Почему ферменты ускоряют реакции. Биохимия ферментов. Строение, свойства и функции. Как работают в организме

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента молоко превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства сахара, маргаринов, йогуртов, пива, кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе из греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живим организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно 20 видов аминовеществ. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разгруппированы на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а с остатков глюкозы создают дисахариды.

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненноважное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтоб снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно с названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание лактозы;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает крахмал в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • и других минералов;
  • ксиланаза – расщепляет глюкозу из зерновых.

Катализаторы в продуктах

Ферменты имеют решающее значение для здоровья, поскольку помогают организму расщеплять пищевые компоненты до состояния, пригодного для использования питательных веществ. Кишечник и поджелудочная железа производят широкий спектр ферментов. Но кроме этого, многие их полезных веществ, способствующих пищеварению, содержатся также и в некоторых продуктах.

Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить авокадо. В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

Кроме того, что банан, пожалуй, самый известный источник калия, он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, картофеле, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

Экстремофилы и промышленность

Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

Более того, «услуги» ферментов в таких случаях обходятся дешевле, чем синтетических аналогов. Кроме того, натуральные вещества являются биоразлагаемыми, что делает их использование безопасным для экологии. В природе существуют микроорганизмы, способные расщепить ферменты на отдельные аминокислоты, которые затем становятся компонентами новой биологической цепочки. Но это, как говорится, уже совсем другая история.

Ферменты

Обмен веществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.


Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой зависит конформация активного центра, взаимодействующего с компонентами реакции.

Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S) .

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2) Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры . Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 °С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 °С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

Активность ферментов зависит также от рН среды . Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продукта замедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

Ферменты — биологические катализаторы , без участ которых не обходится ни один жизненный процесс. Бони характеризуются способностью: реагировать с определенной ре вещества — субстратом; ускорять биохимические ре акции, которые обычно идут очень медленно; действовать при ду же незначительных концентрациях субстрата, при этом н » нуждаясь поступления энергии извне; функционирования ваты в зависимости от температуры и pH среды.

Биологический катализ отмечается чрезвычайно < высокой эффективностью и способностью ферментов четкие < выделять вещество, с которой они взаимодействуют.

В молекуле фермента содержится группа особо активных аминокислот, которые образуют активный центр фермента (129), способного быстро взаимодействовать только с соответствующей веществом — субстратом (130). При этом субстрат является специфическим для определенного фермента и подходит, как по своей структуре, так и физико — химически ми свойствами к активному центру «как ключ к замку », а потому ход реакции субстрата с активным центром осуществляется мгновенно. Вследствие реакции возникает фермент — субстратный комплекс, который затем легко распадается, образуя уже новые продукты. Вещества, образовавшиеся сразу отделяются от фермента, который восстанавливает свою структуру и становится способным вновь осуществлять ту же реакцию. Через секунду фермент реагирует с миллионами молекул субстрата и сам при этом не разрушается.

Благодаря ферменту биохимические реакции возможны при очень незначительной концентрации вещества в клетке, что чрезвычайно важно, особенно в тех случаях, когда с помощью ферментов организм избавляется вредных веществ. Уже известный вам фермент каталаза за одну секунду разрушает столько же молекул водород перокспду, сколько в обычных условиях в течение 300 лет.

Каждый фермент катализирует только определенную реакцию. Следует отметить, что он не определяет самой возможности реакции, а только ускоряет ее в миллионы раз, делая ее скорость « космической ». Дальнейшее преобразование вещества, образовавшегося в результате одной ферментативной реакции, осуществляет второй фермент, далее третий и т. д. В клетках животных и растений содержатся тысячи различных ферментов, поэтому они не просто ускоряют тысячи химических реакций, но и контролируют их ход.

Скорость действия фермента зависит от температуры (эффективная — около +40 ° С) и определенных значений pH раствора, специфического для конкретного фермента. Для большинства ферментов значение pH лежит в пределах от 6,6 до 8,0, хотя есть и исключения. (Вспомните, при каких значениях pH лучше действуют те или иные ферменты.)

Повышение температуры до +50 ° С приводит к разрушению активного центра фермента и он навсегда теряет возможность выполнять свои функции. Это обусловлено тем, что происходит необратимое нарушение третичной структуры белка, и после охлаждения молекула фермента не восстанавливает свою структуру. Именно этим объясняется, почему даже непродолжительное воздействие высокой температуры убивает живые существа. Однако существуют организмы, ферменты которых приспособились к высоким температурам. Например, в Африке в горячих источниках с температурой воды около +60 ° С живет и размножается представитель класса ракообразных термосбена удивительная, а некоторые бактерии живут даже в водоемах, где температура воды более 70 ° С.

Разрушение структуры фермента могут вызвать яды, попадающие в организм даже в очень незначительном количестве. Эти вещества, называемые ингибиторами (от лат. Ингибио — сдерживаю), необратимо сочетаются с активным центром фермента и таким образом блокируют его деятельность.

Одной из самых сильных ядов, как известно, является цианиды (соли синильной кислоты HCN), блокирующие работу дыхательного фермента цитохромоксидазы. Поэтому даже незначительное количество этого вещества, попав в организм, вызывает смерть от удушья. Ингибиторами являются ионы тяжелых металлов (Hg2 +, Pb2 +), а также соединения мышьяка, которые образуют соединения с аминокислотами, входящих в активный центр фермента.

Ферменты (энзимы) – это специфические высокоэффективные белковые катализаторы химических реакций. Большинство клеточных реакций осуществляется с участием ферментов. Обмен веществ в клетках был бы невозможен без резкого ускорения химических реакций, без согласования во времени и пространстве множества биохимических процессов, т. е. без участия ферментов. Одна клетка может содержать до 1000 различных ферментов. В настоящее время известны функции более 2000 ферментов, из которых для нескольких сотен определена аминокислотная последовательность и пространственная структура.

Как и другие химические катализаторы, ферменты:

    увеличивают скорость реакции, но не расходуются в процессе и не претерпевают необратимых изменений;

    не смещают равновесие химической реакции, ускоряя как прямую, так и обратную реакцию в равной степени;

    повышают скорость реакции, понижая энергию активации, т. е. тот энергетический барьер, который требуется преодолеть для осуществления реакции.

Ферменты отличаются от химических катализаторов следующими свойствами:

1) высокой эффективностью действия – ферментативный катализ ускоряет протекание химических реакций в 10 6 −10 14 раз;

2) высокой специфичностью действия – способностью связываться с определенным субстратом и катализировать реакцию определенного типа;

3) «мягкими» условиями протекания ферментативных реакций – нормальное атмосферное давление, температура 30 - 40°С, рН ~ 7, водная среда;

4) способностью к регуляции своей активности, которая позволяет клеткам четко координировать осуществление многочисленных разветвленных метаболических реакций, обеспечивая наиболее высокий и экономный уровень обмена веществ, а также быструю приспособляемость к меняющимся условиям окружающей среды.

Классификация ферментов. Поскольку для ферментов характерна специфичность действия, их классифицируют по типу реакции, подвергающейся катализу. Согласно принятой в настоящее время классификации ферменты группируют в 6 классов.

1. Оксидоредуктазы (окислительно-восстановительные реакции):

А восст + В окисл → А окисл + В восст

2. Трансферазы (реакции переноса функциональных групп между субстратами):

А Х + В А + В Х

3. Гидролазы (реакции гидролиза, акцептором переносимой группы является молекула воды):

А В + Н 2 О → А −Н + В −ОН

4. Лиазы (реакции отщепления групп от субстрата негидролитическим путем с образованием двойной связи или присоединения групп по двойным связям):

А (Х Н)−В А Х + В −Н

5. Изомеразы (реакции изомеризации):

А ↔ Изо-А

6. Лигазы или синтетазы (реакции синтеза за счет энергии расщепления нуклеозидтрифосфатов, чаще АТФ):

А + В + АТР А В + ADP + Р i

Номер соответствующего класса фермента закреплен в его кодовой нумерации (шифре). Шифр фермента состоит из 4-х разделенных точками чисел, обозначающих класс фермента, подкласс, подподкласс и порядковый номер в подподклассе.

Систематические названия ферментов образуются путем добавления суффикса -аза к названию субстрата, на который воздействует данный фермент (в случае бимолекулярной реакции – к названиям двух субстратов, разделенных знаком деления), либо к названию типа катализируемой реакции. Например, аргиназа (катализирует гидролиз аргинина), алкогольдегидрогеназа (катализирует окисление этанола). После названия фермента в скобках указывают название органа или организма, из которого был выделен данный фермент. Например, алкогольдегидрогеназа (дрожжи) или алкогольдегидрогеназа (печень крыс).

В некоторых случаях до сих пор сохраняются тривиальные названия ферментов с окончанием -ин , не несущие химическую информацию, например пепсин и трипсин (протеолитические ферменты), каталаза (разрушает перекись водорода) и др.

Систематические названия ферментов используются тогда, когда необходима точная идентификация фермента. Многие систематические названия очень громоздки, и удобнее пользоваться тривиальными названиями. Например, гексокиназа (тривиальное название) – это АТФ: D -гексозо-6-фосфотрансфераза.

Особенности структуры ферментов. Молекулы ферментов характеризуются молекулярными массами от 10 до 1000 кДа и выше, однако большинство ферментов представлено глобулярными белками с молекулярной массой в несколько сотен тысяч Да, построенными из субъединиц – протомеров. Ферменты функционируют обычно в составе мультиферментных систем, катализирующих определенные последовательности реакций (продукт реакции, полученный при участии одного фермента, является субстратом для второго фермента и т. д.). Упаковка субъединиц в мультимерном (состоящем из нескольких субъединиц) белке осуществляется благодаря взаимодействиям того же типа, что и при образовании четвертичной структуры белка. Среди ферментов-мультимеров преобладают димеры и тетрамеры, менее распространены гекса- и октамеры и очень редко встречаются тримеры и пентамеры. Например, дрожжевая синтетаза жирных кислот, катализирующая синтез жирных кислот из низкомолекулярных предшественников, представляет собой систему из семи разных ферментов, молекулы которых объединены в прочно связанный комплекс.

Мультимерные ферментные белки могут содержать протомеры нескольких типов, катализирующих одну и ту же реакцию, но различающихся первичной структурой, молекулярной массой, субстратной специфичностью и др. От соотношения протомеров разного типа в мультимере зависят некоторые его физические и химические свойства. Такие различающиеся формы мультимерного фермента называются изоферментами (изозимами).

Изоферменты являются продуктами экспрессии разных генов. В виде нескольких изоферментов существует ряд ферментов, причем они могут встречаться у одного и того же организма и даже внутри одной и той же клетки. Один из основных механизмов образования изоферментов включает объединение разных субъединиц в разной комбинации при образовании активного олигомерного фермента. Например, лактатдегидрогеназа, катализирующая в мышцах обратимую реакцию окисления молочной кислоты, состоит из четырех субъединиц (тетрамер) двух типов (Н и М) и представлена пятью изоферментами – НННН, НННМ, ННММ, НМММ, ММММ. Они отличаются друг от друга активностью, молекулярной массой, электрофоретической подвижностью, локализацией в органах и тканях, чувствительностью к регуляторным веществам. Существование изоферментов позволяет организму изменять их соотношение и регулировать таким образом метаболическую активность.

Изучение структуры молекул ферментов позволило выявить ряд закономерностей в их организации. Полипептидная цепь, образующая белковую глобулу, свернута довольно сложным образом. Одни участки этой цепи являются -спиралями или же -структурами, другие принимают нерегулярные, но вполне определенные конформации. Эти структуры, тесно прилегая друг к другу и чередуясь, упаковываются в блоки, обладающие функциональной активностью. На поверхности белковой глобулы находятся в основном полярные группы и заряженные атомы, причем между противоположно заряженными группами иногда образуются ионные связи. Внутренние области белковой глобулы представляет собой неполярную среду, гидрофобное ядро образовано неполярными группами, входящими главным образом в состав алифатических и ароматических боковых цепей аланина, валина, лейцина, изолейцина, метионина, фенилаланина и триптофана. Полярные радикалы аминокислот, имеющие функциональное значение, могут быть также ориентированы внутрь глобулы и ассоциированы друг с другом.

Важнейшей частью фермента является активный центр , обычно имеющий форму щели или впадины в глобуле фермента и представляющий собой сложную трех-мерную структуру. Одни ферменты имеют один, другие – два или более активных центра. Активные центры ферментов образуются на уровне третичной структуры. В активном центре происходит связывание субстрата и превращение его в продукт. Активный центр почти всегда построен из небольшого количества аминокислотных остатков, которые, как правило, значительно удалены друг от друга в полипептидной цепи. При ее свертывании функциональные группы этих аминокислотных остатков сближаются и формируют активный центр.

В активном центре выделяют два участка – связывающий и каталитический. Остатки аминокислот, образующие связывающий участок , отвечают за специфическое комплементарное связывание субстрата и образование фермент-субстратного комплекса, обеспечивая удержание субстрата в активном центре. Именно «архитектура» связывающего участка активного центра фермента определяет его комплементарность структуре субстрата. Формирование фермент-субстратного комплекса происходит без образования ковалентных связей, за счет более слабых сил – водородных и электростатических связей, гидрофобных и вандерваальсовых взаимодействий.

В каталитический участок фермента входят остатки аминокислот, непосредственно участвующие в катализе. Их называют каталитическими группами, и они чаще всего представлены функциональными группами остатков серина, гистидина, триптофана, аргинина, цистеина, аспарагиновой и глутаминовой кислот, тирозина. Окончательное формирование каталитического участка у многих ферментов может происходить в момент присоединения субстрата (принцип индуцированного соответствия субстрата и фермента).

Активный центр не может быть очерчен строго определенными границами, поскольку каждый его компонент, так или иначе, взаимодействует с другими участками молекулы фермента. Влияние микроокружения может быть весьма существенным:

    компоненты активного центра, в том числе и кофакторы, взаимодействуют с соседними группами фермента, что изменяет химические характеристики функциональных групп, участвующих в катализе;

    в клетке ферменты образуют структурные комплексы как друг с другом, так и с участками клеточных и внутриклеточных мембран, с элементами цитоскелета и/или другими молекулами, что влияет на реакционную способность функциональных групп в активном центре фермента.

Структура активного центра определяет регио- и стереоспецифичность действия ферментов.

Некоторые ферменты проявляют полифункциональность – способность катализировать несколько типов реакций. Это явление объясняется тем, что при формировании третичной структуры полипептидные цепи таких ферментов образуют несколько функционально и стерически обособленных глобулярных участков – доменов , каждый из которых характеризуется собственной каталитической активностью.

Специфичность ферментов. Одним из удивительных свойств ферментов является их высокая специфичность. Различают субстратную и реакционную специфичность. Большинство ферментов высокоспецифично как к природе, так и к пути превращения субстрата.

Субстратная специфичность – это способность фермента катализировать превращение определенного субстрата или нескольких субстратов со схожей химической структурой. Эта специфичность у разных ферментов значительно варьируется: одни ферменты могут катализировать реакцию с участием только одного субстрата (абсолютная специфичность), другие взаимодействуют с несколькими химически родственными веществами (групповая специфичность). Например, формамидаза гидролизует только формамид, а амидаза – любой алифатический амид. В этом случае говорят, соответственно, об узкой и широкой субстратной специфичности ферментов.

Субстратная специфичность обусловлена комплементарностью структуры связывающего участка фермента структуре субстрата. Между аминокислотными остатками активного центра фермента и субстратом устанавливается геометрическое (по форме) и химическое соответствие (образование гидрофобных, ионных и водородных связей). Связывание субстрата в активном центре фермента происходит многоточечно, с участием нескольких функциональных групп.

Реакционная специфичность характеризует способность ферментов катализировать реакции определенного типа (например, окислительно-восстановительные). Если субстрат может существовать в нескольких изомерных формах, то одни и те же химические превращения этих изомеров катализируют разные ферменты (например, оксидазы L -аминокислот и оксидазы D -аминокислот). Исключение составляют изомеразы, которые катализируют взаимопревращения изомеров.

Закономерности ферментативного катализа. Ферментативная реакция – это многостадийный процесс. На 1-й стадии устанавливается индуцированное комплементарное соответствие между ферментом Е и субстратом S . В результате образуется фермент-субстратный комплекс Е S , в котором далее происходит химическое превращение субстрата в продукт(ы). Е S -комплекс через переходное состояние Е S * превращается в комплекс фермент-продукт(ы) ЕР , после чего продукт(ы) превращения отделяются от фермента:

Е + S Е S Е S * ЕР Е + Р

При связывании субстрата с ферментом происходит изменение конформации молекул фермента и субстрата, последняя фиксируется в активном центре в напряженной конфигурации. Так формируется активированный комплекс, или переходное состояние, – высокоэнергетическая промежуточная структура, которая энергетически менее устойчива, чем исходные соединения и продукты. Важнейший вклад в суммарный каталитический эффект вносит процесс стабилизации переходного состояния – взаимодействия между аминокислотными остатками белка и субстратом. Разность значений свободной энергии для исходных реагентов и переходного состояния соответствует свободной энергии активации G # . Это количество энергии, необходимое для перевода всех молекул субстрата в активированное состояние.

Скорость реакции зависит от величины G # : чем она меньше, тем больше скорость реакции, и наоборот. По сути, G # представляет собой энергетический барьер, который требуется преодолеть для осуществления реакции. Вершина энергетического барьера соответствует переходному состоянию. Стабилизация переходного состояния понижает этот барьер или энергию активации, т. е. ферменты повышают скорость реакций путем снижения активационного барьера и увеличения энергии субстрата при связывании его с ферментом, не влияя при этом на полное изменение свободной энергии.

Можно выделить несколько причин высокой каталитической активности ферментов, которые обеспечивают снижение энергетического барьера реакции:

1) фермент может связывать молекулы реагирующих субстратов таким образом, что их реакционноспособные группы будут располагаться поблизости друг от друга и от каталитических групп фермента (эффект сближения );

2) при образовании фермент-субстратного комплекса достигаются фиксация субстрата и его оптимальная для разрыва и образования химических связей ориентация (эффект ориентации );

3) связывание субстрата приводит к удалению его гидратной оболочки (существует для растворенных в воде веществ);

4) эффект индуцированного соответствия субстрата и фермента;

5) стабилизация переходного состояния;

6) определенные группы в молекуле фермента (кофермента) могут обеспечивать кислотно-основной катализ (перенос протонов в субстрате) и нуклеофильный катализ (формирование ковалентных связей между ферментом и субстратом, что ведет к образованию более реакционноспособных структур, чем субстрат). Последний характерен для ферментов, катализирующих реакции нуклеофильного замещения.

Кофакторы ферментов. Активность ряда ферментов зависит только от структуры самого белка. Однако во многих случаях (~40%) для осуществления катализа ферменты нуждаются в особых посредниках – кофакторах. Кофакторы – это низкомолекулярные соединения небелковой природы (ионы металлов, сложные органические соединения, в основном производные витаминов), которые функционируют на промежуточных стадиях ферментативной реакции (или цикла реакций), но не расходуются в ходе катализа. В большинстве случаев кофакторы регенерируются в неизменном виде по завершении каталитического акта.

Отделение кофактора от белка, обычно связанного с ним нековалентными связями, приводит к образованию неактивного апофермента. Каталитически активный комплекс апофермент-кофактор называется холоферментом .

Различные по химической природе кофакторы делят на две основные группы – коферменты и простетические группы.

Коферменты непрочно (нековалентно) связаны с белком и при катализе отделяются от него (например, НАД + , КоА). Восстановление их исходной структуры (регенерация) после участия в катализе может катализироваться уже другим ферментом.

Простетические группы прочно (часто ковалентно) связаны с апоферментом и при катализе не отделяются от него (например, гем в гемопротеинах, атомы металлов в металлопротеинах).

Каждый кофактор имеет определенную структуру, что делает его специфичным для определенного типа реакций. Для участия в реакции кофакторы должны быть связаны с ферментами. При этом комплементарное, точное размещение кофактора в активном центре фермента обеспечивает множество нековалентных контактов с ферментом.

Основные механизмы, согласно которым кофакторы принимают участие в катализе, следующие:

    выполняют функцию переносчиков между ферментами. Взаимодействуя с одним ферментом, переносчик акцептирует часть субстрата, мигрирует к другому ферменту и передает переносимую часть субстрату второго фермента, после чего высвобождается. Такой механизм типичен для большинства коферментов;

    выполняют роль «внутриферментного переносчика», что характерно, в первую очередь, для простетических групп. Простетическая группа присоединяет часть молекулы субстрата и переносит ее на второй субстрат, связанный в активном центре того же фермента. В этом случае простетическую группу рассматривают как часть каталитического участка фермента;

    изменяют конформацию молекулы фермента, взаимодействуя с ней вне активного центра, что может индуцировать переход активного центра в каталитически активную конфигурацию;

    стабилизируют конформацию фермента, способствующую каталитически активному состоянию;

    выполняют функцию матрицы. Например, полимеразы нуклеиновых кислот нуждаются в «программе» – матрице, по которой строится новая молекула;

    играют роль промежуточных соединений. Иногда фермент может использовать в реакции молекулу кофактора, образуя из нее продукт, но при этом одновременно за счет субстрата образовать новую молекулу кофактора.

Обычно кофакторы играют роль промежуточных переносчиков электронов, некоторых атомов или функциональных групп, которые в результате ферментативной реакции переносятся с одного соединения на другое. Наиболее распространены кофакторы, осуществляющие перенос восстановительных эквивалентов, фосфатных, ацильных и карбоксильных групп. Ограничимся рассмотрением структуры и механизма функционирования переносчиков восстановительных эквивалентов.

Под восстановительными эквивалентами подразумевают обычно атомы Н, электроны или гидрид-ионы. Поскольку их перенос осуществляется в ходе окислительно-восстановительных реакций, соответствующие переносчики называют окислительно-восстановительными кофакторами:

Е 1 Е 2

А Н 2 + Р А + Р Н 2 ; Р Н 2 + В Р + В Н 2

Суммарная реакция: А Н 2 + В А + В Н 2

где А , В – окисленные субстраты; Р – переносчик; А Н 2 , В Н 2 – восстановленные субстраты; Е 1 , Е 2 – ферменты (дегидрогеназы).

К ним относятся никотинамидные и флавиновые переносчики, цитохромы, хиноны, липоевая и аскорбиновая кислоты, глутатион. Наиболее распространены никотинамидные (НАД + и НАДФ +) и флавиновые (ФАД и ФМН) коферменты.

Никотинамидные переносчики восстановительных эквивалентов. Ими являются никотинамидадениндинуклеотид (НАД + , или NAD +) и никотинамидадениндинуклеотидфосфат (НАДФ + , или NADP +), которые представлены на рис. 12. Окисленные формы этих коферментов принято обозначать НАД + и НАДФ + , подчеркивая присутствие избыточного положительного заряда на атоме азота пиридинового кольца.

Рис. 12. Окисленная форма никотинамидадениндинуклеотида (NAD +) и никотинамидадениндинуклеотидфосфата (NADP +)

Функциональной группой никотинамидных переносчиков восстановительных эквивалентов служит пиридиновое кольцо , входящее в состав никотинамида – витамина В 5 (РР). При ферментативном окислении субстрата с участием НАД + (НАДФ +) никотинамид восстанавливается в ходе присоединения гидрид-иона. При этом дегидрирование субстрата в большинстве случаев сопровождается отщеплением двух атомов водорода, в ходе которого протон Н + переносится через раствор (рис. 13).

Рис. 13. Восстановление никотинамида

Примером функционирования никотинамидных переносчиков восстановительных эквивалентов может служить окисление этанола в уксусный альдегид, катализируемое алкогольдегидрогеназой. Этот фермент осуществляет отщепление двух атомов водорода от молекулы этанола, причем к НАД + переносится водород, связанный с углеродом спиртовой группы, а водород, присоединенный к кислороду ОН-группы, высвобождается в среду в виде Н + :

Два пиридиновых кофермента участвуют в разных окислительно-восстановительных реакциях при различных окислительно-восстановительных потенциалах: НАД + чаще выступает в роли окислительного агента в катаболитных путях, а НАДФ + восстанавливается до НАДФН·Н + и выполняет функцию восстановителя в биосинтетических процессах.

Флавиновые переносчики восстановительных эквивалентов. К ним относятся флавинадениндинуклеотид (ФАД, или FAD) и флавинмононуклеотид (ФМН, или FMN), которые представлены на рис. 14.

Рис. 14. Структура флавиновых восстановительных эквивалентов

Флавиновые коферменты являются более сильными окислителями, чем никотинамидные, а восстановленные формы никотинамидных коферментов служат более сильными восстановителями, чем восстановленные флавины.

Реакционноспособной частью ФАД и ФМН служит изоаллоксазиновая система , содержащая двойные сопряженные связи. Структура этой системы изменяется при восстановлении. Дегидрирование с участием флавиновых кофакторов сопровождается отщеплением от субстрата двух атомов водорода, но в отличие от никотинамидных коферментов, акцептирующих гидрид-ион, флавиновые кофакторы акцептируют оба атома водорода (рис. 15). Поэтому восстановленные формы ФАД и ФМН обозначаются как ФАДН 2 и ФМНН 2 .

Рис. 15. Функционирование флавиновых коферментов

АКТИВНОСТЬ ФЕРМЕНТОВ И ФАКТОРЫ, НА НЕЕ ВЛИЯЮЩИЕ. ПРИНЦИПЫ ФЕРМЕНТАТИВНОЙ КИНЕТИКИ

Под активностью фермента понимают такое его количество, которое катализирует превращение определенного количества субстрата в единицу времени. Для выражения активности препаратов ферментов используют две альтернативные единицы: международную (МЕ) и «катал» (кат). За международную единицу активности фермента принято такое его количество, которое катализирует превращение 1 мкмоля субстрата в продукт за 1 мин в стандартных условиях (обычно оптимальных). 1 катал обозначает количество фермента, катализирующее превращение 1 моля субстрата за 1 с. 1 кат = 6∙10 7 МЕ. При бимолекулярной реакции A + В = С + D за единицу активности фермента принимают такое его количество, которое катализирует превращение одного мкмоля А или В или двух мкмолей А (если В = А ) за 1 мин.

Часто ферментные препараты характеризуются удельной активностью, которая отражает степень очистки фермента. Удельная активность – это число единиц активности фермента, приходящихся на 1 мг белка.

Молекулярная активность (число оборотов фермента) – число молекул субстрата, подвергающееся превращению одной молекулой фермента за 1 мин при полном насыщении фермента субстратом. Она равна числу единиц активности фермента, деленному на количество фермента, выраженное в мкмолях. Понятие молекулярной активности применимо только для чистых ферментов.

Когда известно количество активных центров в молекуле фермента, вводится понятие активности каталитического центра . Характеризуется числом молекул субстрата, которое подвергается превращению за 1 мин в расчете на один активный центр.

Активность ферментов сильно зависит от внешних условий, среди которых первостепенное значение имеют температура и рН среды. Повышение температуры в интервале 0 - 50°С обычно приводит к плавному увеличению ферментативной активности, что связано с ускорением процессов формирования фермент-субстратного комплекса и всех последующих событий катализа. При повышении температуры на каждые 10°С скорость реакции увеличивается примерно вдвое (правило Вант-Гоффа). Однако дальнейшее повышение температуры (>50°С) сопровождается увеличением количества инактивированного фермента за счет денатурации его белковой части, что выражается в снижении активности. Каждый фермент характеризуется температурным оптимумом – значением температуры, при котором регистрируется наибольшая его активность.

Зависимость активности ферментов от значения рН среды имеет сложный характер. Для каждого фермента характерен оптимум рН среды, при котором он проявляет максимальную активность. При удалении от этого значения в ту или другую сторону ферментативная активность снижается. Это объясняется изменением состояния активного центра фермента (уменьшением или увеличением ионизации функциональных групп), а также третичной структуры всей белковой молекулы, которая зависит от соотношения в ней катионных и анионных центров. Большинство ферментов имеют оптимум рН в области нейтральных значений. Однако есть ферменты, проявляющие максимальную активность при рН 1,5 (пепсин) или 9,5 (аргиназа). При работе с ферментами необходимо поддерживать рН с помощью соответствующего буферного раствора. Зависимость ферментативной активности от рН определяется значениями рК ионизированных групп белковой молекулы.

Активность ферментов подвержена значительным колебаниям в зависимости от воздействия ингибиторов (веществ, частично или полностью снижающих активность) и активаторов (веществ, увеличивающих активность). Их роль выполняют катионы металлов, некоторые анионы, переносчики фосфатных групп, восстановительных эквивалентов, специфические белки, промежуточные и конечные продукты метаболизма.

Принципы ферментативной кинетики . Суть кинетических исследований состоит в определении максимальной скорости ферментативной реакции V max и константы Михаэлиса К м. Ферментативная кинетика изучает скорости количественных превращений одних веществ в другие под действием ферментов. Скорость ферментативной реакции измеряют по убыли субстрата или приросту образующегося продукта за единицу времени либо по изменению концентрации одной из смежных форм кофермента.

Влияние концентрации фермента на скорость реакции выражается в следующем: если концентрация субстрата постоянна (при условии избытка субстрата), то скорость реакции пропорциональна концентрации фермента. Для кинетических исследований используют концентрацию фермента 10  8 М активных центров.

Оптимальное значение концентрации фермента определяют из графика зависимости активности фермента от его концентрации (рис.16).

Оптимальным считается значение, лежащее на плато полученного графика в области значений активности фермента, мало зависящих от его концентрации.

Ферментами называются белковые вещества (см. Белки), ускоряющие жизненно важные химические реакции в клетках организмов. Являясь катализаторами, они образуют с исходными веществами неустойчивые промежуточные соединения: эти соединения, распадаясь, дают конечный продукт данной реакции и освобождают ферменты.

Действие некоторых ферментов легко наблюдать в опыте. Так, фермент каталаза значительно ускоряет разложение пероксида водорода на воду и кислород. Это жизненно важная реакция, так как пероксид водорода образуется в результате обмена веществ в клетке и сам по себе оказывает на клетку вредное действие. Каталаза содержится почти во всех клетках животных и растительных организмов.

Известно очень много ферментов, и каждый из них ускоряет только одну какую-либо реакцию или группы однотипных реакций. Эту особенность ферментов называют специфичностью или селективностью (избирательностью) действия. Направленность их действия позволяет организму быстро и точно выполнять сложную химическую работу по перестройке молекул пищевых веществ в нужные ему соединения.

Уже во рту во время пережевывания пищи под влиянием фермента амилазы сложные сахара, в частности крахмал, начинают разлагаться на менее сложные. Эта работа в дальнейшем будет продолжена в кишечнике ферментами карбогидразами. В желудке и кишечнике разложению с участием пепсина, трипсина, химотрипсина подвергаются белки пищи. Жиры разлагаются на глицерин и карбоновые кислоты (или их соли) под влиянием ферментов, называемых липазами. Все эти реакции разложения протекают по одному принципу: разрывается определенная химическая связь в молекуле белка, углевода или жира, и освободившиеся валентности используются для присоединения групп и иона из молекул воды. Происходит процесс гидролиза. Для молекулы белка эту реакцию можно представить так:

Известны ферменты, оказывающие иное действие на молекулы. Некоторые из них ускоряют окислительно-восстановительные реакции: они способствуют переносу электрона от одной молекулы (окисляемой) к другой (восстанавливаемой). Существуют ферменты, соединяющие молекулы друг с другом; ферменты, переносящие большие и сложные группы атомов от одной молекулы к другой, и т. д.

Располагая богатым набором ферментов-катализаторов, клетка разлагает молекулы пищевых белков, жиров и углеводов на небольшие фрагменты и из них заново строит белковые и иные молекулы, которые будут точно соответствовать потребностям данного организма. Вот почему великий русский физиолог И. П. Павлов назвал ферменты носителями жизни.

Активность большего числа ферментов определяется строением белковой молекулы. Определенное пространственное расположение остатков аминокислот, образующих цепеобразную молекулу белка (по-липептидная цепь, см. Пептиды), создает условия для протекания катализируемой ферментом реакции. Длинная цепочка остатков аминокислот свернута в сложный клубок так, что аминокислоты, расположенные в цепи далеко друг от друга, могут оказаться соседями. Некоторые из возникших таким путем группировок остатков аминокислот проявляют каталитические свойства и образуют активный центр фермента.

Пепсин, химотрипсин, принимающие участие в пищеварении, могут служить примером ферментов, в которых активная группа является частью молекулы белка.

Другие ферменты для проявления активности нуждаются в веществах небелковой природы - так называемых кофакторах. Кофактором может быть ион металла (цинка, марганца, кальция и др.) или молекула органического соединения; в последнем случае ее часто называют коферментом. Иногда для действия фермента бывает необходимо присутствие как ионов металлов, так и коферментов. В отдельных случаях кофермент очень прочно соединен с белком; это наблюдается, например, у фермента каталазы, где кофермент представляет собой комплексное соединение железа . В некоторых ферментах коферменты - это вещества, близкие по строению молекулы к витаминам. Витамины, таким образом, являются предшественниками коферментов. Так, из витамина (тиамина) в клетках образуется тиамин-пирофосфат - кофермент важного фермента (его называют декарбоксилаза), превращающего пировиноградную кислоту в оксид углерода (IV) и ацетальдегид; из витамина получаются коферменты флавиновых ферментов, осуществляющих в клетках перенос электронов - одну из стадий окисления пищевых веществ; из витамина образуются коферменты, необходимые в процессе кроветворения, и т. д.

В последние годы широко используются так называемые иммобилизованные (неподвижные) ферменты. Для ускорения нужной реакции их закрепляют на поверхности инертного «носителя». В качестве его обычно используют силикагель - пористую белую массу, по составу - оксид кремния (IV) -или полимерные материалы. Через эту массу фильтруют исходные вещества. Фермент быстро и точно производит высокоспецифичную «химическую работу», в результате которой получаются продукты, почти не содержащие посторонних соединений.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: