Взаимосвязь компонентов биоценоза и их приспособленность. Изучение взаимосвязей животных с другими компонентами биоценоза план-конспект урока (7 класс) на тему. Отношения организмов в биоценозах

Особи разных видов существуют в биоценозах не изолированно, они вступают в разнообразные прямые и косвенные взаимоотношения. Их обычно разделяют на четыре типа: трофические, тонические, форические, фабрические.

Трофические отношения возникают тогда, когда один вид в биоценозе питается другим (либо его мертвыми остатками, либо продуктами его жизнедеятельности). Божья коровка, питающаяся тлей, корова на лугу, поедающая траву, волк, охотящийся на зайца, — все это примеры прямых трофических связей между видами.

При конкуренции двух видов из-за ресурса питания между ними возникает косвенная трофическая связь. Так, волк и лиса вступают в косвенные трофические связи при использовании такого общего пищевого ресурса, как заяц.

Перенос семян растений осуществляется обычно при помощи специальных приспособлений. Животные могут захватывать их пассивно. Так, за шерсть крупных млекопитающих могут цепляться своими шипами семена лопуха или череды и переноситься на большие расстояния.

Активно переносятся непереваренные семена, прошедшие через пищеварительный тракт животных, чаще всего птиц. Например, у грачей примерно треть семян выводится пригодными для прорастания. В ряде случаев адаптация растений к зоохории зашла так далеко, что у семян, прошедших через кишечник птиц и подвергшихся действию пищеварительных соков, повышается всхожесть. В переносе грибных спор большую роль играют насекомые.

Форезия животных — это пассивный способ расселения, свойственный видам, которым для нормальной жизнедеятельности необходим перенос из одного биотопа в другой. Личинки ряда клещей, находясь на других животных, например насекомых, расселяются при помощи чужих крыльев. Жуки-навозники иногда не в состоянии опустить свои надкрылья из-за густо скопившихся на их теле клещей. Птицы нередко переносят на перьях и лапках мелких животных или их яйца, а также цисты простейших. Икра некоторых рыб, например, выдерживает двухнедельное обсыхание. Вполне свежая икра моллюска была обнаружена на лапках утки, подстреленной в Сахаре в 160 км от ближайшего водоема. На короткие расстояния водоплавающие птицы могут переносить даже мальков рыб, случайно попавших в их оперение.

Фабрические связи — тип биопенотических отношений, при которых особи одного вида используют для своих сооружений продукты выделения, мертвые остатки или даже живых особей другого вида. Например, птицы строят гнезда из сухих веточек, травы, шерсти млекопитающих и т.п. Личинки ручейников используют для строительства кусочки коры, песчинки, обломки или раковины с живыми моллюсками.

Из всех типов биотических отношений между видами в биоценозе наибольшее значение имеют топические и трофические связи, поскольку они удерживают друг возле друга организмы разных видов, объединяя их в достаточно стабильные сообщества (биоценозы) разного масштаба.

Взаимодействие популяций в биоценозах

Типы взаимодействий популяций в биоценозах обычно условно разделяются на положительные (полезные), отрицательные (неблагоприятные) и нейтральные. Однако в равновесном сообществе взаимодействия и связи всех популяций обеспечивают максимальную устойчивость экосистемы и с этой точки зрения все взаимодействия полезны.

Положительными и отрицательными являются лишь взаимодействия в неравновесной популяции при ее самопроизвольном движении к равновесию.

Экологические связи хищников и жертв направляют ход эволюции сопряженных популяций .

Комменсализм — форма взаимоотношений между двумя популяциями, когда деятельность одной из них доставляет пищу или убежище другой (комменсалу). Иными словами, комменсализм — одностороннее использование одной популяции другой без нанесения вреда первой.

Нейтрализм — такая форма биотических отношений, при которой сожительство двух популяций на одной территории не влечет для них ни положительных, ни отрицательных последствий. Отношения типа нейтрализма особенно развиты в насыщенных популяциями сообществах.

При аменсализме для одной из двух взаимодействующих популяций последствия совместного обитания отрицательны, тогда как другая не получает от них ни вреда, ни пользы. Такая форма взаимодействия чаще встречается у растений.

Конкуренция - взаимоотношения популяций со сходными экологическими требованиями, существующих за счет общих ресурсов, имеющихся в недостатке. Конкуренция — единственная форма экологических отношений, отрицательно сказывающаяся на обеих взаимодействующих популяциях.

Если две популяции с одинаковыми экологическими потребностями оказываются в одном сообществе, рано или поздно один конкурент вытесняет другого. Это одно из наиболее общих экологических правил, которое получило название закона конкурентного исключения. Конкурирующие популяции могут уживаться в биоценозе и в том случае, если повышение численности более сильного конкурента не допускает хищник.

Следовательно, содержат в каждой группе организмов значительное число потенциальных или частичных конкурентов, состоящих в динамических отношениях друг с другом.

Конкуренция имеет в биоценозах двоякое значение. Она является фактором, в значительной мере определяющим видовой состав сообществ, поскольку интенсивно конкурирующие популяции вместе не уживаются. Одновременно частичная или потенциальная конкуренция позволяет популяциям быстро захватывать дополнительные ресурсы, освобождающиеся при ослаблении деятельности соседей, и замешать их в биоценотических связях, что сохраняет и стабилизирует биоценоз в целом.

Взаимодополняемость и кооперация возникают тогда, когда взаимодействие полезно для обеих популяций, но они не находятся в полной зависимости одна от другой, поэтому могут существовать и отдельно. Это наиболее эволюционно важная фора положительных взаимодействий популяций в биоценозах. Сюда же относятся все основные формы взаимодействий в сообществах в ряду продуценты — консументы — редуценты.

Положительные взаимодействия стали основой для снятия биотой ограничений на ресурс путем организации кругооборотов биогенов.

Все перечисленные типы биоценотических связей, выделяемые по критерию пользы или вреда взаимных контактов для отдельных партнеров, характерны не только для межвидовых, но и для внутривидовых отношений.

Сообщество – исторически сложившаяся совокупность обитающих на определенной территории взаимосвязанных популяций растений (фитоценоз), животных (зооценоз), грибов и микроорганизмов (микробоценоз).

Организация сообщества (биоценоза):

    Всегда складывается из готовых частей (популяций разных видов организмов).

    Части взаимозаменяемые (один вид может занять место другого вида со сходными экологическими требованиями).

    Основан на количественной регуляции численности одних видов другими.

    Размеры определяются условиями абиотической среды (биотопом).

Биотоп – относительно однородный участок абиотической среды, занятый одним сообществом (биоценозом).

Основу существования сообщества (биоценоза) составляют взаимные связи между его организмами:

    Трофические (пищевые) одни организмы питаются другими организмами, либо их мертвыми остатками, либо продуктами их жизнедеятельности (стрекозы ловят насекомых; жуки – могильщики поедают трупы мелких зверей и птиц; жуки - навозники питаются пометом и др.);

    Топические: одни организмы создают среду обитания для других организмов (на коре деревьев поселяются лишайники, на коже китов поселяются морские желуди и др.);

    Форические: одни организмы участвуют в распространении других организмов (звери разносят плоды с прицепками на своей шерсти, дрозды и сойки распространяют семена деревьев и др.);

    Фабрические: одни организмы используют для сооружения своих гнезд, жилищ продукты выделения либо мертвые остатки других организмов (птицы используют для строительства гнезд ветви деревьев, шерсть зверей, траву, листья; личинки ручейников строят домики из кусочков веток и раковин моллюсков и др.)

Структура сообщества (биоценоза).

Видовая структура – видовое разнообразие и соотношение видов по численности и плотности популяций. Различают сообщества, богатые видами (коралловый риф, дождевой тропический лес и др.) и бедные (арктическая тундра, пустыни, болота и др.).

Виды, преобладающие по численности – виды доминанты. Среди видов - доминантов, выделяют виды, создающие среду обитания для всего сообщества, - виды - эдификаторы (в ельнике – ель, в березняке – береза и т.д.).

Редкие и малочисленные виды увеличивают разнообразие связей в сообществе, служат резервом для замещения видов – доминантов. Чем специфичней условия среды, тем беднее видовой состав и выше численность отдельных видов. И наоборот, в богатых сообществах все виды малочисленны. Чем выше видовое разнообразие, тем устойчивее сообщество.

Пространственная структура – распределение организмов (в основном растений) по надземным и подземным ярусам. Ярусы образуют надземные вегетативные органы растений и их корневые системы. Ярусы хорошо выражены в лесу (древесный, кустарниковый, травянистый, моховой). Кроме вертикального, существует горизонтальное распределение организмов в сообществе – мозаичность. Мозаичность обусловлена неоднородностью микрорельефа, деятельностью растений, животных и человека (выбросы почвы, вытаптывание травостоя, вырубка деревьев и др.).

Трофическая структура – пищевые цепи, состоящие из отдельных организмов, находящихся в трофических связях друг с другом. Пищевые цепи образуют в сообществе сложные переплетения – пищевые (трофические) сети.

Экологическая структура – соотношение экологических групп организмов, составляющих сообщество. Разнообразие и обилие представителей той или иной экологической группы зависят от условий среды (в пустынях преобладают растения ксерофиты и животные ксерофилы; в водных сообществах – растения гидрофиты и животные гидрофилы и т.д.) сообщества со сходной экологической структурой могут иметь разный видовой состав, так как одни и те же экологические ниши занимают разные виды (одну и ту же экологическую нишу в европейской тайге занимает куница, а в сибирской – соболь).

Биоценоз (от греч. bios - жизнь, koinos - общий) - это организованная группа взаимосвязанных популяций растений, живот­ных, грибов и микроорганизмов, живущих совместно в одних и тех же условиях среды.

Понятие «биоценоз» было предложено в 1877 г. немецким зоологом К. Мебиусом. Мебиус, изучая устричные банки, пришел к выводу, что каждая из них представляет собой сообщество живых существ, все члены которого находятся в тесной взаимосвязи. Био­ценоз является продуктом естественного отбора. Выживание его, устойчивое существование во времени и пространстве зависит от характера взаимодействия составляющих популяций и возможно лишь при обязательном поступлении извне лучистой энергии Солнца.

Каждый биоценоз имеет определенную структуру, видовой состав и территорию; ему свойственны определенная организация пищевых связей и определенный тип обмена веществ

Но никакой биоценоз не может развиваться сам по себе, вне и независимо от среды. В результате в природе складываются определенные комплексы, совокупности живых и неживых компонентов. Сложные взаимодейст­вия отдельных частей их поддерживаются на основе разносторонней взаимной приспособ­ленности.

Пространство с более или менее однород­ными условиями, заселенное тем или иным сообществом организмов (биоценозом), назы­вается биотопом.

Иначе говоря, биотоп - это место сущест­вования, местообитание, биоценоза. Поэтому биоценоз можно рассматривать как историче­ски сложившийся комплекс организмов, харак­терный для какого-то конкретного биотопа.

Любой биоценоз образует с биотопом диа­лектическое единство, биологическую макроси­стему еще более высокого ранга - биогеоценоз. Термин «биогеоценоз» предложил в 1940 г. В. Н. Сукачев. Он практически тождест­вен широко распространенному за рубежом термину «экосистема», который был предло­жен в 1935 г. А. Тенсли. Существует мнение, будто термин «биогеоценоз» в значительно большей степени отражает структурные харак­теристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается прежде всего ее функциональная сущность. Фактически между этими терминами различий нет. Несом­ненно, В. Н. Сукачев, формулируя понятие «биогеоценоз», объединял в нем не только структурную, но и функциональную значимость макросистемы. По В. Н. Сукачеву, биогео­ценоз - это совокупность на известном про­тяжении земной поверхности однородных природных явлений - атмосферы, горной породы, гидрологических условий, расти­тельности, животного мира, мира микроорга­низмов и почвы. Эта совокупность отличается спецификой взаимодействий слагающих ее ком­понентов, их особой структурой и определен­ным типом обмена веществ и энергии между собой и с другими явлениями природы.

Биогеоценозы могут быть самых различных размеров. Кроме того, они отличаются боль­шой сложностью - в них подчас трудно учесть все элементы, все звенья. Это, к примеру, такие естественные группировки, как лес, озе­ро, луг и т. д. Примером сравнительно простого и четкого биогеоценоза может служить неболь­шой водоем, пруд. К неживым компонентам его относятся вода, растворенные в ней веще­ства (кислород, углекислый газ, соли, органиче­ские соединения) и грунт - дно водоема, где также содержится большое количество разно­образных веществ. Живые компоненты водо­ема разделяются на производителей первичной продукции - продуценты (зеленые растения), потребителей - консументы (первичные - рас­тительноядные животные, вторичные - плото­ядные животные и т. д.) и разрушителей - деструкторы (микроорганизмы), которые раз­лагают органические соединения до неорганических. Любой биогеоценоз, независимо от его размеров и сложности, состоит из этих основ­ных звеньев: производителей, потребителей, разрушителей и компонентов неживой приро­ды, а также из множества других звеньев. Между ними возникают связи самых различных порядков - параллельные и перекрещивающи­еся, запутанные и переплетенные и т. д.

В целом биогеоценоз представляет внутрен­нее противоречивое диалектическое единство, находящееся в постоянном движении и измене­нии. «Биогеоценоз - не сумма биоценоза и среды, - указывает Н. В. Дылис, - а целостное и качественно обособленное явление природы, действующее и развивающееся по своим соб­ственным закономерностям, основу которых составляет метаболизм его компонентов».

Живые компоненты биогеоценоза, т. е. сба­лансированные животно-растительные сообще­ства (биоценозы), являются высшей формой существования организмов. Они характеризу­ются относительно устойчивым составом фауны и флоры и обладают типичным набором живых организмов, сохраняющих свои основные при­знаки во времени и пространстве. Устойчивость биогеоценозов поддерживается саморегуляцией, т. е. все элементы системы существуют совместно, никогда полностью не уничтожая друг друга, а только ограничивая численность особей каждого вида до какого-то предела. Именно поэтому между видами животных, рас­тений и микроорганизмов исторически сложи­лись такие взаимоотношения, которые обеспе­чивают развитие и удерживают размножение их на определенном уровне. Перенаселенность одного из них может возникнуть по какой-то причине как вспышка массового размножения, и тогда сложившееся соотношение между вида­ми временно нарушается.

Чтобы упростить изучение биоценоза, его условно можно расчленить на отдельные ком­поненты: фитоценоз - растительность, зооце­ноз - животный мир, микробоценоз - микро­организмы. Но такое дробление приводит к искусственному и фактически неправильному выделению из единого природного комплекса группировок, которые самостоятельно сущест­вовать не могут. Ни в одном местообитании не может быть динамической системы, которая состояла бы только из растений или только из животных. Биоценоз, фитоценоз и зооценоз необходимо рассматривать как биологические единства разных типов и ступеней. Такой взгляд объективно отражает реальное положение в современной экологии.

В условиях научно-технического прогресса деятельность человека преобразует природные биогеоценозы (леса, степи). На смену им при­ходят посевы и посадки культурных растений. Так формируются особые вторичные агробиогеоценозы, или агроценозы, количество кото­рых на Земле постоянно увеличивается. Агроценозами являются не только сельскохозяйственные поля, но и полезащитные лесные поло­сы, пастбища, искусственно возобновляемые леса на вырубках и пожарищах, пруды и водо­хранилища, каналы и осушенные болота. Агробиоценозы по своей структуре характеризуют­ся незначительным количеством видов, но вы­сокой их численностью. Хотя в структуре и энергетике естественных и искусственных био­ценозов есть много специфичных черт, резких различий между ними не существует. В естест­венном биогеоценозе количественное соотно­шение особей разных видов взаимно обуслов­лено, поскольку в нем действуют механизмы, регулирующие это соотношение. В результате в таких биогеоценозах устанавливается стабиль­ное состояние, поддерживающее наиболее выгодные количественные пропорции составля­ющих его компонентов. В искусственных агроценозах нет подобных механизмов, там человек полностью взял на себя заботу об упорядочи­вании взаимоотношений между видами. Изу­чению структуры и динамики агроценозов уделяется большое внимание, так как уже в обозримом будущем первичных, естественных, биогеоценозов практически не останется.

  1. Трофическая структура биоценоза

Основная функция биоценозов - поддержание круговорота ве­ществ в биосфере - базируется на пищевых взаимоотношениях видов. Именно на этой основе органические вещества, синтезированные автотрофными организмами, претерпевают многократные химические трансформации и в конечном итоге возвращаются в среду в виде неорганических продуктов жизнедеятельности, вновь вовлекаемых в круговорот. Поэтому при всем многообразии видов, входящих в состав различных сообществ, каждый биоценоз с необходимостью включает представителей всех трех принципиальных экологических групп орга­низмов - продуцентов, консументов и редуцентов . Полночленность трофической структуры биоценозов - аксиома биоценологии.

Группы организмов и их взаимосвязи в биоценозах

По участию в биогенном круговороте веществ в биоценозах различают три группы организмов:

1) Продуценты (производители) - автотрофные организмы, создающие органические вещества из неорганических. Основными продуцентами во всех биоценозах являются зеленые растения. Деятельность продуцентов определяет исходное накопление органических веществ в биоценозе;

Консументы I порядка .

Этот трофический уровень составлен непосредственными потребителями первичной продукции. В наиболее типичных случаях, когда последняя создается фотоавтотрофами, это растительноядные животные (фитофаги). Виды и эколо­гические формы, представляющие этот уровень, весьма разнообразны и приспособлены к питанию разными видами растительного корма. В связи с тем, что растения обычно прикреплены к субстрату, а ткани их часто очень прочны, у многих фитофагов эволюционно сформиро­вался грызущий тип ротового аппарата и различного рода приспособ­ления к измельчению, перетиранию пищи. Это зубные системы грызущего и перетирающего типа у различных растительноядных млекопитающих, мускульный желудок птиц, особенно хорошо выра­женный у зерноядных, и.т. п. Сочетание этих структур определяет возможность перемалыва­ния твердой пищи. Грызущий ротовой аппарат свойствен многим насекомым и др.

Некоторые животные приспособлены к питанию соком растений или нектаром цветков. Эта пища богата высококалорийными, легко­усвояемыми веществами. Ротовой аппарат у питающихся таким обра­зом видов устроен в виде трубочки, с помощью которой всасывается жидкая пища.

Приспособления к питанию растениями обнаруживаются и на физиологическом уровне. Особенно выражены они у животных, пита­ющихся грубыми тканями вегетативных частей растений, содержащи­ми большое количество клетчатки. В организме большинства животных не продуцируются целлюлозолитические ферменты, а расщепление клетчатки осуществляется симбиотическими бактериями (и некоторы­ми простейшими кишечного тракта).

Консументы частично используют пищу для обеспечения жизнен­ных процессов («затраты на дыхание»), а частично строят на ее основе собственное тело, осуществляя таким образом первый, принципиаль­ный этап трансформации органического вещества, синтезированного продуцентами. Процесс создания и накопления биомассы на уровне консументов обозначается как, вторичная продукция.

Консументы II порядка .

Этот уровень объединяет животных с плотоядным типом питания (зоофаги). Обычно в этой группе рассматривают всех хищников, поскольку их специфические черты практически не зависят от того, является ли жертва фитофагом, или плотоядна. Но строго говоря, консументами II порядка следует считать только хищников, питающихся растительноядными животны­ми и соответственно представляющих второй этап трансформации органического вещества в цепях питания. Химические вещества, из которых строятся ткани животного организма, довольно однородны, поэтому трансформация при переходе с одного уровня консументов на другой не имеет столь принципиального характера, как преобразо­вание растительных тканей в животные.

При более тщательном подходе уровень консументов II порядка следует разделять на подуровни соответственно направлению потока вещества и энергии. Например, в трофической цепи «злаки - кузне­чики - лягушки - змеи - орлы» лягушки, змеи и орлы составляют последовательные подуровни консументов II порядка.

Зоофаги характеризуются своими специфическими приспособле­ниями к характеру питания. Например, их ротовой аппарат часто приспособлен к схватыванию и удержанию живой добычи. При пита­нии животными, имеющими плотные защитные покровы, развиваются приспособления для их разрушения.

На физиологическом уровне адаптации зоофагов выражаются прежде всего в специфичности действия ферментов, «настроенных» на переваривание пищи животного происхождения.

Консументы III порядка.

Наиболее важное значение в биоценозах имеют трофические связи. На основе этих связей организмов в каждом биоценозе выделяют так называемые цепи питания, возникающие как результат сложных пищевых вза­имоотношений между растительными и животными организмами. Цепи питания объединяют прямо или косвенно большую группу организмов в единый комплекс, связанных друг с другом отношениями: пища - потре­битель. Цепь питания обычно состоит из нескольких звеньев. Организмы последующего звена поедают организмы предыдущего звена, и таким образом осуществляется цепной перенос энергии и вещества, лежащий в ос­нове круговорота веществ в природе. При каждом переносе от звена к звену теряется большая часть (до 80 - 90 %) потенциальной энергии, рас­сеивающейся в виде тепла. По этой причине число звеньев (видов) в цепи питания ограничено и не превышает обычно 4-5.

Принципиальная схема пищевой цепи приведена на рис. 2.

Здесь осно­ву пищевой цепи составляют виды - продуценты - автотрофные орга­низмы, преимущественно зеленые растения, синтезирующие органичес­кое вещество (строят свое тело из воды, неорганических солей и углекис­лоты, ассимилируя энергию солнечного излучения), а также серные, во­дородные и другие бактерии, использующие для синтеза органических ве­ществ энергию окисления химических веществ. Следующие звенья цепи питания занимают виды-консументы-гетеротрофные организмы, по­требляющие органические вещества. Первичными консументами явля­ются растительноядные животные, питающиеся травой, семенами, плодами, подземными частями растений - корнями, клубнями, луковица и даже древесиной (некоторые насекомые). Ко вторичным консументам относятся плотоядные животные. Плотоядные животные в свою очередь подразделяются на две группы: питающиеся массовой мелкой добычей и активных хищников, нападающих нередко на добычу крупнее самого хищника. Вместе с тем и растительноядные и плотоядные животные имеют смешанный характер питания. Например, даже при обилии млекопитающих и птиц куницы и соболи употребляют в пищу также плоды, семена и кедровые орешки, а растительноядные животные потребляют какое-то количество животной пищи, получая таким путем необходимые им незаменимые аминокислоты животного происхождения. Начиная со звена продуцентов, имеются два новных пути использования энергии. Во-первых, она используется травоядными животными (фитофагами), которые поедают непосредственно живые ткани растений; во-вторых потребляют сапрофаги в виде уже отмерших тканей (например, при разложении лесной подстилки). Организмы, называемые сапрофагами, преимущественно грибы и бактерии получают необходимую энергию, разлогая мертвое органическое вещество. В соответствии с этим существуют два вида пищевых цепей: цепи выедания и цепи разложения, рис. 3.

Следует подчеркнуть, что пищевые цепи разложения не менее важны, чем цепи выедания. На суше эти цепи начинаются с мертвого органического вещества (листьев, коры, ветвей), в воде — отмерших водорослей, фекальных масс и других органических остатков. Органические остатки могут полностью потребляться бактериями, грибами и мелкими животными - сапрофагами; при этом выделяются угла газ и тепло.

В каждом биоценозе обычно имеется несколько цепей питания, которые в большинстве случаев сложно переплетаются.

Количественная характеристика биоценоза: биомасса, биологическая продуктивность.

Биомасса и продуктивность биоценоза

Количество живого вещества всех групп растительных и животных организмов называют биомассой. Скорость продуцирования биомассы характеризуется продуктивностью биоценоза. Различают первичную продуктивность - биомассу растений, образовавшуюся в единицу времени при фотосинтезе, и вторичную - биомассу, продуцируемую животными (консументами), потребляющими первичную продукцию. Вторичная продукция образуется в результате использования гетеротрофными организмами энергии, запасенной автотрофами.

Продуктивность обычно выражают в единицах массы за один год в пересчете на сухое вещество на единицу площади или объема, которая значительно различается в различных растительных сообществах. Например, 1 га соснового леса производит в год 6,5 т биомассы, а плантация сахарного тростника - 34-78 т. В целом первичная продуктивность лесов земного шара является наибольшей по сравнению с другими формациями. Биоценоз представляет собой исторически сложившийся комплекс организмов и является частью более общего природного комплекса - экосистемы.

Правило экологических пирамид.

Все виды, образующие пищевую цепь, существуют за счет органичес­кого вещества, созданного зелеными растениями. При этом действует важная закономерность, связанная с эффективностью использования и превращения энергии в процессе питания. Сущность ее заключается в следующем.

Всего около 0,1% энергии, получаемой от Солнца, связывается в про­цессе фотосинтеза. Однако за счет этой энергии может синтезироваться несколько тысяч граммов сухого органического вещества на 1 м 2 в год. Более половины энергии, связанной при фотосинтезе, тут же расходуется в процессе дыхания самих растений. Другая же ее часть переносится по­средством ряда организмов по пищевым цепям. Но при поедании живот­ными растений большая часть энергии, содержащейся в пище, расходует­ся на различные процессы жизне­деятельности, превращаясь при этом в тепло и рассеиваясь. Только 5 - 20% энергии пищи переходит во вновь построенное вещество тела животного. Всегда количест­во растительного вещества, служа­щего основой цепи питания в не­сколько раз больше, чем общая масса растительноядных живот­ных, а масса каждого из последую­щих звеньев пищевой цепи также уменьшается. Эту очень важную закономерность называют прави­лом экологической пирамиды . Экологическая пирамида, пред­ставляющая собой пищевую цепь: злаки - кузнечики - лягушки - змеи - орел приведена на рис. 6.

Высота пирамиды соответствует длине пищевой цепи.

Переход биомассы с нижележащего трофического уровня на вы­шележащий связан с потерями вещества и энергии. В среднем счита­ется, что лишь порядка 10 % биомассы и связанной в ней энергии переходит с каждого уровня на следующий. В силу этого суммарная биомасса, продукция и энергия, а часто и численность особей про­грессивно уменьшаются по мере восхождения по трофическим уров­ням. Эта закономерность сформулирована Ч. Элтоном (Ch. Elton, 1927) в виде правила экологических пирамид (рис. 4) и выступает как главный ограничитель длины пищевых цепей.

Вопрос 1. Какие биоценозы в вашей местнос-ти могут служить примером взаимосвязей компо-нентов?

Вопрос 2. Приведите примеры взаимосвязей компонентов биоценоза в аквариуме.

Аквариум может рассматриваться как модель биоценоза. Разумеется, без вмеша-тельства человека существование такого искусственного биоценоза практически невозможно, однако при соблюдении оп-ределенных условий можно добиться его максимальной устойчивости.

Продуцентами в аквариуме являются все виды растений — от микроскопиче-ских водорослей до цветковых растений. Растения в процессе своей жизнедеятель-ности производят под действием света первичные органические вещества и вы-деляют кислород, необходимый для дыха-ния всех жителей аквариума.

Органическая продукция растений в ак-вариумах практически не используется, так как в аквариумах, как правило, не содер-жат животных, которые являются консументами I порядка. Заботу о питании консу- ментов II порядка — рыб — соответствую-щим сухим или живым кормом человек берет на себя. Очень редко в аквариумах со-держатся хищные рыбы, которые могли бы играть роль консументов III порядка.

В качестве редуцентов, обитающих в аквариуме, можно рассматривать разно-образных представителей моллюсков и некоторых микроорганизмов, перераба-тывающих продукты жизнедеятельности обитателей аквариума. Кроме того, работу по уборке органических отходов в биоце-нозе аквариума выполняет человек.

Вопрос 3. Докажите, что в аквариуме можно показать все виды приспособленности его компо-нентов друг к другу. Материал с сайта

В аквариуме можно показать все виды приспособленности его компонентов друг к другу только в условиях очень больших объемов и при минимальном вмешатель-стве человека. Для этого необходимо из-начально позаботиться обо всех основных составляющих биоценоза. Обеспечить ми-неральной подкормкой растения; органи-зовать аэрацию воды, заселить аквариум растительноядными животными, числен-ность которых смогла бы обеспечить пита-нием тех консументов I порядка, которые будут питаться ими; подобрать хищни-ков и, наконец, животных, выполняющих функции редуцентов.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • взаимосвязь компонентов биоценоза и их приспособление друг к другу урок биологии 7 класс
  • доклад на тему взаимосвязь компонентов биоценоза
  • какие биоценозы могут служить примером взаимосвязей компонентов
  • Изучение взаимосвязи животных с другими компонентами биоценоза и их приспособленность друг к другу
  • как влияют основные компоненты биоценоза на луг

Таким образом осуществляется перенос энергии и вещества, лежащий в основе круговорота веществ в природе. Таких цепей в биоценозе может быть очень много, они могут включать до шести звеньев.

Примером может быть дуб, он продуцент. Гусеницы бабочки дубовой листовертки, объедая зеленые листья, получают накопленную в них энергию. Гусеница - это первичный потребитель, или консумент первого порядка. Часть энергии, находящаяся в листьях теряется при переработке их гусеницей, часть энергии расходуется гусеницей на жизнедеятельность, часть энергии переходит к птице, склевавшей гусеницу, - это вторичный консумент, или вторичный потребитель. Если птица станет жертвой хищника, то ее тушка станет источником энергии третичного консумента. Хищная птица в дальнейшем может погибнуть, и ее труп могут съесть волк, ворона, сорока или трупоядные насекомые. Их работу доведут до конца микроорганизмы - редуценты.

В природе очень редко встречаются, но существуют организмы, поедающие только один вид растений или животных. Их называют монофагами , например, бабочка гусеницы аполлона питается только листьями очитка (Рис. 2), а большая панда - только листьями бамбука нескольких видов (Рис. 2).

Рис. 2. Монофаги ()

Олигофаги - это организмы, питающиеся представителями немногих видов, например, гусеница винного бражника поедает иван-чай, подмаренник, недотрогу и еще несколько видов растений (Рис. 3). Полифаги способны употреблять различную пищу, синица - характерный полифаг (Рис. 3).

Рис. 3. Представители олигофагов и полифагов ()

При питании каждое следующее звено пищевой цепи теряет часть веществ, полученных с пищей, и теряет часть полученной энергии, на наращивание собственной массы тратится около 10 % от общей массы съеденного корма, то же происходит и с энергией, получается пищевая пирамида (Рис. 4).

Рис. 4. Пищевая пирамида ()

На каждый ярус пищевой пирамиды переходит около 10 % потенциальной энергии корма, остальная энергия теряется в процессе переваривания пищи и рассеивается в виде тепла. Пищевая пирамида позволяет оценить потенциальную продуктивность естественных природных биоценозов. В искусственных биоценозах она позволяет оценить эффективность хозяйствования или необходимость каких-то изменений.

Пищевые, или трофические, связи животных могут проявляться прямо или косвенно, прямые связи - это непосредственно поедание животным своей пищи.

Косвенные трофические связи - это либо конкуренция за еду, либо, наоборот, невольная помощь одного вида другому в захвате пищи.

Каждый биоценоз характеризуется своим собственным особым набором компонентов, разнообразных видов животных, растений, грибов и бактерий. Между всеми этими живыми существами устанавливаются тесные связи, они чрезвычайно разнообразны и могут быть разделены на три большие группы: симбиоз, хищничество и аменсализм.

Симбиоз - это тесное и продолжительное сосуществование представителей разных биологических видов. При длительном симбиозе происходит приспособление этих видов друг к другу, их взаимоадаптация.

Взаимовыгодный симбиоз называется мутуализм .

Комменсализм - это отношения, полезные одному, но безразличные другому симбионту.

Аменсализм - тип межвидовых взаимоотношений, при котором один вид, именуемый аменсалом, претерпевает угнетение роста и развития, а второй, именуемый ингибитором, таким испытаниям не подвержен. Аменсализм в корне отличается от симбиоза тем, что ни один из видов не получает пользы, вместе такие виды, как правило, не живут.

Это формы взаимодействия между организмами разных видов (Рис. 4).

Рис. 5. Формы взаимодействия между организмами разных видов ()

Длительное совместное существование животных в одном биоценозе ведет к разделению между ними пищевых ресурсов, это уменьшает конкуренцию за пищу. Выжили лишь те животные, которые нашли свою еду и специализировались, приспособившись поедать именно ее. Можно выделять экологические группы на основании преобладающих объектов питания, так, растительноядные животные называются фитофаги (Рис. 6). Среди них можно выделить филлофагов (Рис. 6) - животных, поедающих листья, карпофагов - питающихся плодами, или ксилофагов - поедателей древесины (Рис. 7).

Рис. 6. Фитофаги и филлофаги ()

Рис. 7. Карпофаги и ксилофаги ()

Сегодня мы обсудили взаимосвязь компонентов биоценоза, познакомились с разнообразием взаимосвязей между компонентами в биоценозе и их приспособленностью к жизни в одном сообществе.

Список литературы

  1. Латюшин В.В., Шапкин В.А. Биология Животные. 7 класс, - Дрофа, 2011
  2. Сонин Н.И., Захаров В.Б. Биология. Многообразие живых организмов. Животные. 8 класс, - М.:Дрофа, 2009
  3. Константинов В.М., Бабенко В.Г., Кучменко В.С. Биология: Животные: Учебник для учащихся 7 класса общеобразовательных учреждений/ Под ред. проф. В.М. Константинова. - 2-е изд., перераб. - М.: Вентана-Граф.

Домашнее задание

  1. Какие взаимосвязи существуют между организмами в биоценозе?
  2. Как влияют взаимосвязи между организмами на устойчивость биоценоза?
  3. В связи с чем в биоценозе формируются экологические группы?
  1. Интернет-портал Bono-esse.ru ( ).
  2. Интернет-портал Grandars.ru ().
  3. Интернет-портал Vsesochineniya.ru ().


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: