математике, поэтому заходите на наш сайт, добавляйтесь ВКонтакте, подписывайтесь на YouTube, ставьте лайки и оставайтесь с нами!

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Определение. Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка.

Обозначения частных производных второго порядка:

Для практических примеров справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверять правильность нахождения частных производных первого порядка.

Примеры.

а) Найти частные производные второго порядка функции

Решение.

1.Считаем переменную y

2. Полученную функцию еще раз продифференцируем по «икс», т.е. найдем вторую производную по «икс»:

3.Считаем переменную х константой, применяем правило дифференцирования суммы, правило вынесение постоянного множителя за знак производной и табличную производную степенной функции:

4. Полученную функцию еще раз продифференцируем по «игрек», т.е. найдем вторую производную по «игрек»:

5. Найдем смешанную производную «икс по игрек». Для этого первую производную по «икс» продифференцируем по «игрек».

5. Найдем смешанную производную «игрек по икс». Для этого первую производную по «игрек» продифференцируем по «икс».

б) Найти частные производные первого порядка функции Проверить, что Записать полный дифференциал первого порядка dz.

Решение.

1.Найдем частные производные первого порядка, применяя правила вычисления производной произведения, суммы, вынесения постоянного множителя за знак производной и табличные интегралы тригонометрических функций:

2. Найдем смешанные производные второго порядка:

3. Составим полный дифференциал первого порядка:

в) Показать, что данная функция удовлетворяет уравнению

Решение.

1.Найдем частную производную заданной функции по «икс»:

2. Умножим полученное выражение х 2 :

3. От полученной функции найдем частную производную по «икс»:

4. Найдем частную производную заданной функции по «игрек»:

5. Вычислим вторую производную по «игрек»:

6. Умножим полученную функцию на у 2 :

7. Вычтем из результата, полученного в п.5, результат п.6:

Что и требовалось показать.


Похожая информация:

  1. V3: {{101}} 04.07.14. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами (общее решение)


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: