Теория возникновения антител. Теория антиген-антитело. Середина: селективная теория «боковых цепей» Пауля Эрлиха

Эндокринная система, или система внутренней сек­реции, состоит из желез внутренней секреции, названных так пото­му, что они выделяют специфические продукты своей деятельно­сти - гормоны - непосредственно во внутреннюю среду организма, в кровь. Этих желез в организме восемь: щитовидная, около- или паращитовидная, зобная (вилочковая), гипофиз, эпифиз (или шиш­ковидная железа), надпочечники (надпочечные железы), поджелу­дочная и половые железы (рис. 67).

Общая функция эндокринной системы сводится к осуществле­нию химической регуляции в организме, установлению связи меж­ду его органами и системами и поддержанию их функций на опре­деленном уровне.

Гормоны эндокринных желез - вещества с очень высокой био­логической активностью, т. е. действующие в очень малых дозах. Вместе с ферментами и витаминами они относятся к так называе­мым биокатализаторам. Кроме того, гормоны обладают специфи­ческим действием - одни из них оказывают влияние на определен­ные органы, другие управляют определенными процессами в тка­нях организма.

Железы внутренней секреции участвуют в процессе роста и раз­вития организма, в регуляции обменных процессов, обеспечиваю­щих его жизнедеятельность, в мобилизации сил организма, а также в восстановлении энергетических ресуров и обновлении его клеток и тка­ней. Таким образом, помимо нервной регуляции жизнедеятельности организ­ма (в том числе при занятиях спортом) существует эндокринная регуляция и гуморальная регуляция, тесно взаимо­связанные и осуществляемые по меха­низму «обратной связи».

Поскольку занятия физической культурой и особенно спортом требу­ют все более совершенных регулирова­ния и корреляции деятельности раз­личных систем и органов человека в сложных условиях эмоционального и физического напряжения, исследование функции эндокринной системы хотя и не вошло еще в широкую практику, но постепенно начинает занимать все большее место в комплексном исследо­вании спортсмена.

Правильная оценка функционально­го состояния эндокринной системы поз­воляет выявить патологические измене­ния в ней в случае нерационального применения физических упражнений. Под влиянием рациональных система­тических занятий физической культурой и спортом эта система со­вершенствуется.

Адаптация эндокринной системы к физической нагрузке харак­теризуется не просто усилением активности желез внутренней сек­реции, а главным образом изменением взаимоотношений между отдельными железами. Развитие утомления при длительной работе также сопровождается соответствующими изменениями в активно­сти желез внутренней секреции.

Эндокринная система человека, совершенствуясь под влиянием рациональной тренировки, способствует повышению адаптационных возможностей организма, что обусловливает улучшение спортив­ной работоспособности, в частности при развитии выносли­вости.

Исследование эндокринной системы сложно и обычно прово­дится в условиях стационара. Но существует ряд простых методов исследования, позволяющих в известной мере оценить функцио­нальное состояние отдельных желез внутренней секреции, - анам­нез, осмотр, пальпация, функциональные пробы.

Анамнез. Важными являются данные о периоде полового со­зревания. При расспросе женщин выясняют время начала, регу­лярность, длительность, обильность менструации, развитие вторич­ных половых признаков; при расспросе мужчин - время появления ломки голоса, растительности на лице и т. д. У лиц старшего воз­раста - время появления климактерического периода, т. е. время прекращения менструаций у женщин, состояние половой функции у мужчин.

Существенными являются сведения об эмоциональном состоя­нии. Например, быстрая смена настроения, повышенная возбуди­мость, беспокойство, сопровождаемые обычно потливостью, тахи­кардией, потерей веса, субфебрильной температурой, быстрой утом­ляемостью, могут свидетельствовать о повышении функции щито­видной железы. При понижении функции щитовидной железы от­мечается апатия, которой сопутствуют вялость, медлительность, брадикардия и т. д.

Симптомы повышения функции щитовидной железы иногда поч­ти совпадают с симптомами, появляющимися при перетренированности спортсмена. Этой стороне анамнеза следует придавать осо­бое значение, поскольку у спортсменов наблюдаются случаи повы­шения функции щитовидной железы (гипертиреоз).

Выясняют наличие жалоб, характерных для больных сахарным диабетом, - на повышенные жажду и аппетит и др.

Осмотр. Обращают внимание на следующие признаки: про­порциональность развития отдельных частей тела у лиц высокого роста (нет ли непропорционального увеличения носа, подбородка, кистей рук и стоп, которое может свидетельствовать о гиперфунк­ции передней доли гипофиза - акромегалии), на наличие пучегла­зия, выраженного блеска глаз (наблюдается при гипертиреозе), одутловатости лица (отмечается при гипотиреозе), а также на та­кие признаки, как увеличение щитовидной железы, потливость или сухость кожи, наличие жира (преимущественное отложение жира в нижней части живота, ягодицах, бедрах и на груди характерно для ожирения, связанного с нарушением функции гипофиза и половых желез), резкое похудание (бывает при тиреотоксикозе, заболева­ниях гипофиза - болезнь Симмондса и надпочечников - болезнь Адиссона).

Кроме того, при осмотре определяют волосяной покров на теле, поскольку рост волос зависит в большой мере от гормональных влияний половых желез, щитовидной железы, надпочечника и гипо­физа. Наличие у мужчин волосяного покрова, характерного для женщин, может свидетельствовать о недостаточности функции по­ловых желез. Мужской тип волосяного покрова у женщин может быть проявлением гермафродитизма - наличия у одного индиви­дуума признаков, характерных для обоих полов (такие лица к за­нятиям спортом не допускаются).

Чрезмерный рост волос на теле и конечностях, а у женщин и на лице (усы и борода) позволяют заподозрить опухоль коры надпо­чечника, гипертиреоз и др.

Пальпация. Из всех эндокринных желез непосредственной пальпации (как и осмотру) могут быть подвергнуты щитовидная железа и мужские половые железы; при гинекологическом исследо­вании - женские половые железы (яичники).

Функциональные пробы. При исследовании функции эн­докринных желез применяется много таких проб. Наибольшее зна­чение в спортивной медицине имеют функциональные пробы, ис­пользуемые при исследовании щитовидной железы и надпочеч­ников.

Функциональные пробы при исследовании функции щитовидной железы основаны на исследовании обменных процессов, регулируемых этой железой. Гормон щитовид­ной железы - тироксин стимулирует окислительные процессы, уча­ствуя в регуляции различных видов обмена (углеводного, жирово­го, обмена йода и др.). Поэтому основным методом изучения функ­ционального состояния щитовидной железы является определение основного обмена (количество энергии в килокалориях, расходуе­мое человеком в состоянии полного покоя), находящегося в пря­мой зависимости от функции щитовидной железы и количества вы­деляемого ею тироксина.

Величина основного обмена в килокалориях сопоставляется с должными величинами, рассчитанными по таблицам Гарриса - Бе­недикта или по номограммам, и выражается в процентах к долж­ной величине. Если основной обмен у обследуемого спортсмена пре­вышает должный более чем на +10%, это позволяет предположить гиперфункцию щитовидной железы, если меньше на 10% - ее гипо­функцию. Чем выше процент превышения, тем выраженнее гипер­функция щитовидной железы. При значительном гипертиреозе ве­личина основного обмена может быть больше +100%. Снижение основного обмена более чем на 10% по сравнению с должным может указывать на гипофункцию щитовидной железы.

Функцию щитовидной железы можно исследовать также с помо­щью радиоактивного йода. При этом определяется способность щи­товидной железы к его поглощению. Если в щитовидной железе через 24 часа сохраняется больше 25% введенного йода, это свиде­тельствует о повышении ее функции.

Функциональные пробы при исследовании функции надпочечников позволяют получить ценные дан­ные. Надпочечники оказывают разностороннее влияние на орга­низм. Мозговое вещество надпочечников, выделяя гормоны - катехоламины (адреналин и норадреналин), осуществляет связь между железами внутренней секреции и нервной системой, участвует в регуляции углеводного обмена, поддерживает тонус сосудов и мышцы сердца. Корковое вещество надпочечников выделяет альдостерон, кортикостероиды, андрогенные гормоны, играющие важней­шую роль в жизнедеятельности организма в целом. Все эти гормо­ны участвуют в минеральном, углеводном, белковом обмене и в ре­гуляции целого ряда процессов в организме.

Напряженная мышечная работа усиливает функцию мозгового слоя надпочечников. По степени этого усиления можно судить о влиянии нагрузки на организм спортсмена.

Для определения функционального состояния надпочечников исследуется химический и морфологический состав крови (количество калия и натрия в сыворотке крови, количество эозинофилов в крови) и мочи (определение 17-кетостероидов и др.).

У тренированных спортсменов после нагрузки, соответствующей уровню их подготовленности, отмечается умеренное повышение функции надпочечника. Если же нагрузка превышает функциональ­ные возможности спортсмена, происходит угнетение гормональной функции надпочечников. Это определяется специальным биохимиче­ским исследованием крови и мочи. При недостаточности функции надпочечников изменяется минеральный и водный обмен: в сыво­ротке крови снижается уровень натрия и возрастает количество калия.

Без совершенной, согласованной функции всех желез внутренней секреции нельзя достичь высокой спортивной работоспособности. По-видимому, различные виды спорта связаны с преимуществен­ным повышением функции разных желез внутренней секреции, ибо гормоны каждой из желез оказывают специфическое действие.

При развитии качества выносливости основную роль играют гор­моны, регулирующие все основные виды обмена, при развитии ка­честв скорости и силы важное значение имеет повышение уровня адреналина в крови.

Актуальной задачей современной спортивной медицины явля­ется изучение функционального состояния эндокринной системы спортсмена для выяснения ее роли в повышении его работоспособ­ности и предупреждении развития патологических изменений как в самой эндокринной системе, так и в других системах и органах (поскольку нарушение функции эндокринной системы оказывает влияние на организм в целом).

Глава 15 ЗАКЛЮЧЕНИЕ ПО РЕЗУЛЬТАТАМ МЕДИЦИНСКОГО ОБСЛЕДОВАНИЯ

Врачебное обследование физкультурника и спорт­смена, как первичное, так и повторное и дополнительное, должно завершаться врачебным заключением.

На основании полученных при обследовании данных анамнеза, физического развития, состояния здоровья и функционального со­стояния, а также данных инструментального, лабораторного иссле­дований и заключения специалистов по отдельным органам и систе­мам (окулиста, невропатолога и др.) спортивный врач-терапевт должен сделать определенные выводы и дать соответствующее за­ключение.

Первичное врачебное обследование обязательно включает в себя все перечисленные выше элементы. При повторном и дополнитель­ном обследованиях инструментальные, лабораторные исследования и консультации специалистов проводятся только при необходимости и лишь те, которые найдет нужным назначить наблюдавший врач-диспансеризатор. Этим обусловливается различный характер вра­чебного заключения при первичном, повторном и дополнительном обследованиях физкультурника или спортсмена. Однако независи­мо от того, какое врачебное обследование проведено, медицинское заключение должно содержать следующие пять разделов: 1) оцен­ку состояния здоровья, 2) оценку физического развития, 3) оценку функционального состояния, 4) рекомендации спортсмену по режи­му дня, питанию и т. д. и 5) рекомендации тренеру и преподавате­лю по индивидуализации тренировочного процесса, режиму тре­нировки.

Оценка состояния здоровья. От этой оценки при первичном врачебном обследовании, по существу, зависит допуск данного лица к занятиям спортом или только к занятиям оздоро­вительной физкультурой. Для того чтобы поставить диагноз «здо­ров», врач обязан исключить все возможные патологические изме­нения в организме, являющиеся противопоказанием к занятиям спортом. Чтобы уверенно поставить такой диагноз, он использует весь арсенал современных диагностических средств.

Если диагноз «здоров» не вызывает сомнений и подтверждается всеми дальнейшими исследованиями, обследуемое лицо получает допуск к занятиям спортом и рекомендации по поводу того, какими видами спорта ему лучше заниматься. Эти рекомендации даются на основании всех полученных при исследовании данных, выявляю­щих особенности телосложения, конституции, функционального со­стояния и др., с учетом специфики тренировочного процесса в том или ином виде спорта, требующей определенных индивидуальных особенностей, которые должен хорошо знать спортивный врач.

Если обследуемое лицо не допускается к занятиям спортом, для чего должны быть абсолютные противопоказания, врач обязан дать рекомендации относительно занятий физической культурой, указав их характер и допустимые дозы физической нагрузки.

Абсолютными противопоказаниями к занятиям спортом являются различные хронические заболевания (порок серд­ца, хронические заболевания легких, печени, желудка, кишечника, почек и др.), физические дефекты (например, удаленные легкое или почка), которые не могут быть излечены. Врач руководствуется при этом инструкциями, определяющими противопоказания к занятиям теми или иными видами спорта, а также официальной инструкцией, утвержденной Министерством здравоохранения СССР, определяю­щей требования, которым должно отвечать здоровье спортсмена, поступающего в физкультурное высшее учебное заведение.

Помимо абсолютных противопоказаний к занятиям спортом су­ществуют так называемые относительные противопока­зания - дефекты в состоянии здоровья или в физическом разви­тии, которые препятствуют занятиям лишь каким-либо одним видом спорта. Например, перфорация барабанной перепонки вследствие перенесенного ранее воспаления среднего уха является противопо­казанием к занятиям водными видами спорта, но не препятствует занятиям всеми другими видами; плоскостопие служит относитель­ным противопоказанием только к занятиям тяжелой атлетикой. При некоторых нарушениях осанки (например, сутулость, круглая спина) не рекомендуются занятия такими видами спорта, при ко­торых эти дефекты могут усугубиться (например, велосипедный спорт, гребля, бокс), а предлагаются виды спорта, характер трени­ровочного процесса в которых способствует исправлению этих де­фектов.

Для спортсменов кроме этих противопоказаний существуют временные противопоказания к занятиям спортом - в период болезни (до полного выздоровления). К числу таких бо­лезней относятся очаги хронической инфекции, которые могут не вызывать никаких жалоб и определенное время не беспокоить спортсмена.

Очагами хронической инфекции называют хрони­ческие заболевания отдельных органов (кариес зубов, хроническое воспаление глоточных миндалин, желчного пузыря, придаточных полостей носа, яичников и др.), которые активно себя не проявля­ют (нет выраженных жалоб и клинических симптомов), пока орга­низм в состоянии подавлять постоянную интоксикацию, исходящую из них. Однако при малейшем снижении защитных сил организма эти очаги могут вызывать осложнения со стороны других органов. При своевременном лечении и удалении очагов хронической инфек­ции вызванные ими патологические изменения в других органах и системах исчезают, если в них еще не успели развиться необрати­мые изменения.

Преподаватель и тренер должны следить за тем, чтобы спорт­смен выполнял все указания врача и настойчиво лечился.

При повторных и дополнительных врачебных обследованиях дается заключение о происшедших под влия­нием занятий физической культурой и спортом изменениях в со­стоянии здоровья - как положительных, так и возможных отрица­тельных (в случае нерационального использования физической на­грузки).

Оценка физического развития. На основании данных, получен­ных с помощью различных методов изучения и оценки физического развития, дается общее заключение о физическом развитии (сред­нее, высокое или низкое физическое развитие), указываются имею­щиеся его дефекты, в частности нарушение осанки, отставание тех или иных параметров физического развития, без учета которых нельзя правильно построить тренировочный процесс. Занятия фи­зическими упражнениями должны быть направлены не только на повышение функционального состояния занимающегося, но и на устранение выявленных дефектов физического развития, которые могут оказать неблагоприятное влияние и на состояние здоровья, если их не ликвидировать. Так, нарушение осанки (сутулость, ско­лиозы), ухудшая функциональное состояние системы внешнего ды­хания и сердечно-сосудистой системы, может способствовать воз­никновению заболеваний этих систем.

Повторные исследования физического развития позволяют оце­нить воздействие систематических занятий как на морфологические, так и на функциональные показатели физического развития, выя­вить положительные и отрицательные (в случаях, когда занятия проводились без учета тех изменений, на которые врач указывал в заключении при первичном обследовании) сдвиги со стороны фи­зического развития.

Оценка функционального состояния. Для того чтобы заниматься спортом, т. е. выполнять большие физические нагрузки, надо быть не только абсолютно здоровым и хорошо физически развитым, не­обходимо быть и хорошо функционально подготовленным. Поэтому третьим разделом медицинского заключения является оценка функ­ционального состояния обследуемого. Она дается на основании результатов исследования методами функциональной диагностики, проведенного при первичном врачебном обследовании. При повторных и дополнительных врачебных об­следованиях врач определяет изменения со стороны функцио­нального состояния спортсмена. На основании тщательных иссле­дований методами функциональной диагностики делается вывод об улучшении или ухудшении функционального состояния. Его улуч­шение обычно свидетельствует о нарастании уровня тренированно­сти. Кроме того, результаты исследований, проведенных во время тренировок, соревнований (данные врачебно-педагогических наблю­дений - см. дальше), дают тренеру представление о состоянии (улучшении или ухудшении) специальной тренированности.

При повторных обследованиях врач может констатировать со­стояние перетренированности, возникающей вследствие перегруз­ки центральной нервной системы чрезмерными и однообразными физическими нагрузками, вызывающими невроз. Он может опреде­лить переутомление спортсмена. Исследование восстановительного периода после тренировок и соревнований позволяет выявить от­сутствие восстановления функций различных систем организма после предыдущих нагрузок. Недостаточный учет этих данных мо­жет привести к перенапряжению тех систем, в которых были какие-либо отклонения и на которые падала особенно большая нагрузка. Это относится, в частности, к сердцу: у спортсмена при отсутствии каких-либо жалоб и снижения работоспособности обнаруживаются отклонения на ЭКГ, свидетельствующие о несоответствии уровня его подготовленности выполняемой нагрузке. Если не обратить на это внимания, могут произойти глубокие отрицательные изменения в мышце сердца, вызывающие нарушение его функции.

В зависимости от степени функциональной подготовленности за­нимающихся преподаватель и тренер индивидуализируют их физи­ческую нагрузку.

Необходимо иметь в виду, что уровень функционального состоя­ния определяется только комплексным обследованием спортсмена. Как уже было сказано, не следует делать никаких далеко идущих выводов на основании исследования только одного какого-либо показателя, даже кажущегося очень информативным. Характер комплекса используемых при обследовании спортсмена или физ­культурника показателей не должен быть стандартным. Он опре­деляется каждый раз той задачей, которая стоит перед врачом.

Правильная оценка врачом состояния здоровья, физического развития и функционального состояния организма спортсмена по­могает тренеру и преподавателю правильно оценить состояние тре­нированности и, исходя из этого, рационально построить трениро­вочный процесс.

Повышение функционального состояния организма спортсмена характеризуется экономизацией деятельности всех систем в состоя­нии покоя, более экономным приспособлением к стандартным на­грузкам, а во время максимальных физических напряжений - воз­можностью предельного усиления функций организма.

При улучшении функционального состояния сердечно-сосудистой системы" отмечаются замедление частоты сердечных сокращений; некоторое снижение артериального давления в состоянии покоя, а по данным ЭКГ - умеренное замедление предсердно-желудочковой проводимости (PQ), повышение зубцов R и Т, снижение зуб­ца Р, укорочение электрической систолы (QT); увеличение ампли­туды зубцов рентгенокимограммы; по данным поликардиографиче­ского исследования - экономизация сократительной функции.

Улучшение функционального состояния сердечно-сосудистой си­стемы, выявляемое при исследовании с помощью стандартных проб, велоэргометрии и др., выражается в уменьшении реакции пульса и артериального давления при нагрузке на выносливость и силу и увеличении реакции на скоростную нагрузку, что свидетель­ствует о мобилизующей способности организма. Реакция на функ­циональные пробы обычно нормотоническая с хорошим количест­венным соотношением пульса и артериального давления и быстрым их восстановлением.

При повышении функционального состояния системы внешнего дыхания урежается частота дыхания, увеличивается сила дыхатель­ных мышц, фактическая жизненная емкость легких значительно превышает должную, возрастает максимальная легочная вентиля­ция, улучшаются показатели функциональных проб системы внеш­него дыхания, спортсмен становится более выносливым к снижению насыщения артериальной крови кислородом, замедляется скорость кровотока (по данным оксигемометрии).

При повышении функционального состояния нервной и нервно-мышечной систем улучшаются показатели координационных проб, а также проб для исследования вестибулярного аппарата, вегетатив­ной нервной системы, увеличиваются сила различных мышечных групп, амплитуда между напряжением и расслаблением мышц (по данным миотонометрии), уменьшаются двигательная реобаза и хронаксия, сближаются показатели мышц-антагонистов и др.

После перенесенных травм и заболеваний спортсмены и физ­культурники обязаны пройти дополнительное врачебное обследова­ние, на котором определяются точные сроки допуска к спортивным тренировкам и занятиям физической культурой и их интенсивность применительно к конкретному лицу. Перенесенные заболевания или травмы всегда снижают уровень функционального состояния спорт­смена и физкультурника. В этих случаях даже небольшая для того или иного спортсмена физическая нагрузка может не соответство­вать его функциональным возможностям в данный момент и выз­вать неблагоприятные изменения со стороны различных органов и систем. Без дополнительного врачебного обследования тренер и преподаватель не имеют права допускать спортсмена к занятиям. В противном случае это может привести к рецидиву заболева­ния, а иногда и к грозным осложнениям.

При ухудшении функционального состояния под влиянием не­рациональной, чрезмерной физической нагрузки все эти показатели изменяются в противоположную сторону.

Очень существенными для тренера и преподавателя являются те разделы медицинского заключения, в которых врач дает реко­мендации спортсмену по режиму, а тренеру и преподавателю - по индивидуализации трениро­вочных нагрузок и по режиму тренировки.

В конце заключения врач должен указать срок явки на повтор­ное врачебное обследование. Тренер и преподаватель обязаны обес­печить выполнение спортсменом этого указания.

Существует разделение на медицинские группы учащих­ся школ, техникумов и вузов, членов первичных коллективов физи­ческой культуры и занимающихся в группах здоровья. Это разделе­ние предусмотрено государственной программой физического вос­питания. Для лиц старших возрастов программа несколько иная, но принципиально не отличающаяся от общепринятой.

Тренеры и преподаватели, занимающиеся с учащимися или со студентам по государственным программам физического воспи­тания, должны знать, к какой медицинской группе относятся их ученики.

На основании состояния здоровья, физического развития и функ­циональной подготовленности занимающиеся по программе физиче­ского воспитания, а также члены первичных коллективов физиче­ской культуры распределяются на три медицинские группы - ос­новную, подготовительную и специальную.

К основной медицинской группе относятся лица с хорошим функциональным состоянием, у которых нет отклонений в состоянии здоровья и физическом развитии. Помимо занятий в пол­ном объеме по программе физвоспитания им разрешается подготов­ка к сдаче и выполнению норм ГТО. Кроме того, врач дает им ре­комендации относительно занятий в какой-либо спортивной секции и разрешение на участие в соревновании по этому виду спорта при условии достаточной подготовленности.

В подготовительную группу включаются занимаю­щиеся, имеющие небольшие отклонения в состоянии здоровья, недо­статочно полноценное функциональное состояние, слабое физиче­ское развитие. Они осваивают ту же программу физического воспитания, но более постепенно. Нормативы, по которым учитывается их успеваемость, разрабатываются с учетом имеющихся у каждого из них отклонений. Им запрещено заниматься дополни­тельно в спортивных секциях. Отнесенные к этой группе могут за­ниматься общей физической подготовкой и постепенно готовиться к выполнению норм комплекса ГТО. При улучшении состояния здо­ровья, физического развития и функционального состояния эти занимающиеся могут быть переведены из подготовительной группы в основную.

К специальной медицинской группе относятся лица со значительными отклонениями (постоянного или временного характера) в состоянии здоровья и физическом развитии. Занятия с ними строятся по особым программам с учетом имеющихся от­клонений и проводятся под постоянным врачебным наблюдением. При необходимости они направляются на занятия лечебной физи­ческой культурой в лечебно-профилактические учреждения.

Врачебное заключение на спортсмена или физкультур­ника тренер и преподаватель получают в письменном виде. При возможности, а в сборных командах обязательно, врачебные за­ключения обсуждаются совместно с педагогом.

На основании врачебного заключения тренер и преподаватель вносят необходимые коррективы в систему занятий. Указанные в нем рекомендации являются обязательными и требуют от них систе­матического контроля. Это не снимает с врача обязанности перио­дически проверять выполнение своих рекомендаций. Основные по­ложения врачебного заключения, имеющие непосредственное отно­шение к тренировочному процессу, вносятся в индивидуальный план тренировки спортсмена. При повторных врачебных осмотрах проверяется правильность построения тренировочного процесса и занятий физическими упражнениями.

Заключение врача помогает дать глубокую оценку работе тре­нера и преподавателя. Ведь ее эффективность определяется не толь­ко такими важными критериями, как повышение спортивного мас­терства, количество подготовленных спортсменов высокой квалифи­кации, но и сочетанием достижений высокого спортивного мастерст­ва с повышением и укреплением состояния здоровья спортсмена, отсутствием отрицательных изменений. Только при этом условии можно говорить об эффективности и целесообразности используемой тренером и преподавателем методики тренировки.

Необходимость тщательного выполнения врачебного заключения в настоящее время еще более усилилась в связи с использованием: в спортивной тренировке очень интенсивных физических нагрузок. Применение таких нагрузок необходимо для достижения высоких результатов, свойственных современному спорту. Это требует тща­тельного выполнения всех врачебных рекомендаций. Отступление от условий, определенных врачом, при использовании интенсивных нагрузок делает их чрезмерными, что может принести вред здо­ровью спортсмена.

При высоких нагрузках необходимо тщательно следить за их воздействием на организм, чтобы своевременно предотвратить возможное отрицательное их влияние. Если повышение спортивного мастерства, спортивных результатов сопровождается ухудшением состояния здоровья, - применяемая методика тренировки не явля­ется рациональной.

Использование такого рода нагрузок требует абсолютного здо­ровья, четкой их индивидуализации, регулярности и постепенности повышения, достаточного отдыха между занятиями, строгого выпол­нения режима и др. (не следует, например, сочетать большую фи­зическую нагрузку с интенсивной умственной), тщательного систе­матического врачебного наблюдения.

Строгое соблюдение этих требований предотвращает возможную перегрузку и обеспечивает высокую эффективность таких нагрузок.

Современные теории образования антител можно разделить на две группы. Сторонники первой группы считают, что антиген, введенный в организм, непосредственно участвует в образовании антител. Это инструктивные теории . Классическим примером их является теория прямой матрицы Гауровитца - Полинга. Согласно этой теории, антиген проникает в клетку и служит там своеобразной матрицей, на поверхности которой, как на штампе, происходит пространственное конфигурирование гаммаглобулинов. Под влиянием антигена происходит изменение синтеза глобулинов, касающееся не формирования полипептидной цепи, а лишь второй фазы - стадии формирования молекулы, конфигурация которой меняется: концевые части образовавшейся молекулы точно соответствуют конфигурации детерминантной группы антигена. Данная теория не может правильно объяснить многие иммунологические феномены, в том числе и выработку иммуноглобулинов. Она не объясняет несоответствие между продолжительностью образования иммуноглобулинов и временем сохранения антигена в организме (антитела сохраняются годами после введения антигена, а он - ограниченный срок). С позиций данной теории невозможно объяснить феномены иммунологической памяти, иммунологической толерантности, эффективность вторичного иммунного ответа.

Вторая группа - селективные теории антителообразования. Теория «боковых цепей» П. Эрлих а, созданная в 1896 г. и имеющая лишь историческое значение, заслуживает внимания, так как в ней П. Эрлих впрвые высказал идею селекционирующей роли антигена. Клетка, синтезирующая антитела, не создает новых специфических структур под влиянием антигена, они в ней предсуществуют. П. Эрлих предполагал, что на поверхности клеток имеются разнообразные химические группировки - рецепторы, с которыми антиген вследствие химического сродства соединяется, блокирует их функции. В ответ на это клетки вырабатывают большое количество рецепторов, избыток которых обрывается и начинает циркулировать в крови в виде специфических антител.

В 1955 г. Иерне возродил теорию «боковых цепей», на основе которой создал свою теорию естественного отбора. Он высказал предположение, что антиген не является матрицей для синтеза антител и не вызывает генетических изменений в клетках - продуцентах антител, а роль его сводится лишь к селекции уже готовых «нормальных» антител, спонтанно возникающих к различным антигенам. Попав в организм, антиген находит соответствующее антитело, соединяется с ним, образовавшийся комплекс антиген - антитело поглощается фагоцитами и попадает в клетки, вырабатывающие антитела. Клетки начинают производить антитела данной специфичности.

Клональноселекционная теория Ф. Бернета (1959) является дальнейшим этапом развития теории Иерне. Согласно этой теории, в организме предсуществуют мезенхимные клетки, которые имеют на своей поверхности реактивные участки, соответствующие одному или определенному числу детерминант антигена (имеются клетки с рецепторами ко всем существующим антигенам). Антиген, попав во внутреннюю среду, селекционирует, вступает в контакт с клетками, имеющими соответствующий рецептор. Как следствие контакта происходят размножение селекционированной клетки (образуется клон) и стимуляция синтеза иммуноглобулинов, специфических для данного антигена.

Советский иммунолог П. Ф. Здродовский в 1966 г. предложил матричногенетическую теорию образования антител и регуляции этого процесса в целостном организме исходя из следующих известных положений: 1) продуцентами антител являются клетки ретикулолимфоидной ткани; 2) биосинтез иммуноглобулинов-частный случай биосинтеза белка, регулируемого соответствующими участками ДНК в хромосомах клеток; 3) антиген, введенный в организм, вызывает растормаживание генетических детерминант, ответственных за синтез активных центров антител и контролирующих размножение клеток - продуцентов иммуноглобулинов. В результате индуцируется выработка адренокортикотропного гормона (АКТГ) и других гормонов, принимающих участие в регуляции иммуногенеза.

Из современных представлений об иммунологическом процессе заслуживает внимания гипотеза, поддерживаемая видным советским иммунологом Р. В. Петровым. Установлено, что в развитии иммунного ответа организма на антиген участвуют три типа клеток: Т, Влимфоциты и макрофаги, между которыми устанавливается кооперированное взаимодействие. Антиген, попадая в организм, ассимилируется макрофагом, который его разрушает и формирует более активную, чем исходный антиген, детерминанту, выходящую на поверхность клетки. Макрофаг, имеющий такой комплекс.на поверхности, вступает в контакт (кооперирует) с Т и Влимфоцитами и передает им информацию осуществления иммуногенеза. Из Влимфоцитов возникает клон клеток, продуцирующих антитела заданной специфичности. Механизм кооперированного взаимодействия клеток иммунной системы окончательно не выяснен. Установлено, что не только контактные связи, но и выделяющиеся клетками гуморальные факторы имеют значение в иммуногенезе, что важно регулирующее влияние костного мозга, гипофизарноадреналовой системы организма.

Таким образом, поддержание иммунного гомеостаза, регуляция специфической защиты организма от чужеродных антигенов осуществляется сложно организованной иммунной системой, механизмы функционирования которой до конца еще не познаны.


Работы Ландштайнера, Полинга

Инструктивная теория – механизм образования специфических антител обусловлен инструктивным действием антигенов. Развивались с 1900 по 1940 годы. Сложилось убеждение, что именно антиген управляет образованием специфических антител, направляя механизмы белкового синтеза на изготовление тех уникальных молекулярных конфигурации, которые определяют иммунологическую специфичность. Тем или иным способом антиген должен передать новообразованной молекуле белка информацию о своей специфичности, чтобы придать этой молекуле функции антитела.

Работа Ф. Брейнлема

Наиболее известная из этих инструктивных теорий, созданная в 1930 г. Ф. Брейнлем и Ф. Гауровицем (F. Breinl, F. Haurowitz), утверждала, что антиген играет роль матрицы, которая обеспечивает сборку уникальных аминокислотных последовательностей полипептидной цепи антител. Позднее инструктивная теория была развита Лайнусом Полингом (Linus Pauling), поддержавшим ее всем авторитетом, которым он пользовался в области физической химии. Утверждалось, что антиген может служить тем шаблоном, на котором происходит свертывание предобразованной полипептидной цепи с возникновением соответствующей третичной конфигурации, заключающей в себе стереохимическую специфичность. В течение нескольких десятилетий подобные теории прямой матрицы пользовались большой популярностью, так как казалось, что они предлагают единственное разумное объяснение тому многообразию антител, которое, как показали Ландштейнер (Landsteiner) и другие, может образовываться в организме позвоночных.

Не будь антитела, не сформируются вариации к нему. В течение нескольких десятилетии подобные теории пользовались популярностью, так как казалось, что они предлагают 1 разумное объяснение тому разнообразию антител, которое, как показал Ландштейнер, может образовываться в организме позвоночных. Но биологи не могли представить, каким образом образование антител может продолжаться при видимом отсутствии антигенов и даже не пытались понять, почему повторное введение антигена должно вызывать вторичный ответ. Эти теории совсем не могли объяснить, почему при повторной иммунизации происходит изменение качества антител, которое в одних случаях приводит к снижению специфичности, а в других – к значительному расширению. С точки зрения биологии, теории матрицы обладали недостатками, что и привело вирусолога Бернета к созданию в 1941 году другого варианта инструктивной теории. Он предположил, что функция антигена может заключаться в том, что он стимулирует адаптивную модификацию тех ферментов, которые не обходимо для синтеза глобулина, вызывая в результате образования уникальной белковой молекулы с нужной специфичностью. Эта теория адаптивных ферментов объясняла не только широту иммунологического репертуара, но длительное образование антител и усиленный вторичный иммунный ответ. Предполагалось, что эти явления связаны с репликацией адаптивных ферментов в увеличивающейся популяции пролиферирующих дочерних клеток, которые сохраняют способность образовывать антитела.

Однако, исходя из этих химических теорий, биологи не могли представить, каким образом образование антител может продолжаться при видимом отсутствии антигена, и даже не пытались понять, почему повторное введение антигена должно вызывать вторичный (бустерный) ответ. Более того, эти теории совсем не могли объяснить последних данных о том, что при повторной иммунизации происходит изменение качества антител, которое в одних случаях приводит к сужению специфичности, а в других - к значительному расширению диапазона перекрестных серологических реакций.

С развитием представлений о возможной генетической роли НК Бернет и Феннер в 1949 году предложили модификацию этой теории: антиген может вносить информацию о своей специфической детерминанте прямо в геном. Это приводит затем к образованию не прямой матрицы для специфических антител. Новая копию гена будет не только сохраняться в клетке, но в условиях клеточной пролиферации будет воспроизводиться в дочерних клетках, что и объясняет длительное антителообразование и повышенную интенсивность вторичного ответа.

С точки зрения биолога, теории матрицы обладали значительными недостатками, и именно это привело вирусолога Макфарлейна Бернета (Macfarlane Burnet) к созданию в 1941 г. другого варианта инструкционистской теории. В условиях растущего признания той роли, которую ферменты играют в процессах синтеза и расщепления, Бернет предположил, что функция антигена может заключаться в том, что он стимулирует адаптивную модификацию тех ферментов, которые необходимы для синтеза глобулина, вызывая в результате образование уникальной белковой молекулы с нужной специфичностью. Эта теория адаптивных ферментов имела то преимущество, что с позиций первичной инструктивной роли антигена она объясняла не только широту иммунологического репертуара, но и длительное образование антител и усиленный вторичный иммунный ответ. Предполагалось, что эти явления связаны с репликацией адаптивных ферментов в увеличивающейся популяции пролиферирующих дочерних клеток, которые сохраняют способность образовывать антитела. Этот последний момент имеет особое значение, поскольку Бернет (Burnet) является, по-видимому, первым, кто подчеркнул важную роль длительного функционирования клеток и клеточной пролиферации в процессе образования антител.

С развитием представлений о возможной генетической роли нуклеиновых кислот Бернет и Франк Феннер (Burnet, Frank Fenner) в 1949 г. предложили модификацию этой теории, по-прежнему исходя из биологических соображений. На этот раз они предположили, что антиген может вносить информацию о своей специфической детерминанте прямо в геном (РНК). Это приводит затем к образованию непрямой матрицы для специфических антител. Новая копия гена будет не только сохраняться в клетке, но в условиях клеточной пролиферации будет воспроизводиться в дочерних клетках, что и объясняет длительное антителообразование и повышенную интенсивность вторичного ответа.



АНТИТЕЛА - белки глобулиновой фракции сыворотки крови человека и теплокровных животных, образующиеся в ответ на введение в организм различных антигенов (бактерий, вирусов, белковых токсинов и др.) и специфически взаимодействующие с антигенами, вызвавшими их образование. Связываясь активными участками (центрами) с бактериями или вирусами, антитела препятствуют их размножению или нейтрализуют выделяемые ими токсические вещества. Наличие в крови антител указывает на то, что организм вступал во взаимодействие с антигеном против вызываемой им болезни. В какой степени иммунитет зависит от антител и в какой степени антитела только сопутствуют иммунитету, решается применительно к конкретной болезни. Определение уровня антител в сыворотке крови позволяет судить о напряженности иммунитета даже в тех случаях, когда антитела не играют решающей защитной роли.

Защитное действие антител, содержащихся в иммунных сыворотках, широко используется в терапии и профилактике инфекционных заболеваний (см. Серопрофилактика , Серотерапия). Реакции антител с антигенами (серологические реакции) применяют в диагностике различных заболеваний (см. Серологические исследования).

История

На протяжении длительного времени о хим. природе А. знали очень немного. Известно, что антитела после введения антигена обнаруживаются в сыворотке крови, лимфе, экстрактах тканей и что они специфически реагируют со своим антигеном. О наличии антител судили на основании тех видимых агрегатов, которые образуются при взаимодействии с антигеном (агглютинация, преципитация) или по изменению свойств антигена (нейтрализация токсина, лизис клетки), но о том, с каким химическим субстратом антител связаны, почти ничего не было известно.

Благодаря применению методов ультрацентрифугирования, иммуно-электрофореза и подвижности белков в изоэлектрическом поле доказана принадлежность антител к классу гамма-глобулинов, или иммуноглобулинов.

Антитела представляют собой преформированные в процессе синтеза нормальные глобулины. Иммунные глобулины, полученные в результате иммунизации различных животных одним и тем же антигеном и при иммунизации одного и того же вида животного различными антигенами, обладают неодинаковыми свойствами, так же как неодинаковы сывороточные глобулины различных видов животных.

Классы иммуноглобулинов

Иммуноглобулины вырабатываются иммунокомпетентными клетками лимфоидных органов, различаются между собой по мол. весу, константе седиментации, электрофоретической подвижности, содержанию углеводов и иммунологической активности. Различают пять классов (или типов) иммуноглобулинов:

Иммуноглобулины М (IgM) : молекулярный вес около 1 млн., имеют сложную молекулу; первыми появляются после иммунизации или антигенной стимуляции, оказывают губительное действие на микробы, которые попали в кровь, способствуют их фагоцитозу; слабее, чем иммуноглобулины G, связывают растворимые антигены, токсины бактерии; разрушаются в организме в 6 раз быстрее, чем иммуноглобулины G (например, у крыс период полураспада иммуноглобулина М равен 18 часам, а иммуноглобулина G - 6 дням).

Иммуноглобулины G (IgG) : молекулярный вес около 160 000, их считают стандартными, или классическими, антителами: легко проходят через плаценту; образуются медленнее, чем IgM; наиболее эффективно связывают растворимые антигены, особенно экзотоксины, а также вирусы.

Иммуноглобулины А (IgA) : молекулярный вес около 160 000 или больше, вырабатываются лимфоидной тканью слизистых оболочек, препятствуют деградации ферментов клеток организма и противостоят патогенному действию микробов кишечника, легко проникают через клеточные барьеры организма, содержатся в молозиве, слюне, слезах, слизи кишечника, поте, отделяемом носа, в крови находятся в меньшем количестве, легко соединяются с клетками организма; IgA возникли, по-видимому, в процессе эволюции для защиты слизистых оболочек от агрессии бактериями и передачи пассивного иммунитета потомству.

Иммуноглобулины Е (IgE) : молекулярный вес около 190 000 (по Р. С. Незлину, 1972); по-видимому, ими являются аллергические антитела -так называемые реагины (см. ниже).

Иммуноглобулины D (IgD ): молекулярный вес около 180 000 (по Р. С. Незлину, 1972); в настоящее, время о них известно очень мало.

Структура антител

Молекула иммуноглобулина состоит из двух неидентичных полипептидных субъединиц - легких (L - от английского light) цепей с молекулярным весом 20 000 и двух тяжелых (Н - от английского heavy) цепей с молекулярным весом 60 000. Эти цепи, связанные дисульфидными мостиками, образуют основной мономер LH. Однако в свободном состоянии такие мономеры не встречаются. Большая часть молекул иммуноглобулинов состоит из димеров (LH) 2 , остальные - из полимеров (LH) 2n . Основными N-концевыми аминокислотами человеческого гамма-глобулина являются аспарагиновая и глутаминовая, кроличьего - аланин и аспарагиновая кислота. Портер (R. R. Porter, 1959), воздействуя на иммуноглобулины папаином, нашел, что они распадаются на два (I и II) Fab-фрагмента и Fc-фрагмент (III) с константой седиментации 3,5S и молекулярным весом около 50 000. Основная масса углеводов связана с Fc-фрагментом. По предложению экспертов ВОЗ установлена следующая номенклатура фрагментов антител: Fab-фрагмент - одновалентный, активно соединяющийся с антигеном; Fc-фрагмент - не взаимодействует с антигеном и состоит из С-концевых половин тяжелых цепей; Fd-фраг-мент - участок тяжелой цепи, входящий в Fab-фрагмент. Фрагмент пепсинового гидролиза 5S предложено обозначать как F(ab) 2 , а одновалентный 3,5S-фрагмент - Fab.

Специфичность антител

Одним из важнейших свойств антител является их специфичность, которая выражается в том, что антитела активнее и полнее взаимодействует с тем антигеном, которым организм был стимулирован. Комплекс антиген - антитело в этом случае обладает наибольшей прочностью. Антитела способны различать в антигенах незначительные изменения в структуре. При использовании конъюгированных антигенов, состоящих из белка и включенного простого химического вещества - гаптена, образующиеся антитела специфичны к гаптену, белку и комплексу белок - гаптен. Специфичность обусловлена химической структурой и пространственным рисунком антидетерминант антител (активных центров, реактивных групп), то есть участков антител, которыми они соединяются с детерминантами антигена. Число антидетерминант антител часто называют их валентностью. Так, молекула IgM-антитела может иметь до 10 валентностей, молекулы IgG- и IgA-антител двухвалентны.

По данным Караша (F. Karush, 1962), активные центры IgG состоят из 10-20 аминокислотных остатков, что составляет примерно 1 % всех аминокислот молекулы антител, а, по представлениям Уинклера (М. Н. Winkler, 1963), активные центры состоят из 3-4 аминокислотных остатков. В их составе найдены тирозин, лизин, триптофан и др. Антидетерминанты расположены, очевидно, в аминоконцевых половинах Fab-фрагментов. В образовании активного центра участвуют вариабельные отрезки легких и тяжелых цепей, причем последним принадлежит основная роль. Возможно, легкая цепь лишь частично участвует в формировании активного центра или стабилизирует структуру тяжелых цепей. Наиболее полноценная антидетерминанта создается лишь комбинацией легких и тяжелых цепей. Чем больше точек совпадения связи между антидетерминантами антител и детерминантами антигена, тем выше специфичность. Разная специфичность зависит от последовательности аминокислотных остатков в активном центре антител. Кодирование огромного разнообразия антител по их специфичности неясно. Портер допускает три возможности специфичности .

1. Образование стабильной части молекулы иммуноглобулина контролируется одним геном, а вариабельной части - тысячами генов. Синтезированные пептидные цепи соединяются в молекулу иммуноглобулина под влиянием особого клеточного фактора. Антиген в этом случае выступает в качестве фактора, запускающего синтез антител.

2. Молекула иммуноглобулина кодируется стабильными и изменчивыми генами. В период клеточного деления происходит рекомбинация изменчивых генов, что и обусловливает разнообразие их и вариабельность участков молекул глобулинов.

3. Ген, кодирующий вариабельную часть молекулы иммуноглобулинов, повреждается особым ферментом. Другие ферменты восстанавливают повреждение, но вследствие ошибок допускают различную последовательность нуклеотидов в пределах данного гена. Этим и обусловлена различная последовательность аминокислот в вариабельной части молекулы иммуноглобулина. Имеются и другие гипотезы, напр. Бернета (F. М. Burnet, 1971).

Гетерогенность (неоднородность) антител проявляется по многим признакам. В ответ на введение одного антигена образуются антитела, различающиеся по сродству к антигену, антигенным детерминантам, молекулярному весу, электрофоретической подвижности, N-концевым аминокислотам. Групповые антитела к различным микробам обусловливают перекрестные реакции к разным видам и типам сальмонелл, шигелл, эшерихий, животных белков, полисахаридов. Продуцируемые антитела неоднородны по своей специфичности относительно гомогенного антигена или одной антигенной детерминанты. Гетерогенность антител отмечена не только против белковых и полисахаридных антигенов, но и против комплексных, в том числе конъюгированных, антигенов и против гаптенов. Полагают, что гетерогенность антител определяется известной микрогетерогенностью детерминант антигена. Гетерогенность может быть вызвана образованием антител на комплекс антиген - антитело, что наблюдается при многократной иммунизации, различием клеток, образующих антител, а также принадлежностью антител к разным классам иммуноглобулинов, которые, как и другие белки, обладают сложной антигенной структурой, контролируемой генетически.

Виды антител

Полные антитела имеют не менее двух активных центров и при соединении с антигенами in vitro обусловливают видимые реакции: агглютинацию, преципитацию, связывание комплемента; нейтрализуют токсины, вирусы, опсонизируют бактерии, обусловливают визуальный феномен иммунного прилипания, иммобилизации, набухания капсул, нагрузки тромбоцитов. Реакции протекают в две фазы: специфическая (взаимодействие антитела с антигеном) и неспецифическая (тот или иной из вышеуказанных феноменов). Общепризнано, что различные серологические реакции обусловливаются одним, а не множеством антител и зависят от методики постановки. Различают тепловые полные антитела, реагирующие с антигеном при t° 37°, и холодовые (криофильные), проявляющие эффект при t° ниже 37°. Имеются также антитела, реагирующие с антигеном при низкой температуре, а видимый эффект проявляется при t° 37°; это двухфазные, биотермические антитела, к которым отнесены гемолизины Доната - Ландштейнера. Все известные классы иммуноглобулинов содержат полные антитела. Активность и специфичность их определяются титром, авидностью (см. Авидитет), числом антидетерминант. IgM-антитела более активны, чем IgG-антитела, в реакциях гемолиза и агглютинации.

Неполные антитела (непреципитирующие, блокирующие, агглютиноиды), как и полные антитела, способны соединяться с соответствующими антигенами, но реакция при этом не сопровождается видимым in vitro феноменом преципитации, агглютинации и др.

Неполные антитела обнаружены у человека в 1944 году к резус-антигену, их находили при вирусных, риккетсиозных и бактериальных инфекциях по отношению к токсинам при различных патологических состояниях. Существует ряд доказательств двухвалентности неполных антител. Бактериальные неполные антитела обладают защитными свойствами: антитоксическими, опсонизирующими, бактериологическими; вместе с тем неполные антитела обнаружены при ряде аутоиммунных процессов - при заболеваниях крови, особенно гемолитических анемиях.

Неполные гетеро-, изо- и аутоантитела способны вызвать повреждение клеток, а также играть определенную роль в возникновении медикаментозных лейко- и тромбоцитопении

Нормальными (естественными) принято считать антитела, обычно встречающиеся в сыворотке крови животных и человека при отсутствии явной инфекции или иммунизации. Происхождение антибактериальных нормальных антител может быть связано, в частности, с антигенной стимуляцией нормальной микрофлорой организма. Эти взгляды теоретически и экспериментально обоснованы исследованиями на животных-гнотобионтах и новорожденных в обычных условиях обитания. Вопрос о функциях нормальных антител связан непосредственно со специфичностью их действия. Л. А. Зильбер (1958) полагал, что индивидуальная устойчивость к инфекциям и, кроме того, «иммуногенная готовность организма» определяются их наличием. Показана роль нормальных антител в бактерицидности крови, в опсонизации при фагоцитозе. Работами многих исследователей было показано, что нормальные антитела в основном являются макроглобулина-ми - IgM. Некоторые исследователи находили нормальные антитела в IgA- и IgG-классах иммуноглобулинов. В их составе могут быть как неполные, так и полные антитела (нормальные антитела к эритроцитам - см. Группы крови).

Синтез антител

Синтез антител протекает в две фазы. Первая фаза индуктивная, латентная (1-4 дня), при которой антитела и антителообразующие клетки не обнаруживаются; вторая фаза - продуктивная (начинается после индуктивной фазы), антитела обнаруживаются в плазматических клетках и оттекающей от лимфоидных органов жидкости. После первой фазы антителообразования начинается очень быстрый темп нарастания антител, нередко их содержание может удваиваться каждые 8 часов и даже быстрее. Максимальная концентрация различных антител в сыворотке крови после однократной иммунизации регистрируется на 5, 7,10 или 15-й день; после инъекции депонированных антигенов - на 21- 30-й или 45-й день. Далее через 1-3 или более месяцев титры антител резко падают. Однако иногда низкий уровень антител после иммунизации регистрируется в крови в течение ряда лет. Установлено, что первичная иммунизация большим числом различных антигенов сопровождается появлением вначале тяжелых IgM (19S)-антител, затем в течение короткого срока - IgM и IgG(7S)-антител и, наконец, одних легких 7S-антител. Повторная стимуляция сенсибилизированного организма антигеном вызывает ускорение образования обоих классов антител, укорочение латентной фазы антителообразования, срока синтеза 19S-антител и способствует преимущественному синтезу 7S-антител. Нередко 19S-антитела вовсе не появляются.

Выраженные различия между индуктивной и продуктивной фазой антителообразования обнаруживаются при исследовании их чувствительности к ряду воздействий, что имеет принципиальное значение для понимания природы специфической профилактики. Например, известно, что облучение до иммунизации задерживает или полностью угнетает антителообразование. Облучение в репродуктивную фазу антителообразования не влияет на содержание антител в крови.

Выделение и очистка антител

В целях усовершенствования метода выделения и очистки антител были предложены иммуносорбенты. В основе метода лежит перевод растворимых антигенов в нерастворимые путем присоединения их посредством ковалентных связей к нерастворимой основе из целлюлозы, сефадекса или другого полимера. Метод позволяет получить в высокой степени очищенные антитела в больших количествах. Процесс выделения антител с помощью иммуносорбентов включает три этапа:

1) извлечение антител из иммунной сыворотки;

2) отмывание иммуносорбента от неспецифических белков;

3) отщепление антител от отмытого иммуносорбента (обычно буферными растворами с низкими значениями pH). Кроме этого метода, известны и другие методы очистки антител. Их можно разделить на две группы: специфические и неспецифические. В основе первых лежит диссоциация антител из комплекса нерастворимый антиген - антитело (преципитат, агглютинат). Она осуществляется различными веществами; широко распространен метод ферментативного переваривания антигена или флоккулята токсин - антитоксин амилазой, трипсином, пепсином. Используется также тепловая элюция при t° 37-56°.

Неспецифические методы очистки антител основаны на выделении гамма-глобулинов: электрофорез в геле, хроматография на ионообменных смолах, фракционирование гель-фильтрацией через сефадексы. Широко известен метод осаждения сернокислым натрием или аммонием. Эти методы применимы в случаях высокой концентрации антител в сыворотке, например, при гипериммунизации.

Гельфильтрация через сефадексы, а также использование ионообменных смол позволяют разделить антитела по величине их молекул.

Применение антител

Антитела, особенно гамма-глобулины, применяются для терапии и профилактики дифтерии, кори, столбняка, газовой гангрены, сибирской язвы, лептоспирозов, против стафилококков, возбудителей бешенства, гриппа и др. Специально приготовленные и очищенные диагностические сыворотки применяются в серологической идентификации возбудителей инфекций (см. Идентификация микробов). Было установлено, что пневмококки, стафилококки, сальмонеллы, бактериофаги и др., адсорбируя соответствующие антитела, прилипают к тромбоцитам, эритроцитам и другим чужеродным частицам. Этот феномен назван иммунным прилипанием. Было показано, что в механизме этого феномена играют роль белковые рецепторы тромбоцитов и эритроцитов, которые разрушаются трипсином, папаином и формалином. Реакция иммунного прилипания зависит от температуры. Ее учитывают по прилипанию корпускулярного антигена или по гемагглютинации, обусловленной растворимым антигеном в присутствии антител и комплемента. Реакция высокочувствительна и может быть использована как для определения комплемента, так и очень небольших (0,005-0,01 мкг азота) количеств антител. Иммунное прилипание усиливает фагоцитоз лейкоцитами.

Современные теории образования антител

Различают инструктивные теории антителообразования, согласно к-рым антиген прямо или косвенно участвует в формировании специфических иммуноглобулинов, и теории, предполагающие образование генетически предсуществующих антител ко всем возможным антигенам или клеток, синтезирующих эти антитела. К ним относятся селекционные теории и теория репрессии - дерепрессии, допускающая возможность синтеза одной клеткой любых антител. Предложены также теории, стремящиеся осмыслить процессы иммунологического ответа на уровне целостного организма с учетом взаимодействия различных клеток и общепринятых представлений о синтезе белка в организме.

Теория прямой матрицы Гауровитца-Полинга сводится к тому, что антиген, поступив внутрь клеток, вырабатывающих антитела, играет роль матрицы, оказывающей влияние на образование молекулы иммуноглобулина из пептидных цепей, синтез которых протекает без участия антигена. «Вмешательство» антигена наступает лишь во второй фазе формирования белковой молекулы - фазе скручивания пептидных цепей. Антиген так изменяет концевые N-аминокислоты будущего антитела (иммуноглобулина или его отдельных пептидных цепей), что они становятся комплементарными к детерминантам антигена и легко вступают с ним в связь. Образовавшееся таким образом антитела отщепляется от антигена, поступает в кровь, а освободившийся антиген принимает участие в формировании новых молекул антител. Эта теория вызвала ряд серьезных возражений. Она не может объяснить образования иммунологической толерантности; превосходящего количества вырабатываемых клеткой антител в единицу времени на имеющееся в ней во много раз меньшее число молекул антигена; продолжительности выработки антител организмом, исчисляемой годами или всей жизнью, по сравнению со значительно меньшим сроком сохранения антигена в клетках и т. д. Следует также учесть, что клетки плазматического или лимфоидного ряда, вырабатывающие антитела, не ассимилируют антиген, хотя присутствие нативного антигена или его фрагментов в антителосинтезирующих клетках полностью исключить нельзя. В последнее время Гауровитцем (F. Haurowitz, 1965) предложена новая концепция, по которой антиген изменяет не только вторичную, но и первичную структуру иммуноглобулина.

Теория непрямой матрицы Бернета - Феннера получила известность в 1949 году. Ее авторы считали, что макромолекулы антигена и скорее всего его детерминанты проникают в ядра клеток зародышевого типа и вызывают наследственно закрепленные изменения в них, следствием которых является образование антител к данному антигену. Допускается аналогия между описываемым процессом и трансдукцией у бактерий. Приобретенное клетками новое качество образования иммунных глобулинов передается потомству клеток в бесчисленных поколениях. Однако вопрос о роли антигена в описываемом процессе оказался спорным.

Именно это обстоятельство явилось причиной возникновения теории естественной селекции Ерне (K. Jerne, 1955).

Теория естественной селекции Ерне. Согласно этой теории антиген не является матрицей для синтеза антител и не вызывает генетических изменений в клетках-продуцентах антител. Его роль сводится к селекции имеющихся «нормальных» антител, спонтанно возникающих к различным антигенам. Происходит это будто бы так: антиген, попав в организм, находит соответствующее антитело, соединяется с ним; образовавшийся комплекс антиген - антитело поглощается клетками, вырабатывающими антитела, и последние получают стимул производить антитела именно такого рода.

Клонально-селекционная теория Бернета (F. Burnet) явилась дальнейшим развитием идеи Ерне о селекции, но не антител, а клеток, производящих антитела. Бернет полагает, что в результате общего процесса дифференциации в эмбриональном и постнатальном периодах из мезенхимальных клеток образуется множество клонов лимфоидных или иммунологически компетентных клеток, способных реагировать с различными антигенами или их детерминантами и вырабатывать антитела - иммуноглобулины. Характер реагирования лимфоидных клеток на антиген в эмбриональном и постнатальном периодах различен. Зародыш либо совсем не вырабатывает глобулинов, либо синтезирует их немного. Однако допускается, что те его клоны клеток, которые способны вступить в реакцию с антигенными детерминантами собственных белков, реагируют с ними и в результате этой реакции уничтожаются. Так, вероятно, погибают клетки, образующие анти-А-агглютинины у лиц с группой крови А и анти-В-агглютинины - у лиц с группой крови В. Если эмбриону ввести какой-либо антиген, то аналогичным образом он уничтожит соответствующий клон клеток, и новорожденный в течение всей последующей жизни теоретически будет толерантным к данному антигену. Процесс уничтожения всех клонов клеток к собственным белкам зародыша заканчивается к моменту его рождения или выхода из яйца. Теперь у новорожденного осталось только «свое», и любое «чужое», попавшее в его организм, он распознает. Бернет допускает также сохранение «запретных» клонов клеток, способных реагировать с аутоантигенами органов, которые в процессе развития были изолированы от клеток, вырабатывающих антитела. Распознавание «чужого» обеспечивается оставшимися клонами мезенхимальных клеток, на поверхности которых имеются соответствующие антидетерминанты (рецепторы, клеточные антитела), комплементарные к детерминантам «чужого» антигена. Природа рецепторов детерминирована генетически, то есть закодирована в хромосомах и не привносится в клетку вместе с антигеном. Наличие готовых рецепторов неизбежно ведет к реакции данного клона клеток с данным антигеном, следствием которой теперь являются два процесса: образование специфических антител - иммуноглобулинов и размножение клеток данного клона. Бернет допускает, что мезенхимальная клетка, получившая антигенное раздражение, в порядке митоза дает начало популяции дочерних клеток. Если такая клетка осела в мозговом веществе лимфатического узла, она дает начало образованию плазматических клеток, при оседании в лимфатических фолликулах - лимфоцитам, в костном мозге - эозинофилам. Дочерние клетки склонны к соматическим необратимым мутациям. При расчете на весь организм число мутирующих клеток за сутки может составить 100 ООО или 10 млн., и, следовательно, мутации обеспечат клоны клеток к любому антигену. Теория Бернета вызвала огромный интерес исследователей и большое число проверочных экспериментов. Важнейшими подтверждениями теории явились доказательства присутствия на предшественниках антителопродуцирующих клеток (лимфоцитах костномозгового происхождения) антителоподобных рецепторов иммуноглобулиновой природы и наличия в антителопродуцирующих клетках механизма интерцистронного исключения в отношении антител различной специфичности.

Теория репрессии и дерепрессии сформулирована Силардом (L. Szilard) в 1960 году. Согласно этой теории каждая клетка, вырабатывающая антитело, потенциально может синтезировать любое антитело к любому антигену, но этот процесс у нее заторможен репрессором фермента, участвующего в синтезе иммуноглобулина. В свою очередь образование репрессора может затормозиться влиянием антигена. Силард считает, что образование антител контролируется особыми неудваивающимися генами. Число их достигает 10 000 на каждый одинарный (гаплоидный) набор хромосом.

Ледерберг (J. Lederberg) считает, что в генах, ответственных за синтез глобулинов, имеются участки, контролирующие образование активных центров антител. В норме функция названных участков заторможена, и поэтому идет синтез нормальных глобулинов. Под влиянием антигена, а также, возможно, под действием некоторых гормонов происходит растормаживание и стимулирование деятельности участков гена, ответственных за образование активных центров антител, и клетка начинает синтезировать иммунные глобулины.

По мнению H. Н. Жукова-Вережникова (1972), эволюционными предшественниками антител были защитные ферменты, аналогичные появляющимся у бактерий с приобретенной антибиотикорезистентностью. Как и антитела, ферменты состоят из активной (по отношению к субстрату) и пассивной частей молекулы. В силу экономичности механизм «один фермент - один субстрат» сменился механизмом «единых молекул с варьирующей частью», то есть антител с вариабельными активными центрами. Информация об антителообразовании реализуется в зоне «резервных генов», или в «зоне избыточности» на ДНК. Такая избыточность, видимо, может локализоваться в ядерной или плазмидной ДНК, которая хранит «эволюционную информацию..., игравшую роль внутреннего механизма, „начерно“ контролирующего наследственную изменчивость». Эта гипотеза содержит инструктивный компонент, но не является полностью инструктивной.

П. Ф. Здродовский отводит антигену роль дерепрессора определенных генов, контролирующих синтез комплементарных антител. Одновременно антиген, как допускает Здродовский в соответствии с теорией Селье, раздражает аденогипофиз, в результате чего происходит выработка соматотропное (СТГ) и адренокортикотропного (АКТГ) гормонов. СТГ стимулирует плазмоцитарную и антителообразующую реакцию лимфоидных органов, в свою очередь стимулированных антигеном, а АКТГ, воздействуя на кору надпочечников, вызывает выделение ею кортизона. Этот последний в иммунном организме угнетает плазмоцитарную реакцию лимфоидных органов и синтез клетками антител. Все эти положения были подтверждены экспериментально.

Действие системы гипофиз - надпочечники на продукцию антител может выявляться лишь в предварительно иммунизированном организме. Именно эта система организует анамнестические серологические реакции в ответ на введение в организм различных неспецифических раздражителей.

Углубленное изучение клеточных изменений в процессе иммунологического ответа и накопление большого количества новых фактов обосновали положение, согласно которому иммунологический ответ осуществляется лишь в результате кооперированного взаимодействия определенных клеток. В соответствии с этим предложено несколько гипотез.

1. Теория кооперации двух клеток. Накоплено много фактов, свидетельствующих о том, что иммунологический ответ в организме осуществляется в условиях взаимодействия различных типов клеток. Имеются подтверждения того, что макрофаги первыми ассимилируют и модифицируют антиген, но в последующем «инструктируют» лимфоидные клетки о синтезе антител. Одновременно показано, что происходит кооперация и между лимфоцитами, относящимися к различным субпопуляциям: между Т-лимфоцитами (тимусзависимые, антнгенреактивные, происходящие из вилочковой железы) и В-клетками (тимуснезависимые, предшественники антителообразующих клеток, костномозговые лимфоциты).

2. Теории кооперации трех клеток. Согласно взглядам Ройтта (I. Roitt) и др. (1969) антиген захватывается и перерабатывается макрофагами. Такой антиген стимулирует антигенреактивные лимфоциты, подвергающиеся трансформации в бластоидные клетки, обеспечивающие гиперчувствительность замедленного типа и превращающиеся в долгоживущие клетки иммунологической памяти. Эти клетки вступают в кооперацию с антителообразующими клетками-предшественниками, которые в свою очередь дифференцируются, пролиферируя в антителопродуцирующие клетки. По мнению Рихтера (М. Richter, 1969), большинство антигенов обладает слабым сродством для антителообразующих клеток, поэтому для выработки антител необходимо следующее взаимодействие процессов: антиген+макрофаг - переработанный антиген+антигенреактивная клетка - активированный антиген+предшественник антителообразующей клетки - антитела. В случае высокого сродства антигена процесс будет выглядеть так: антиген+предшественник антителообразующих клеток - антитела. Предполагается, что в условиях повторного стимулирования антигеном последний непосредственно вступает в контакт с антителообразующей клеткой или клеткой иммунологической памяти. Это положение подтверждается большей радиорезистентностью повторного иммунологического ответа, чем первичного, что объясняется различной устойчивостью клеток, участвующих в иммунологическом ответе. Постулируя необходимость трехклеточного кооперирования в антителогенезе, Р. В. Петров (1969, 1970) считает, что синтез антител произойдет лишь в том случае, если стволовая клетка (предшественник антителообразующей клетки) одновременно получит из макрофага переработанный антиген, а из антигенреактивной клетки индуктор иммунопоэза, образуемый после ее (антигенреактивной клетки) стимуляции антигеном. Если происходит контакт стволовой клетки только с переработанным макрофагом антигеном, то создается иммунологическая толерантность (см. Толерантность иммунологическая). Если же налицо контакт стволовой клетки только с антигенреактивной клеткой, то происходит синтез неспецифического иммуноглобулина. Предполагается, что эти механизмы лежат в основе инактивации несингенных стволовых клеток лимфоцитами, так как индуктор иммунопоэза, попадая в аллогенную стволовую клетку, является для нее антиметаболитом (сингенные - клетки с идентичным геномом, аллогенные - клетки того же вида, по с иным генетическим составом).

Аллергические антитела

Аллергические антитела - специфические иммуноглобулины, образующиеся под действием аллергенов у человека и животных. При этом имеются в виду циркулирующие в крови антитела при аллергических реакциях немедленного типа. Различают три основных вида аллергических антител: кожно-сенсибилизирующие, или реагины; блокирующие и гемагглютинирующие. Биологические, химические и физико-химические свойства аллергических антител человека своеобразны (табл .).

Эти свойства резко отличаются от свойств преципитирующих, комплементсвязывающих антител, агглютининов и других, описываемых в иммунологии.

Реагинами принято обозначать гомологические кожно-сенсибилизирующие антитела человека. Это важнейший вид аллергических антител человека, основным свойством которых является способность осуществлять реакцию пассивного переноса повышенной чувствительности на кожу здорового реципиента (см. Прауснитца-Кюстнера реакция). Реагины обладают целым рядом характерных свойств, отличающих их от сравнительно хорошо изученных иммунных антител. Многие вопросы, касающиеся свойств реагинов и их иммунологической природы, остаются, однако, нерешенными. В частности, нерешенным является вопрос о гомогенности или гетерогенности реагинов в смысле их принадлежности к определенному классу иммуноглобулинов.

Блокирующие антитела возникают у больных поллинозами в процессе специфической гипосенсибилизирующей терапии к тому антигену, которым производится гипосенсибилизация. Свойства этого вида антител напоминают свойства преципитирующих антител.

Под гемагглютинирующими антителами обычно подразумевают антитела сыворотки крови человека и животных, способные специфически агглютинировать эритроциты, соединенные с пыльцевым аллергеном (реакция непрямой, или пассивной, гемагглютинации). Связывание поверхности эритроцита с аллергеном пыльцы достигается разнообразными методами, напр, с помощью танина, формалина, дважды диазотированного бензидина. Гемагглютинирующие антитела удается обнаружить у людей, имеющих повышенную чувствительность к пыльце растений, как до, так и после специфической гипосенсибилизирующей терапии. В процессе этой терапии происходит трансформация отрицательных реакций в положительные или повышение титров реакции гемагглютинации. Гемагглютинирующие антитела обладают свойством довольно быстро адсорбироваться на эритроцитах, обработанных пыльцевым аллергеном, особенно некоторыми его фракциями. Иммуносорбенты удаляют гемагглютинирующие антитела быстрее, чем реагины. Гемагглютинирующая активность связана в некоторой степени и с кожно-сенсибилизирующими антителами, однако роль кожно-сенсибилизирующих антител в гемагглютинации, по-видимому, невелика, так как не существует никакой корреляции между кожно-сенсибилизирующими и гемагглютинирующими антителами. С другой стороны, существует корреляция между гемагглютинирующими и блокирующими антителами как у лиц с аллергией к пыльце растений, так и у здоровых лиц, иммунизированных растительной пыльцой. Эти два вида антител обладают многими сходными свойствами. В процессе специфической гипосенсибилизирующей терапии происходит повышение уровня как того, так и другого вида антител. Гемагглютинирующие антитела к пенициллину не идентичны кожно-сенсибилизирующим антителам. Основной причиной образования гемагглютинирующих антител явилась пенициллинотерапия. По-видимому, гемагглютинирующие антитела следует отнести к группе антител, именуемых рядом авторов «антитела ми-свидетелями».

В 1962 году Шелли (W. Shelley) предложил специальный диагностический тест, основанный на так называемые дегрануляции базофильных лейкоцитов крови кролика под действием реакции аллергена со специфическим антителами. Однако характер антител, которые принимают участие в данной реакции, и связь их с циркулирующими реагинами недостаточно выяснены, хотя имеются данные о корреляции этого вида антител с уровнем реагинов у больных поллинозом.

Установление оптимальных соотношений аллергена и исследуемой сыворотки является чрезвычайно важным в практическом отношении, особенно при исследованиях с видами аллергенов, сведения о которых еще не содержатся в соответствующей литературе.

К аллергическим антителам животных можно отнести следующие виды антител: 1) антитела при экспериментальной анафилаксии; 2) антитела при спонтанных аллергических заболеваниях животных; 3) антитела, играющие роль при развитии реакции Артюса (типа преципитирующих). При экспериментальной анафилаксии, как общей, так и местной, в крови животных обнаруживают специальные виды анафилактических антител, обладающих свойством пассивно сенсибилизировать кожу животных того же вида.

Было показано, что анафилактическая сенсибилизация морских свинок аллергенами пыльцы тимофеевки луговой сопровождается циркуляцией в крови кожно-сенсибилизирующих антител Эти кожно-сенсибилизирующие тела обладают свойством осуществлять гомологическую пассивную сенсибилизацию кожи in vivo. Наряду с этими гомологическими кожно-сенсибилизирующими антителами при общей сенсибилизации морских свинок аллергенами пыльцы тимофеевки луговой в крови циркулируют антитела, выявляемые реакцией пассивной гемагглютинации с бис-диазотированным бензидином. Кожно-сенсибилизирующие антитела, осуществляющие гомологичный пассивный перенос и имеющие положительную корреляцию с показателем анафилаксии, относят к группе гомологических анафилактических антител, или гомоцитотропных антител. Употребляя термин «анафилактические антитела», авторы приписывают им ведущую роль в реакции анафилаксии. Стали появляться исследования, подтверждающие существование гомоцитотропных антител к белковым антигенам и конъюгатам у различных видов экспериментальных животных. Ряд авторов выделяет три вида антител, участвующих в аллергических реакциях немедленного типа. Это антитела, связанные с новым типом иммуноглобулинов (IgE) у человека и аналогичные антитела у обезьян, собак, кроликов, крыс, мышей. Второй вид антител - антитела типа морской свинки, способные фиксироваться на тучных клетках и изологичных тканях. Они отличаются рядом свойств, в частности, они более термостабильны. Считают, что антитела типа IgG могут быть и у человека вторым видом анафилактических антител. Третий вид - антител, сенсибилизирующие гетерологичные ткани, принадлежащие, например, у морских свинок к классу γ 2 . У человека только антитела типа IgG обладают способностью сенсибилизировать кожу морской свинки.

При заболеваниях животных описаны аллергические антитела, образующиеся при спонтанных аллергических реакциях. Эти антитела термолабильны, обладают кожно-сенсибилизирующими свойствами.

Неполные антитела в судебно-медицинском отношении применяются при определении антигенов ряда изосерологических систем (см. Группы крови) для установления принадлежности крови определенному лицу в случаях уголовных преступлений (убийства, половые преступления, транспортные происшествия, нанесение телесных повреждений и др.), а также при экспертизе спорного отцовства и материнства. В отличие от полных антител, они не вызывают агглютинации эритроцитов в солевой среде. Среди них различают антитела двух видов. Первый из них - агглютиноиды. Эти антитела способны вызвать склеивание эритроцитов в белковой или макромолекулярной среде. Второй вид антител - криптагглютиноиды, которые реагируют в непрямой пробе Кумбса с антигаммаглобулиновой сывороткой.

Для работы с неполными антителами предложен ряд методов, подразделяющихся на три основные группы.

1. Методы конглютинации. Отмечено, что неполные антитела способны вызывать агглютинацию эритроцитов в белковой или макромолекулярной среде. В качестве таких сред используют сыворотку крови группы AB (не содержащую антител), бычий альбумин, декстран, биогель - особо очищенную желатину, приведенную буферным раствором к нейтральному pH, и др. (см. Конглютинация).

2. Ферментные методы. Неполные антитела способны вызвать агглютинацию эритроцитов, предварительно подвергнутых обработке некоторыми ферментами. Для такой обработки применяют трипсин, фицин, папаин, экстракты из хлебных дрожжей, протелин, бромелин и др.

3. Проба Кумбса с антиглобулиновой сывороткой (см. Кумбса реакция).

Неполные антитела, относящиеся к агглютиноидам, могут проявить свое действие во всех трех группах методов. Антитела, относящиеся к криптагглютиноидам, не способны агглютинировать эритроциты не только в солевом растворе, но и в макромолекулярной среде, а также блокировать их в последней. Эти антитела открываются только в непрямой пробе Кумбса, с помощью которой открываются не только антитела, относящиеся к криптагглютиноидам, но и антитела, являющиеся агглютиноидами.

Моноклональные антитела

Из дополнительных материалов, том 29

Классический способ производства антител для диагностических и исследовательских целей заключается в иммунизации животных определенными антигенами и последующем получении иммунных сывороток, содержащих антитела необходимой специфичности. Этот метод имеет ряд недостатков, связанных прежде всего с тем, что иммунные сыворотки включают разнородные и гетерогенные популяции антител, различающихся по активности, аффинности (сродству к антигену) и биологическому действию. Обычные иммунные сыворотки содержат смесь антител, специфичных как в отношении заданного антигена, так и в отношении контаминирую-щих его белковых молекул. Новый тип иммунологических реагентов представляют собой моноклональные антитела, получаемые с помощью клонов гибридных клеток - гибридом (см.). Несомненным преимуществом моноклональных антител является их генетически предопределенная стандартность, неограниченная воспроизводимость, высокая чувствительность и специфичность. Первые гибридомы были выделены в начале 70-х годов 20 века, однако реальное освоение эффективной технологии создания моноклональных антител связано с исследованиями Келера и Милыптейна (G. Kohler, С. Milstein), результаты которых были опубликованы в 1975- 1976 годы. В последующее десятилетие новое направление клеточной инженерии, связанное с получением моноклональных антител, получило дальнейшее развитие.

Гибридомы образуются при слиянии лимфоцитов гипериммунизированных животных с клетками перевиваемых плазмоцитом различного происхождения. Гибридомы наследуют от одного из родителей способность продуцировать специфические иммуноглобулины, а от второго - свойство неограниченно размножаться. Клонированные популяции гибридных клеток могут длительное время продуцировать генетически однородные иммуноглобулины заданной специфичности - моноклональные антитела. Наиболее широко применяются моноклональные антитела, продуцируемые гибридомами, полученными с использованием уникальной мышиной клеточной линии МОРС 21 (РЗ).

К труднопреодолимым проблемам технологии моноклональных антител относятся сложность и трудоемкость получения устойчивых высокопродуктивных гибридных клонов, вырабатывающих моноспецифические иммуноглобулины; сложность получения гибридом, продуцирующих моноклональные антитела к слабым антигенам, неспособным индуцировать образование стимулированных В-лимфоцитов в достаточном количестве; отсутствие у моноклональных антител некоторых свойств иммунных сывороток, напр, свойства образовывать преципитаты с комплексами других антител и антигенов, на котором основаны многие диагностические тест-системы; низкая частота слияния лимфоцитов, продуцирующих антитела, с миеломными клетками и ограниченная стабильность гибридом в массовых культурах; низкая стабильность в процессе хранения и повышенная чувствительность препаратов моноклональных антител к изменениям pH, температуры инкубации, а также к замораживанию, оттаиванию и воздействию химических факторов; сложность получения гибридом или перевиваемых продуцентов человеческих моноклональных антител.

Практически все клетки в популяции клонированных гибридом продуцируют моноклональные антитела одного и того же класса и подкласса иммуноглобулинов. Моноклональные антитела можно модифицировать с помощью методов клеточной иммунной инженерии. Так, можно получать «триомы» и «квадромы», продуцирующие моноклональные антитела двойной заданной специфичности, изменять продукцию пента-мерных цитотоксических IgM на продукцию пентамерных нецитотоксических IgM, мономерных нецитотоксических IgM или IgM с уменьшенной аффинностью, а также переключать (с сохранением антигенной специфичности) секрецию IgM на секрецию IgD, а секрецию IgGl - на секрецию IgG2a, IgG2b или IgA.

Мышиный геном обеспечивает синтез свыше 1*10 7 различных вариантов антител, специфически взаимодействующих с эпитопами (антигенными детерминантами) белковых, углеводных или липидных антигенов, присутствующих в клетках или микроорганизмах. Возможно образование тысяч различных антител к одному антигену, отличающихся по специфичности и аффинности; например, в результате иммунизации однородными человеческими клетками индуцируется до 50 000 различных антител. Использование гибридом позволяет отбирать практически все варианты моноклональных антител, которые могут быть индуцированы к данному антигену в организме экспериментального животного.

Многообразие моноклональных антител, получаемых к одному и тому же белку (антигену), обусловливает необходимость определения их более тонкой специфичности. Характеристика и отбор иммуноглобулинов с требуемыми свойствами среди многочисленных видов моноклональных антител, взаимодействующих с исследуемым антигеном, превращаются зачастую в более трудоемкую экспериментальную работу, чем получение моноклональных антител. Эти исследования включают разделение набора антител на группы, специфичные к тем или иным эпитопам, с последующим отбором в каждой группе оптимального варианта по аффинности, стабильности и другим параметрам. Для определения эпитопной специфичности наиболее часто используют метод конкурентного иммуноферментного анализа.

Рассчитано, что первичная последовательность из 4 аминокислот (обычный размер эпитопа) может встречаться до 15 раз в последовательности аминокислот белковой молекулы. Однако перекрестные реакции с моноклональными антителами наблюдаются с гораздо меньшей частотой, чем можно было бы ожидать, исходя из этих расчетов. Происходит это потому, что далеко не все указанные участки экспрессируются на поверхности белковой молекулы и узнаются антителами. Кроме того, моноклональные антитела обнаруживают последовательности аминокислот только в определенной конформации. Следует учитывать и то обстоятельство, что последовательность аминокислот в белковой молекуле не распределяется среднестатистически, а участки связывания антител бывают значительно крупнее, чем минимальный эпитоп, содержащий 4 аминокислоты.

Использование моноклональных антител открыло недоступные ранее возможности для изучения механизмов функциональной активности иммуноглобулинов. Впервые с помощью моноклональных антител удалось выявить антигенные различия у белков, ранее серологически неразличимых. Были установлены новые субтиповые и штаммовые различия между вирусами и бактериями, открыты новые клеточные антигены. С помощью моноклональных антител обнаружены антигенные связи между структурами, существование которых невозможно было достоверно доказать с использованием поликлональных (обычных иммунных) сывороток. Применение моноклональных антител позволило идентифицировать консервативные антигенные детерминанты вирусов и бактерий, обладающие широкой групповой специфичностью, а также штаммоспецифические эпитопы, отличающиеся большой вариабельностью и изменчивостью.

Принципиальное значение имеет обнаружение с помощью моноклональных антител антигенных детерминант, индуцирующих выработку защитных и нейтрализующих антител к возбудителям инфекционных болезней, что важно для создания лечебно-профилактических препаратов. Взаимодействие моноклональных антител с соответствующими эпитопами может приводить к возникновению стерических (пространственных) препятствий для проявления функциональной активности белковых молекул, а также к аллостерическим изменениям, которые преобразуют конформацию активного участка молекулы и блокируют биологическую активность белка.

Только с помощью моноклональных антител удалось исследовать механизмы кооперативного действия иммуноглобулинов, взаимного потенцирования или взаимного ингибирования антител, направленных к различным эпитопам одного и того же белка.

Для производства массовых количеств моноклональных антител чаще используют асцитные опухоли мышей. Более чистые препараты моноклональных антител могут быть получены на бессывороточных средах в ферментируемых суспензионных культурах или в диализных системах, в микроинкапсулированных культурах и устройствах типа капиллярных культур. Для получения 1 г моноклональных антител требуется примерно 0,5 л асцитной жидкости или 30 л культуральной жидкости, инкубированной в ферментерах со специфическими гибридомными клетками. В производственных условиях вырабатывают очень большие количества моноклональных антител. Значительные затраты на производство моноклональных антител оправдываются высокой эффективностью очистки белков на иммобилизованных моноклональных антителах, причем коэффициент очистки белка в одноступенчатой процедуре аффинной хроматографии достигает нескольких тысяч. Аффинная хроматография на основе моноклональных антител применяется при очистке гормона роста, инсулина, интерферонов, интерлейкинов, продуцируемых измененными с помощью методов генетической инженерии штаммами бактерий, дрожжей или эукариотических клеток.

Быстро развивается использование моноклональных антител в составе диагностических наборов. К 1984 году в США было рекомендовано для клинических исследований около 60 диагностических тест-систем, приготовленных с применением моноклональных антител. Основное место среди них занимают тест-системы для ранней диагностики беременности, определения содержания в крови гормонов, витаминов, лекарственных препаратов, лабораторной дртгностики инфекционных болезней.

Сформулированы критерии отбора моноклональных антител для их использования в качестве диагностических реагентов. К ним относятся высокая аффинность к антигену, обеспечивающая связывание при низкой концентрации антигена, а также эффективная конкуренция с антителами организма хозяина, уже связавшимися с антигенами в исследуемом образце; направленность против антигенного участка, обычно не распознаваемого антителами организма хозяина и потому не маскированного этими антителами; направленность против повторяющихся антигенных детерминант поверхностных структур диагностируемого антигена; поливалентность, обеспечивающая более высокую активность IgM по сравнению с IgG.

Моноклональные антитела можно использовать в качестве диагностических препаратов для определения гормонов и лекарственных препаратов, токсических соединений, маркеров злокачественных опухолей, для классификации и подсчета лейкоцитов, более точного и быстрого определения групповой принадлежности крови, для выявления антигенов вирусов, бактерий, простейших, для диагностики аутоиммунных заболеваний, обнаружения аутоантител, ревматоидных факторов, определения классов иммуноглобулинов в сыворотке крови.

Моноклональные антитела позволяют успешно дифференцировать поверхностные структуры лимфоцитов и с большой точностью идентифицировать основные субпоиуля-ции лимфоцитов, классифицировать на семейства клетки лейкозов и лимфом человека. Новые реагенты на основе моноклональных антител облегчают процедуру определения В-лимфоцитов и Т-лимфоцитов, подклассов Т-лимфоцитов, превращая ее в один из простых этапов подсчета формулы крови. С помощью моноклональных антител можно избирательно удалять ту или иную субпопуляцию лимфоцитов, выключая соответствующую функцию системы клеточного иммунитета.

Обычно диагностические препараты на базе моноклональных антител содержат иммуноглобулины, меченные радиоактивным йодом, пероксидазой или другим ферментом, применяемым в иммуноферментных реакциях, а также флюорохромами, например флюоресцеинизотиоцианатом, используемыми в иммунофлюоресцентном методе. Высокая специфичность моноклональных антител представляет особую ценность при создании усовершенствованных диагностических препаратов, повышении чувствительности и специфичности радиоиммуно логических, иммуноферментных, иммунофлюорес-центных методов серологического анализа, типировании антигенов.

Терапевтическое применение моноклональных антител может оказаться эффективным при необходимости нейтрализации токсинов различного происхождения, а также антигеноактивных ядов, для достижения иммунодепрессии при трансплантации органов, для индукции зависимого от комплемента цитолиза опухолевых клеток, для коррекции состава Т-лимфоцитов и иммунорегуляции, для нейтрализации бактерий, устойчивых к антибиотикам, пассивной иммунизации против патогенных вирусов.

Основным препятствием на пути терапевтического использования моноклональных антител является возможность развития побочных иммунологических реакций, связанных с гетерологичным происхождением моноклональных иммуноглобулинов. Для преодоления этого необходимо получение человеческих моноклональных антител. Успешные исследования в этом направлении позволяют применять моноклональные антитела в качестве векторов для целенаправленной доставки ковалентно связанных лекарственных препаратов.

Разрабатываются терапевтические препараты, специфичные к строго определенным клеткам и тканям и обладающие направленной цитотоксичностью. Это достигается конъюги-рованием высокотоксичных белков, напр, дифтерийного токсина, с моноклональными антителами, узнающими клетки-мишени. Направляемые моноклональными антителами, химиотерапевтические агенты способны избирательно уничтожать в организме опухолевые клетки, несущие специфический антиген. Моноклональные антитела могут выполнять роль вектора и при встраивании в поверхностные структуры липосом, что обеспечивает доставку к органам или клеткам-мишеням значительных количеств лекарственных препаратов, заключенных в липосомах.

Последовательное применение моноклональных антител не только повысит информативность обычных серологических реакций, но и подготовит появление принципиально новых подходов к исследованию взаимодействия антигенов и антител.

СВОЙСТВА РАЗЛИЧНЫХ ВИДОВ АЛЛЕРГИЧЕСКИХ АНТИТЕЛ ПРИ РЕАКЦИЯХ НЕМЕДЛЕННОГО ТИПА [по данным Сихона (A. Sehon), 1965; Стануорта (D. Stanworth), 1963, 1965]

Исследуемые параметры

Виды антител

кожно-сенсибилизирующие (реагины)

блокирующие

гемагглютинирующие

Принцип определения антител

Реакция с аллергеном в коже

Блокирование реакции аллерген- реагин в коже

Реакция непрямой гемагглютинации в пробирке

Устойчивость при t° 50°

Термолабильные

Термостабильные

Термостабильные

Способность проходить через плаценту

Отсутствует

Нет данных

Способность осаждаться 30% сернокислым аммонием

Не осаждаются

Осаждаются

Частично осаждаются, частично остаются в растворе

Хроматография на ДЕАЕ -Целлюлозе

Рассеяны в нескольких фракциях

В 1-й фракции

В 1-й фракции

Абсорбция иммуно-сорбентами

Медленная

Нет данных

Преципитация с пыльцевыми аллергенами

Нет, даже после концентрации антител

Есть, после концентрации антител

Преципитирующая активность не совпадает с гемагглютинирующей

Инактивация меркаптанами

Происходит

Не происходит

Нет данных

Расщепление папаином

Медленное

Нет данных

Константа седиментации

Больше 7(8-11)S

Электрофоретические свойства

Преимущественно γ1-глобулины

γ2-глобулины

Большая часть связана с γ2-глобулинами

Класс иммуноглобулинов

Библиография

Бернет Ф. Клеточная иммунология, пер. с англ., М., 1971; Гаурови ц Ф. Иммунохимия и биосинтез антител, пер. с англ., М., 1969, библиогр.; Доссе Ж. Иммуногематология, пер. с франц., М., 1959; Здродовский П. Ф. Проблемы инфекции, иммунитета и аллергии, М., 1969, библиогр.; Иммунохи-мический анализ, под ред. Л. А. Зильбера, с. 21, М., 1968; Кэбот Е. и Мейер М. Экспериментальная иммунохимия, пер. с англ., М., 1968, библиогр.; Незлин Р. С. Строение биосинтеза антител. М., 1972, библиогр.; Носсе л Г. Антитела и иммунитет, пер. с англ., М., 1973, библиогр.; Петров Р. В. Формы взаимодействия генетически различающихся клеток лимфоидных тканей (трехклеточная система иммуногенеза), Усп. совр. биол., т. 69, в. 2, с. 261, 1970; Утешев Б. С. и Бабичев В. А. Ингибиторы биосинтеза антител. М., 1974; Эфроимсон В. П. Иммуногенетика, М., 1971, библиогр.

Аллергические А. - Адо А. Д. Аллергия, Многотомн. руководство по пат. физиол., под ред. H. Н. Сиротинина, т. 1, с. 374, М., 1966, библиогр.; Адо А. Д. Общая аллергология, с. 127, М., 1970; Польнер А. А., Вермонт И. Е. иСерова Т. И. К вопросу об иммунологической природе реагинов при поллинозах, в кн.: Пробл. аллергол., под ред. А. Д. Адо и А. А. Подколзина, с. 157, М., 1971; Bloch К. J. The anaphylactic antibodies of mammals including man, Progr. Allergy, v. 10, p. 84, 1967, bibliogr.; Ishizaka K. a. Ishizaka T. The significance of immunoglobulin E in reaginic hypersensitivity, Ann. Allergy, v. 28, p. 189, 1970, bibliogr.; Lichtenstein L. М., Levy D. A. a. Ishizaka K. In vitro reversed anaphylaxis, characteristics of anti-IgE mediated histamine release, Immunology, v. 19, p. 831, 1970; Sehon A. H. Heterogeneity of antibodies in allergic sera, в кн.: Molec. a. celL basis of antibody formation, ed. by J. Sterzl, p. 227, Prague, 1965, bibliogr.; Stanworth D. R. Immunochemical mechanisms of immediate-type hypersensitivity reactions, Clin. exp. Immunol., У. 6, p. 1, 1970, bibliogr.

Моноклональные антитела - Гибридомы: новый уровень биологического анализа, под ред. Р. Г. Кеннета и др., М., 1983; Рохлин О. В. Моноклональные антитела в биотехнологии и медицине, в кн.: Биотехнология, под ред. А. А. Баева, с. 288, М., 1984; N о w i n s k i R. C. a. o. Monoclonal antibodies for diagnosis of infectious diseases in humans, Science, v. 219, p. 637, 1983; Ollson L. Monoclonal antibodies in clinical immunobiology, Derivation, potential and limitations, Allergy, v. 38, p. 145, 1983; Sinko vies J. G. a. D r e e s m a n G. R. Monoclonal antibodies of hybridomas, Rev. infect. Dis., v. 5, p. 9, 1983.

М. В. Земсков, H. В. Журавлева, В. М. Земсков; А. А. Польнер (алл.); А. К. Туманов (суд.); А. С. Новохатский (Моноклональные антитела).

Теория боковых цепей Эрлиха. Эрлих полагал, что антитела представляют собой макромолекулы, специфичность которых для антигена зависит от присутствия определенных стереохимических конфигураций, обладающих комплементарностью к аналогичным структурам антигена, что обеспечивает специфическое взаимодействие между ними. По его мнению, антитела - это естественный компонент организма, играющий роль специфического рецептора поверхностной мембраны клеток, где они выполняют в норме такие же физиологические функции, как гипотетические рецепторы для питательных веществ или как рецепторы для лекарственных препаратов, существование которых утверждал Эрлих в своих более поздних теориях химиотерапии. Один из постулатов Эрлиха заключался в том, что антиген специфически отбирает соответствующие антительные рецепторы, отрывающиеся затем от поверхности клеток. Это приводит к конденсаторной гиперпродукции рецепторов, которые накапливаются в крови в виде циркулирующих антител.

Но затем в иммунологии произошли два события, бросившие тень сомнения на теорию Эрлиха. Первым из них был целый поток исследований, показавших, что антитела можно получить против огромного количества разнообразных вполне безвредных природных веществ. Кроме того, в двадцатые годы появились, данные Ф. Обермайера и Е.П. Пика, значительно развитые затем К. Ландштейнером, согласно которым антитела могут образовываться против почти любого искусственного химического соединения, если его присоединить в качестве гаптена к белку-носителю. После этого стало казаться невероятным, чтобы организм мог вырабатывать специфические антитела против такого огромного количества чужеродных и даже искусственно созданных структур.

^ Инструктивные теории образования антител . Вполне естественно, что в тот период времени, когда так мало было известно о структуре белков и еще меньше о пути их образования, все были под впечатлением широты иммунологического репертуара и разнообразия химических структур, способных вызвать их образование. Именно это и привлекало внимание к антигену как носителю иммунологической информации. Сложилось убеждение, что именно антиген управляет образованием специфических антител, направляя механизмы белкового синтеза на изготовление тех уникальных молекулярных конфигураций, которые определяют иммунологическую специфичность. Тем или иным способом антиген должен передать новообразованной молекуле белка информацию о своей специфичности, чтобы придать этой молекуле функции антитела. Наиболее известная из этих инструктивных теории, созданная в 1930 году Ф. Брейнлем и Ф. Гауровицем, утверждала, что антиген играет роль матрицы, которая обеспечивает сборку уникальных аминокислотных последовательностей полипептидной цепи антител. Позднее инструктивная теория была развита Л. Полингом, поддержавшим ее всем авторитетом, которым он пользовался в области физической химии. Утверждалось, что антиген может служить тем шаблоном, на котором происходит свертывание преобразованной полипептидной цепи с возникновением соответствующей третичной конфигурации, заключающей в себе стереохимическую специфичность. В течение нескольких десятилетий подобные теории прямой матрицы пользовались большой популярностью, так как казалось, что они предлагают единственное разумное объяснение тому многообразию антител, которое, как показали Ландштейнер и другие, может образовываться в организме позвоночных.

С точки зрения биолога, теории матрицы обладали значительными недостатками, и именно это привело вирусолога Макфарлейна Бернета к созданию в 1941 г. другого варианта инструкционистской теории. В условиях растущего признания той роли, которую ферменты играют в процессах синтеза и расщепления, Вернет предположил, что функция антигена может заключаться в том, что он стимулирует адаптивную модификацию тех ферментов, которые необходимы для синтеза глобулина, вызывая в результате образование уникальной белковой молекулы с нужной специфичностью. Эта теория адаптивных ферментов имела то преимущество, что с позиций первичной инструктивной роли антигена она объясняла не только широту иммунологического репертуара, но и длительное образование антител и усиленный вторичный иммунный ответ.

С развитием представлений о возможной генетической роли нуклеиновых кислот М. Бернет и Ф. Феннер в 1949 году модифицировали эту теорию. Они предположили, что антиген может вносить информацию о своей специфической детерминанте прямо в геном. Это приводит затем к образованию непрямой матрицы для специфических антител.

Селективные теории образования антител. Первую чисто биологическую селективную теорию образования антител сформулировал в 1955 году Нильс Ерне, который назвал ее теорией «естественного отбора». Ерне, как и раньше Пауль Эрлих, предположил, что в организме действительно синтезируется полный набор антител, но каждое из них образуется в небольшом количестве и независимо от какого-либо стимула поступает в кровь в виде «естественных антител». Функция этих антител должна состоять в том, чтобы избирательно связываться с антигеном и таким способом доставлять этот антиген неким клеткам организма, для которых антитела служат сигналом к воспроизведению таких же молекул, то есть к образованию большого количества специфических антител. Теория естественного отбора, предложенная Ерне, привлекла на свою сторону лишь немного приверженцев инструктивных теорий, однако она имела большое историческое значение, так как дала стимул для теоретиков биологического направления. Действие этого стимула проявилось очень скоро, когда на протяжении трех лет М. Бернет, Д. Толмедж и Дж. Ледерберг создали клонально-селекционную теорию образования антител. Основа этой концепции в том, что антитела представляют собой естественный продукт, присутствующий на поверхности клеток в качестве рецептора, с которым антиген может вступать в избирательное (селективное) взаимодействие. Это взаимодействие служит сигналом для клональной пролиферации популяции клеток, которые фенотипически отличаются от остальных тем, что специфичны именно к данному антигену. Среди дочерних клеток клона часть дифференцируется в сторону антителообразующих клеток, а остальные сохраняются в качестве клеток иммунологической памяти, которые могут в последующем обеспечить усиленный вторичный ответ.

В дальнейшем Ж. Борде при исследовании механизмов иммунных реакций обнаружил, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор, идентифицированный как сывороточные антитела, и термолабильный фактор, названный комплементом или алексином (от греч. aleksein - защищать). Комплемент состоит из целого комплекса белков, каждый из которых включается в комплекс «антиген-антитело» на определенной стадии иммунного ответа.

Очень часто бывает, что периоды наиболее значительного прогресса в какой-либо области отмечены дискуссией между двумя противостоящими школами, каждая из которых стремится провести эксперименты, подтверждающие ее собственную точку зрения и опровергающие противоположный взгляд. Так, в ранний период развития иммунологии такие споры возникали вокруг природы взаимодействия антиген-антитело и способа действия комплемента, и именно в этом был заключен важный стимул для быстрого развития иммунологических знаний. Но, пожалуй, ни один спор не был таким долгим и не имел таких важных последствий для дальнейшего развития иммунологии, как спор между приверженцами клеточной теории иммунитета и теми, кто считал гуморальные факторы единственной основой иммунологических процессов. Вместе с тем этот иммунологический диспут не был изолированным явлением; его следует рассматривать скорее как часть более широкой революции идей, которая происходила в медицине XIX века и затронула самые основы понимания физиологических и патологических процессов. Более двух тысячелетий в медицине господствовали представления древнегреческих гуморалистов, видевших в болезни результат количественных и качественных нарушений равновесия главных жидкостей организма. Только в XIX веке было признано значение клеток, из которых состоят различные органы и которые образуют различные жидкости тела.

Клеточной патологии Рудольфа Вирхова (утверждающей, что в основе болезней лежит нарушение функции клеток) едва исполнилось 30 лет, когда иммунологам пришлось выбирать, чью сторону они займут в их собственном варианте этого большого конфликта. Зоолог Илья Мечников был первым, кто четко сформулировал представление о важной роли лейкоцитов в защите организма от инфекционных заболеваний, которая реализуется благодаря их способности к фагоцитозу (1884 год). Это свое положение Мечников аргументировал тем, что даже у морских беспозвоночных имеются макрофаги, способные поглощать и разрушать чужеродные вещества или внедрившиеся бактерии или, по крайней мере, изолировать их с помощью гранулематозных реакций или образования гигантских клеток. Мечников полагал, что такую же защитную функцию несут фагоцитирующие клетки позвоночных, являющиеся наиболее важными участниками и естественного, и приобретенного иммунитета. Эта работа произвела глубокое впечатление на Пастера, и он пригласил Мечникова в свой недавно образованный Пастеровский институт в Париже, где Мечников с целым рядом выдающихся учеников провел следующие 28 лет в плодотворной и полной творческого воображения работе, стремясь подтвердить и расширить клеточную (фагоцитарную) теорию иммунитета .

Клеточная теория Мечникова сразу наткнулась на сопротивление. Прежде всего, она была предложена в то время, когда большинство патологов видели в воспалительной реакции, а также в связанных с ней микрофагах и макрофагах не защитную, а вредоносную реакцию. В то время считали даже, что, хотя фагоцитирующие клетки действительно способны поглощать болезнетворные микроорганизмы, это приводит не к разрушению возбудителя, а к переносу его в другие части тела и распространению болезни. Сильный удар по клеточной теории иммунитета был нанесен открытиями Беринга, Эрлиха, Борде.

Тем не менее в этот период времени было сделано две попытки примирить противоречия между гуморальным и клеточным направлениями. В 1908 году Шведская академия удостоила Нобелевской премии по медицине совместно Мечникова - основателя клеточного направления и Эрлиха - олицетворявшего гуморалистские идеи того времени. Несколько ранее в Англии Э.Райт и СР. Дуглас попытались примирить различия между этими двумя школами в своих капитальных исследованиях процесса опсонизации (от греч. opsonein - делать съедобным). Эти ученые утверждали, что клеточный и гуморальный факторы являются одинаково важными и взаимозависимыми в том отношении, что гуморальные антитела, специфически реагируя со своей мишенью - микроорганизмом, подготавливают его к фагоцитозу макрофагами.

Приверженность Райта этой идее была в Англии настолько известна, что его друг Бернард Шоу использовал это в качестве сюжета для своей пьесы «Врач перед дилеммой». Этой едкой насмешке над деятелями медицинской профессии Шоу предпослал «Предисловие о докторах», в котором выразил взгляды Райта следующим образом: «Следуя одной из самых плодотворных биологических фантазий Мечникова, сэр Элмрот Райт обнаружил, что белые кровяные шарики, или фагоциты, которые атакуют и пожирают возбудителей наших болезней, делают это лишь в том случае, если мы для аппетита намажем этих возбудителей естественным соусом, который сэр Элмрот назвал опсонином».

Период с 1910 по 1940 гг. в иммунологии был периодом серологии. В это время было сформулировано положение о специфичности и о том, что антитела являются естественными, высоковариабельными глобулинами. Большую роль здесь сыграли работы Ландштейнера, который пришел к выводу, что специфичность антител не является абсолютной. В 1900 году К. Ландштейнер разработал учение о группах крови человека, различающихся по изоантигенам эритроцитов (система АВО) и антителам к ним. С 1905 начали появляться работы Карела и Гутрие по трансплантации органов. Неудачи в трансплантологии получили объяснение в 1945 году, когда П. Медавар показал, что в основе отторжения генетически чужеродных тканей лежат те же механизмы, что и в противоинфекционном иммунитете. Произошло новое осмысление функций иммунной системы: иммунная система предстала как некий «страж порядка», несущий ответственность за генетическое постоянство организма. Возникла трансплантационная иммунология.

Во второй половине XX века началось исследование иммунологических феноменов на молекулярном уровне. На протяжении этого периода была получена точная и детальная информация о классах антител, структуре этих белков, зависимости специфичности антител от аминокислотной последовательности.

Гейдельбергер показал, что антитела являются белками и, следовательно, их можно подвергнуть молекулярному анализу.

Ландштейнер, Эвери и Гейдельбергер охарактеризовали антигенные детерминанты.

Р. Портер и Д. Эдельман расшифровали структуру антител (1972).

Б. Бенацерраф, Ж. Доссе и Д. Снелл открыли антигены системы HLA (1980).

В середине XX века успешно развивается иммунология злокачественных опухолей. Используются иммунохимические методы для диагностики первичных онкологических заболеваний. Изучаются клеточные и гуморальные факторы и механизмы противоопухолевого иммунитета, изыскиваются иммунологические методы профилактики и терапии злокачественных образований.

Период развития иммунологии XX века Ерне охарактеризовал как клеточный. В начале 50-х годов было доказано, что в организме имеются воспроизводимые антителосекретирующие единицы (КОЕ - колониеобразующие единицы - плазматические клетки) и антителообразование является формой биологической адаптации. Кроме того, было показано, что иммунокомпетентные клетки в процессе иммунного ответа дифференцируются, иммунологическая память имеет клеточную основу.

В это время осуществлены:

Идентификация циркулирующих лимфоцитов как клеток, ответственных за иммунологические феномены. В 60-70-е годы были выделены две независимые, но совместно функционирующие популяции лимфоцитов тимического и костномозгового происхождения, названные соответственно T- и B-лимфоцитами.

Идентификация Фагреус и Кунсом плазматических клеток как клеток, которые образуют и секретируют антитела. Оказалось, что синтез антител подчиняется тем же законам, что и синтез менее разнообразных белков.

Открытие субпопуляций T-лимфоцитов Митчисоном, Раевским и Гершоном. Идентификация регуляторных функций T-лимфоцитов (в иммунном ответе и гомеостазе).

Открытие антиидиотипических антител. Разработка теории иммунологической сети Ерне.

Идентификация и клонирование Тонегавой генов, кодирующих вариабельные и константные сегменты иммуноглобулинов.

В 1969 году одновременно несколькими авторами (В. Петеров, М. Беренбаум, И. Ройт) была предложена трехклеточная схема кооперации иммуноцитов в иммунном ответе (T-, B-лимфоцитов и макрофагов), определившая на многие годы изучение механизмов иммунного ответа, субпопуляционной организации клеток иммунной системы.

В конце 50-х годов независимо Ф. Бернет и Т. Давид сформулировали концепцию клеточного отбора. В 1971 году Бернет создал клонально-селекционную теорию специфического иммунитета, которая впоследствии была подтверждена многими учеными. Бернет предположил, что иммунная система контролирует генетическое постоянство внутренней среды организма. Согласно концепции Бернета в эмбриогенезе происходит уничтожение клонов клеток, способных реагировать на собственные ткани. Иммунитет включается не только на поступающие извне чужеродные агенты, но и на собственные структуры с измененным генотипом. Защита от собственных изменившихся клеток является главной задачей иммунитета, тогда как защита от микроорганизмов, чужеродных белков и клеток - производная функция иммунологического надзора.

XX век и особенно его вторую половину можно по праву считать эпохой расцвета иммунологии. Иммунитет, еще недавно понимавшийся как способ защиты организма от инфекции, оказался одним из центральных механизмов поддержания постоянства внутренней среды организма. Интенсивные исследования показали, что иммунная система представляет собой сложную высокоорганизованную структуру, включающую иммунокомпетентные клетки разной степени специализации и огромное количество регуляторных молекул. Уже не у кого не вызывает сомнения, что нормальное функционирование системы является одним из определяющих условий здоровья человека.

В настоящее время в качестве активно развивающихся направлений в фундаментальной иммунологии можно отметить исследования рецепторного аппарата клеток иммунной системы, механизмов апоптоза, путей активации клеток, исследование различных цитокинов и других гуморальных факторов.

На современном этапе огромный вклад в развитие иммунологической науки вносит биотехнология. Ведутся активные работы по созданию различных иммунопрофилактических средств - генно-инженерных, синтетических вакцин, аллерговакцин. Уделяется большое внимание созданию современных диагностических средств для выявления различных инфекций, онкозаболеваний, аутоиммунных патологий и других.

^ 17. НОБЕЛЕВСКИЕ ЛАУРЕАТЫ В ИММУНОЛОГИИ

Первой Нобелевской премии по медицине был удостоен Эмиль фон Беринг (1854-1917, Германия) «за его исследования по сывороточной терапии и, в частности, за применение ее против дифтерии». Свои исследования он проводил у Роберта Коха в Коховском институте в Берлине. Беринг со своими сотрудниками Китасато и Вернике в 90-92 гг. XIX века показали, что иммунитет к дифтерии и столбняку зависит от образования антитоксинов, циркулирующих в крови. Он показал, что пассивное введение антитоксической сыворотки может обеспечить выздоровление больных, и этим положил начало сывороточной иммунотерапии разнообразных болезней. В результате он открыл новый путь в области медицинской науки и дал в руки врача победоносное оружие против болезни и смерти.

Премия присуждена Роберту Коху (1843-1910, Германия) «за его исследования и открытия, связанные с туберкулезом». Иммунодиагностика с помощью туберкулинового теста и «феномен Коха», который состоит в повышенной кожной реакции на туберкулезные бациллы при введении их в кожу сенсибилизированных животных, сыграли решающую роль в изучении механизмов клеточного иммунитета.

Премию этого года разделили Илья Ильич Мечников (1845-1916, Россия) и Пауль Эрлих (1854-1915, Германия), получившие ее в качестве «признания их работ по иммунитету». И.И. Мечников - первый ученый, который сознательно и целеустремленно, посредством экспериментов, исследовал вопрос столь фундаментальный для иммунитета - какими средствами организм побеждает болезнетворных микроорганизмов. Сначала его эксперименты были ограничены низшими животными. Однако эти исследования открыли путь для теории фагоцитоза. Согласно ей, микроорганизмы разрушаются за счет деятельности некоторых клеток организма. Некоторые виды клеток в организмах людей и животных, а именно фагоциты имеют, в дополнение к другим функциям, задачи удаления болезнетворных микроорганизмов.

Однако, как полагали в начале XX века, кроме уничтожающего бактерии иммунитета имеется также защита другого вида, которая действует против продуктов бактерий. Повреждение, наносимое микроорганизмами, обусловлено ядами, которые эти организмы производят и которые затем распространяются по жидкостям организма. Другой вид иммунитета направлен против именно этой опасности. Лучший пример этого - использование антидифтерийной сыворотки, содержащей определенные вещества, которые действуют как антитоксины против дифтерии. Эти вещества были названы антителами. После того, как иммунитет был достигнут, антитела остаются в тканевых жидкостях организма. Многочисленные вопросы, касающиеся источника антител, их характера и строения, воздействия на токсины и многие другие, поднял в своих экспериментальных и теоретических изысканиях ученый Пауль Эрлих.

Премия присуждена Шарлю Рише (1850-1935, Франция) «за исследования по анафилаксии». Вместе со своим коллегой Полем Портье он открыл феномен анафилаксии, обусловленный не токсическими свойствами вводимых веществ, а их действием как антигенов в предварительно сенсибилизированном организме. Тем самым он открыл новое и в то время весьма неожиданное направление в медицине, показав, что «защитные» механизмы иммунитета могут также вызывать развитие болезни.

Премия присуждена Жюлю Борде (1870-1961, Бельгия) «за его исследования по иммунитету». В 1898 году он открыл феномен специфического гемолиза. Спустя некоторое время, работая вместе со своим помощником Октавом Жангу, Борде описал феномен фиксации комплемента и диагностические возможности этой реакции.

Премии удостоен Карл Ландштейнер (1868-1943, Австрия) «за открытие групп крови у человека». В своих исследованиях по антиэритроцитарным антителам он описал в 1901 году ряд изогемагглютининов человека, которые в наше время составляют систему групп крови AB0. Ландштейнер внес весьма значительный вклад в понимание химических основ взаимодействия между антителами и антигеном, обобщив наблюдения в своей знаменитой книге «Специфичность серологических реакций». Отдавая должное значение своему открытию групп крови, Ландштейнер заметил, что, с его точки зрения, премию 1930 году следовало бы скорее присудить за его исследования по взаимодействию гаптен-антитело.

Премия присуждена Максу Тейлеру (1899-1972, Южная Африка) «за разработку вакцины против желтой лихорадки». Тейлер родился в Южной Африке, изучал медицину в Англии и затем в 1922 году переехал в Соединенные Штаты. Именно он показал, что возбудителем желтой лихорадки является фильтрующийся вирус, и описанный им тест защиты мышей (при котором сывороточные антитела в смеси с вирусом защищают мышь от гибели при внутримозговом заражении) стал весьма приемлемым инструментом в эпидемиологических и других исследованиях желтой лихорадки. В конце 30-х годов ему удалось получить аттенуированные штаммы, которые сохраняли свою иммуногенность, но были лишены патогенности и составили основу современных эффективных вакцин против желтой лихорадки.

Премия присуждена Даниэлю Бове (1907-1992, Швейцария) «за разработку антигистаминных препаратов для лечения аллергии». Открытие феномена Шульца-Дейла (сокращение кусочка матки под влиянием антигена) позволило моделировать in vitro аллергические реакции и изучать участвующие в них физиологические механизмы. В результате этого было обнаружено, что среди факторов, которые освобождаются при анафилаксии, наиболее важными являются гистамин, серотонин и другие биологически активные вещества. Бове, по-видимому, познакомился с иммунологией и аллергией в период своей работы в Пастеровском институте в Париже, когда он опубликовал много работ о действии различных химических соединений на вегетативную нервную систему. Эти исследования привели его к поиску веществ, способных подавлять действие гистамина; в результате появились лекарственные препараты, оказавшиеся эффективным средством лечения астмы и сенной лихорадки.

Премия присуждена Франку Макфарлейну Бернету (1899-1985, Австралия) и Питеру Медавару (1915-1987, Великобритания) «за открытие приобретенной иммунологической толерантности». Медавар показал, что отторжение чужеродного кожного трансплантата подчиняется всем правилам иммунологической специфичности и в основе его лежат такие же механизмы, как и при защите от бактериальных и вирусных инфекций. Последующая работа, которую он провел вместе с рядом учеников, заложила прочную основу для развития трансплантационной иммунобиологии, которая стала важной научной дисциплиной и в дальнейшем обеспечила многие достижения в области клинической трансплантации органов. Бернет опубликовал книгу «Образование антител» (1941 г.). Он утверждал, что способность к иммунологическим реакциям возникает на сравнительно поздних стадиях эмбрионального развития и при этом происходит запоминание существующих маркеров «своего» у антигенов, присутствующих в данный момент. Организм в последующем приобретает к ним толерантность и не способен отвечать на них иммунологической реакцией. Все антигены, которые не запомнились, будут восприниматься как «не свои» и смогут в дальнейшем вызывать иммунный ответ. Было высказано предположение, что любой антиген, введенный в течение этого критического периода развития, будет затем восприниматься как свой и вызывать толерантность, в результате чего не сможет в дальнейшем активировать иммунную систему. Эти идеи были далее развиты Бернетом в его клонально-селекционной теории образования антител. Предположения Бернета были подвергнуты экспериментальной проверке в исследованиях Медавара, который в 1953 году на мышах чистых линий получил четкое подтверждение гипотезы Бернета, описав феномен, которому Медавар дал название приобретенной иммунологической толерантности.

Премия присуждена Джералду М. Эдельману (1929, США) и Роднёю Р. Портеру (1917-1985, Великобритания) «за их исследования по химической структуре антител». Данные А. Тизелиуса и Э.А. Кэбета о том, что антитела являются гамма-глобулинами с большой молекулярной массой, показали, насколько трудным будет установить химическую основу для их первичной иммунологической специфичности и их вторичных биологических свойств. Расщепляя молекулу антитела ферментами, Портер стремился получить более мелкие активные фрагменты, ив 1958 году он добился успеха. При расщеплении папаином из молекулы антитела удалось выделить три составляющие ее фрагмента: два идентичных Fab-фрагмента и третий Fc-фрагмент. Fab-фрагмент содержит антительные участки связывания антигена, а Fc обеспечивает вторичную биологическую активность антитела. Затем Эдельман показал, что, восстанавливая гомогенный белок, можно выделить составляющие его полипептидные цепи - легкие (L) и тяжелые (Н). Далее Портер показал, что молекула иммуноглобулина образована двумя легкими и двумя тяжелыми цепями. На основе этих данных была создана теперь уже общепризнанная модель строения IgG. Выделение из иммуноглобулина цепей и фрагментов открыло возможность изучения их аминокислотной последовательности; такие исследования стали проводиться с большой интенсивностью в лабораториях Портера, Эдельмана и многих других исследователей. В результате этих работ было установлено, что в L- и Н-цепях существуют как вариабельные, так и константные области, и появилась возможность сравнивать первичную структуру антител разной специфичности и даже разных видов животных. Наконец в 1969 г. Эдельман и его сотрудники сумели полностью расшифровать первичную структуру одной молекулы иммуноглобулина, что позволило не только установить положение антигенсвязывающего участка, но также локализовать те «домены», которые обеспечивают вторичные биологические функции антител.

Премия по медицине присуждена Розалине Ялоу (1921, США) «за разработку метода радиоиммунологического анализа пептидных гормонов». Гормоны - химические вещества с очень большим диапазоном различного действия при концентрациях, которые в течение долгого времени казались настолько низкими, что считались следовыми. Розалина Ялоу работала над методологией измерения содержания гормонов в крови при очень низких концентрациях. Розалина Ялоу и ее коллега Соломон Берсон обнаружили случайно, что белковый гормон инсулин после введения в кровь человека, больного сахарным диабетом, способствует образованию антител против инсулина. Через пару лет интенсивной работы они представили в 1960 году метод для определения белковых гормонов в крови, принцип которого был основан на способности этих гормонов вызывать продукцию антител. В результате смешивания в пробирке известного количества радиоактивного инсулина с известным количеством антител против инсулина образуются комплексы инсулин-антитело с частью радиоактивного инсулина. Впоследствии, если добавить к этой смеси небольшое количество крови, которая содержит инсулин, инсулин крови замещает некоторую часть радиоактивного инсулина в комплексах с антителами. Чем выше концентрация инсулина находится в пробе крови, тем большее количество радиоактивного инсулина будет отделено от антител. Количество радиоактивного инсулина, удаленного из комплексов, может легко быть установлено, тем самым указывая точную величину содержания исследуемого инсулина в пробе крови. Таким образом метод Розалины Ялоу и его последующие модификации позволили применять его далеко за рамками ее собственной области исследования.

Премия по медицине присуждена Баруху Бенацеррафу (1920, Венесуэла), Жану Доссе (1916, Франция) и Джорджу Д. Снеллу (1903-1996, США) «за их работу по генетически детерминированным структурам клеточной поверхности, регулирующим иммунологические реакции». В 1965 году Доссе и его сотрудники описали систему примерно из 10 антигенов человека, закодированных в главном комплексе гистосовместимости, который включает «сублокусы», определяющие ограниченное число антигенных аллелей.

Нобелевская премия по медицине присуждена Нильсу К. Ерне (1911-1994, Дания), Джорджу Г.Ф. Кёлеру (1946- 1995, Германия) и Цезарю Мильштейну (1927-2002, Аргентина) «за теории, касающиеся специфичности в иммунной системе, и открытие принципов получения моноклональных антител». Ерне - известный теоретик в области иммунологии - выдвинул предложение, что способность иммунной системы идентифицировать несметное число антигенов была как-то предопределена еще до первого поступления антигена. А при поступлении антигена происходит некий выбор в пользу нужных антител и увеличивается их наработка. Теория Ерне сильно контрастировала с преобладающими в то время теориями, но она быстро была поддержана и расширена.

Отправной точкой для следующей важной теории Ерне в 1971 году явилась особенность иммунной системы одного индивидуума отторгать ткань другого. Ерне предполагал, что за эти реакции ответственны молекулы, названные им антигенами трансплантации. По его предположению, они должны иметь определенные функции в здоровом организме, не подвергшемуся трансплантации. Одной из функций этих молекул могла быть активация и запуск сигналов об увеличении количества клеток иммунной системы, участвующих в защите тканей организма. Специальные органы, например тимус, могли были приняты в качестве «оранжереи» и «университета» для этих клеток. В этой теории Ерне предсказывал феномен образования специфичности для клеточного звена иммунитета.

В третьей теории в 1974 году Нильс Ерне представил предполагаемую картину устройства иммунной системы. Иммунная система уподобляется гигантскому компьютеру, где осуществляется постоянная связь и регулирование между различными ее компонентами. Количество клеток в такой системе в организме взрослого человека превышает 10 12 млн.; кроме того, система имеет способность производить миллиарды различных антител с огромным структурным разнообразием. Некоторые антитела, согласно теории, подражают антигенам, против которых нарабатываются другие антитела. И тогда в ответ на проникновение антигена в организм иммунитет срабатывал бы быстрее. Это стало, по сути, предсказанием существования иммунологической памяти. Таким образом, умозрительные теории Ерне позволили современной иммунологии сделать важные шаги по пути новых открытий.

Джордж Келер и Цезарь Мильштейн открыли и развили принципы производства так называемых моноклональных антител с помощью гибридомной технологии. Мильштейн, работал с опухолевыми плазматическими клетками, способными производить антитела. Однако антигенов, с которыми они могли бы связываться, не было найдено. В то же самое время молодой исследователь Келер пытался вырастить нормальные плазматические клетки в условиях in vitro. Только немногие плазматические клетки могли существовать в культуре, и то недолгое время. Тогда Келер, узнав об опытах Мильштейна, обратился к нему с предложением создать гибриды опухолевых клеток с нормальными плазматическими клетками, продуцирующими антитела. Свойства опухолевых клеток позволили бы этим гибридам приобрести большую жизнеспособность для выращивания в культуре.

Ученые смогли решить эту задачу за два года. К этому времени они отработали технику, позволяющую им по желанию получить гибридные клетки, производящие нужные антитела. Эти клетки имели высокую жизнеспособность, чтобы произвести антитела в высоком количестве. Ученые назвали эти гибридные клетки гибридомами, а поскольку все клетки в гибридомной культуре происходят от одной гибридной клетки, антитела были названы моноклональными.

Премия по медицине присуждена Сусумо Тонегава (1939, Япония) «за открытие генетических принципов генерации антител». Благодаря исследованиям Тонегавы стали ясны молекулярно-биологические механизмы формирования огромного разнообразия активных центров антител, а позднее и T-клеточных рецепторов.

Премия по медицине и физиологии присуждена Жозефу Е. Марри (1919, США) и Е. Донналлу Томасу (1920, США) «за открытия в области трансплантологии органов и клеток». Они создали основы техники пересадки клеток костного мозга при лейкозах и при пересадке таких органов, как почка, используя подбор донора и реципиента по антигенам гистосовместимости и применяя созданные ими цитотоксические препараты.

Премия по медицине присуждена Питеру К. Догерти (1940, Австралия) и Рольфу М. Зинкернагелю (1944, Швейцария) «за их открытия в области специфичности клеточного иммунного ответа». Оба работают в США. Основная заслуга лауреатов заключается в расшифровке механизмов узнавания антигенов T- и B-лимфоцитами. Этот механизм был назван когнатным, или сцепленным, распознаванием.

Премия по медицине и физиологии присуждена Лиланду Г. Хартвеллу (1939, США), Р. Тимоти Ханту (1943, Великобритания) и Полю М. Нёрсу (1949, Великобритания) «за открытие ключевых регуляторов клеточного цикла». Лауреаты обнаружили ключевые регуляторы клеточного цикла - циклин-зависимые киназы (CDK) и циклины. Вместе эти два компонента образуют фермент, в котором CDK является как бы «молекулярным двигателем», проводящим клетку через клеточный цикл, изменяя структуру и функцию других белков в клетке. Циклин - это главный «переключатель», который запускает и останавливает «CDK-двигатель». Были обнаружены гены, ответственные за деление клетки, названные CDC-гены. Один из этих генов, CDC28, контролирует инициацию клеточного цикла. Ими была также сформулирована концепция «сверочных точек», которые гарантируют, что события клеточного цикла идут правильно. Дефекты сверочных точек рассматривается в качестве одной из причин преобразования нормальных клеток в раковые.

Премия по медицине и физиологии присуждена Сиднею Бреннеру (1927, Великобритания), г. Роберту Хорвитцу (1947, США) и Джону Е. Сулстону (1942, Великобритания) «за открытие генетической регуляции развития органов и программированной клеточной смерти». Эти исследования были выполнены на нематоде Caenorhabditis elegans . Ученые идентифицировали несколько генов, ответственных за программированную гибель клеток. Кроме того, они показали, что в человеческих клетках имеются гомологи этих генов.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: