23 четное или нечетное число. Четные и нечетные числа в нумерологии. История и культура

Все натуральные числа с точки зрения делимости на 2 раз­биваются на два множества: множество четных чисел и множество нечетных чисел .

Четные числа делятся нацело на 2, а нечетные при делении на 2 дают остаток 1. 0 число четное.

При решении задач, в которых используются свойство четность важно помнить и применять следующие правила:

  • Сумма и разность двух нечетных чисел является четным числом
  • Сумма и разность двух четных чисел является четным числом.
  • Сумма и разность двух чисел, из которых одно четное , а другое нечетное , является нечетным числом.
  • Произведение двух нечетных чисел является нечетным числом .
  • Произведение двух чисел, из которых одно четное , явля­ется четным числом.

Разберем несколько примеров.

Задача 1.

Можно ли разменять 25 рублей при помощи десяти купюр достоинством 1, 3 и 5 рублей?

Решение.

Нельзя. И вовсе не потому, что таких купюр не существует. Сумма четного количества нечетных слагаемых не может быть нечетным числом.

Ответ: Нельзя.

Задача 2.

В наборе было 23 гири массой 1 кг, 2 кг, 3 кг, … 23 кг. Можно ли их разложить на две равные по массе части, если гирю в 21 кг потеряли?

Решение.

Масса всех гирь S = (1 + 23) + (2 + 22) + … + (11 + 13) + 12 – число четное.

Следовательно, (S – 21) на две равные по весу части не разложить, поскольку это число нечётное.

Ответ. 23 гири с данной массой на две равные части не разложить.

Задача 3.

Кузнечик прыгает по прямой в разные стороны: первый прыжок на 1 см, второй – на 2 см, третий – на 3 см и так далее. Может ли он после двадцать пятого прыжка вернуться в ту точку, с которой начал?

Решение.

Пусть кузнечик прыгает по числовой прямой в разные стороны и начинает из точки с координатой 0. После 25 прыжка он окажется в точке с нечетной координатой (среди чисел от 1 до 25 нечетных нечетное число). Так как 0 – число четное, то он не может вернуться в исходное положение.

Ответ. После 25 прыжка кузнечик не может вернуться в ту точку, с которой начал.

Задача 4.

В древней рукописи приведено описание города, расположенного на 8 островах. Острова соединены между собой и с материком мостами. На материк выходят 5 мостов; на 4 островах берут начало по 4 моста, на 3 островах берут начало по 3 моста и на один остров можно пройти только по одному мосту. Может ли быть такое расположение мостов?

Решение.

Найдем число концов у всех мостов:

5 + 4 · 4 + 3 · 3 + 1 = 31.

31 является числом нечетным.

Так как число концов у всех мостов должно быть четным, то такого расположения мостов быть не может.

Ответ. Не может.

Задача 5.

На столе стоит 6 стаканов. Из них 5 стаканов стоят пра­вильно, а один перевернут донышком вверх. Разре­шается переворачивать любые 2 стакана за один ход. Можно ли все стаканы поставить правильно за конечное число ходов?

Решение.

Для решения этой задачи попробуем сформулировать условие на языке чисел. Для этого событие «стакан стоит правильно» пронумеруем 1, а «стакан стоит не правильно» 0. Тогда вместо рисунка со стаканами возникнет последовательность из пяти единичек и одного нуля. Сумма всех чисел последовательности равна нечетному числу 5. При переворачивании стакана в нашей последовательности 0 будет меняться на 1 и наоборот – 1 на 0. Наша цель – получить ряд из одних 1. Их должно стать 6 и сумма должна стать также равной 6. Это число четное.

Но что происходит с суммой при переворачивании 2 стаканов одновременно? Либо две 1 заменяются 0, либо два 0 – единицами, либо одна 1 на 0 и один 0 на 1. А что же происходит с суммой? В первом и втором случаях она изменяется на 2, а в третьем – не меняется вообще. А это значит, что она никогда не станет четной и никогда не сможет стать равной 6, как, между прочим, ни 2 и не 4.

Ответ. Невозможно.

Задача 6.

Петя купил общую тетрадь объемом 96 листов и про­нумеровал все ее страницы по порядку числами от 1 до 192. Вася вырвал из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться число 2006?

Решение.

Обратим внимание на сумму номеров страниц на одном листе. Она нечетна, поскольку одной странице соответствует нечетное число, а второй странице листа чётное. Но листов 25. Тогда сумма всех номеров вырванных страниц нечетна. А что получил Вася? Следовательно, он не прав!

Ответ. Не могло.

Задача 7.

Каждая из 10 цифр написана на карточке. Таких комплектов изготовили 2. Получили 20 карточек, на каждой из которых написана цифра 0 или 1 или 2 ... или 9 и карточек с одинаковыми цифрами по 2. Доказать, что нельзя разложить эти карточки в один ряд так, чтобы между одинаковыми карточками с цифрой k лежало ровноk карточек. (k = 0, 1, 2, …, 9).

Решение.

Допустим, что разложить карточки указанным способом удалось. Тогда их легко пронумеровать по порядку числами от 1 до 20. Предположим, что каждая первая, встретившаяся в ряду, карточка с цифрой k имеет номер а k а последняя с той же цифрой k номер b k . Тогда b k а k = k + 1. Тогда

∑(b k а k) = ∑b k ∑а k = (b 0 – а 0) + (b 1 – а 1) + (b 2 а 2) + (b 3 а 3) + … + (b 9 а 9) = 1 + 2 + 3 + 4 + … + 10 = 55.

Но ∑b k + ∑а k = 1 + 2 + 3 + … + 20 = 210. (Сумма всех номеров карточек.).

Получили ∑b k ∑а k = 55 и ∑b k + ∑а k = 210. Сложив эти равенства, получаем 2∑b k = 265, что невозможно. (Во всех случаях под знаком ∑ понимается суммирование по k от 0 до 9.) Справа число четное, а слева – нечетное. Это противоречие доказывает, что наше допущение о возможности разложить карточки указанным способом ошибочно.

Ответ. Утверждение доказано.

Если вы хорошо усвоили материал данной статьи, то решение следующих задач у вас не должно вызывать особых затруднений. В случае затруднений, попробуйте найти среди решенных задачи родственного содержания.

  1. Вдоль забора растет 8 кустов малины. Число ягод на соседних кустах отличается на единицу. Может ли на всех кустах вместе быть 225 ягод?
  2. В Королевстве 1 001 город. Король приказал проло­жить между городами дороги так, чтобы из каждого города выходило 7 дорог. Смогут ли подданные спра­виться с приказом короля?

Желаю успехов!

Остались вопросы? Не знаете, как применять свойства чётности и нечётности чисел?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Введение. Понятие чётности очень важно для развития математической культуры школьника. Теоретически это понятие простое и обычно не вызывает трудностей. Задачи же, связанные с чётностью, могут варьироваться от самых простых до очень сложных. Эти зада-чи позволяют на простом материале ввести школьника в разно-образный круг математических идей.

Вводная задача 1. Николай с сыном и Пётр с сыном пошли на рыбалку. Николай поймал столько же рыб, сколько его сын, а Пётр — столько же, сколько его сын. Все вместе поймали 27 рыб. Сколько рыб поймал Николай?

Решение. Сначала кажется, что в задаче не хватает данных: два неизвестных и од-но уравнение. Затем кто-то должен сообразить, что условия задачи проти-воречивы. Действительно, отцы поймали столько же рыб, сколько и сыновья. Но тогда общее число рыб должно быть чётным, а по условию оно нечётно.

Вариант рассуждения: Николай с сыном вместе поймали чётное число рыб. То же верно и для Петра с сыном. Значит, и сумма этих чисел чётна. (Если школьники сами не догадаются до одного из этих соображений, следует им немного подсказать).

Но никакого противоречия нет! К противоречию привело неявное пред-положение о том, что на рыбалке было четыре человека. Но их могло быть и три (Николай — сын или отец Петра). Из условия теперь следует, что все поймали рыб поровну, то есть по 9 штук. С этой задачей (но не с её решением) желательно ознакомить школьников за несколько дней до начала первого занятия.

1. Определение четных и нечетных чисел

Первое занятие по теме «Четность-нечетность» можно начать с забавного вопроса: «Нуль - четное число или нечетное?» Ребята задумываются… Тогда приходится начать дискуссию: «Нуль делится на 2»? Через некоторое время дети отвечают: «Да». Тогда задаю еще раз тот же вопрос: «Так нуль — число четное или нечетное»? И тут уже всё понятно: «Четное»!

Понятие четности чисел известно с глубокой древности и ему часто придавалось мистическое значение. Так, в древнекитайской мифологии нечетные числа соответствовали ян, что означало небо, благоприятность, а четные - это инь, земля, изменчивость, неблагоприятность. В Европе и некоторых восточных странах считается, что четное количество даримых цветов приносит счастье. В России четное количество цветов принято приносить лишь на похороны умершим. В случаях, когда в букете много цветов, четность или нечетность их количества уже не играет такой роли.

Далее идет обсуждение вводной задачи. Она позволяет начать разговор об определении и свойствах чётности. Прежде всего, мы использовали тот факт, что число вида п + п чётно (отцы поймали столько же рыб, сколько сыновья, поэтому вместе они поймали чётное число рыб).

Вот ещё одна задача, иллюстрирующая ту же идею.

Задача 2. Кузнечик прыгал вдоль прямой и вернулся в ис-ходную точку. Все прыжки имеют одинаковую длину. Докажите, что он сделал чётное число прыжков.

Решение. Сколько раз он прыгнул вправо, столько же прыг-нул и влево (так как вернулся в исходную точку)… Откуда следует, что число вида п + п = 2п чётно? А это про-сто определение.

Определение . Целое число называется четным , если оно делится на 2 без остатка, и нечетным , если оно на 2 не делится.

Таким образом, «общий вид» чётного числа 2п , где п — произвольное целое число. Речь идёт именно о целых, а не только о натуральных (то есть целых положительных) числах. В частности, важно понимать, что 0 — тоже чётное число.

Каков же «общий вид» нечётного числа? 2n + 1. Действитель-но, если от нечётного числа отнять 1, то оно станет чётным, то есть нечётное число равно сумме чётного числа 2п и единицы. Часто используется запись нечётного числа и в виде 2п — 1.

2. Свойства четных и нечетных чисел

Свойство 1 . Из определения чётного числа сразу следует, что произведе-ние любого (целого) числа на чётное число чётно . Доказательство: k . 2п = 2(kn ).

Свойство 2 . Несколько более сложно проверить, что произведение двух не-чётных чисел нечётно . Доказательство: (2k + l)(2n + 1) = 2(2k п + k + п ) + 1.

Определение . Два целых числа называются числами одинаковой четности , если оба четные или оба нечетные. Два целых числа называют числами разной четности , если одно из них четное, а другое нечетное.

Свойство 3. Сумма двух чисел разной чётности нечётна.

Доказательство: 2k + 2п + 1 = 2(k + п ) + 1 = 2m + 1, где m = k + п - целое число. Сумма нечетна.

Свойство 4. Сумма двух чисел одной чётности чётна.

Доказательство: 2k + 2п = 2(k + п ) = 2m , где m = k + п — целое число. Таким образом, сумма — четное число.

2k + 1 + 2п + 1 = 2(k + п + 1) = 2m , где m = k + п + 1 — целое число. Таким образом, сумма — четное число.

Обратные утверждения . Затем можно предложить ребятам сформулировать и доказать утверждения, обратные утверждениям о четности суммы.

Если сумма двух чисел нечётна, то слагаемые имеют разную чётность. Доказательство. Действительно, если бы они имели оди-наковую чётность, то сумма была бы чётной.

Если сумма двух чисел чётна, то слагаемые имеют одинако-вую чётность. Доказательство аналогично.

Перейдем к следующему свойству четных и нечетных чисел.

Задача 3 (подготовительная). Сумма трех чисел нечётна. Сколько слагаемых нечётно? Ответ: одно или три.

Решение. Нетрудно привести примеры, показывающие, что оба случая возможны. Остальные два случая (нечётных слагае-мых два или их нет совсем) легко приводятся к противоречию. Теперь можно перейти к наиболее общей формулировке.

Свойство 5. Чётность суммы совпадает с чётностью количества не-чётных слагаемых.

Доказательство. 2а 1 + 1 + 2а 2 + 1 + … + 2а п + 1 = 2(а 1 + а 2 + … + а п ) + п . Первое число - четное, потому что оно представляет собой произведение, одним из его сомножителей является число два, а второе число - четное по условию (n - четное число слагаемых). Сумма двух четных чисел - четная.

Аналогичные рассуждения приводятся для нечетного количества нечетных слагаемых. Учащиеся делают вывод: нечетность суммы совпадает с нечетностью количества нечетных слагаемых .

3. Задачи на применение свойств четности и нечетности

Задача 4. Хозяйка купила общую тетрадь объемом 96 листов и пронумеровала все ее страницы по порядку числами от 1 до 192. Щенок Антошка выгрыз из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Решение. На каждом листе сумма номеров страниц нечетна, а сумма 25 нечетных чисел - нечетна. Поэтому число 1990 у Антошки получиться не могло.

Задача 5. В школе 1688 учащихся, причем мальчиков на 373 больше, чем девочек. Доказать, что такого не может быть.

Решение. Если девочек х , то всего учеников 2х + 373, а это число нечетное как сумма четного и нечетного чисел.

Задача 6. Четно или нечетно число 1 - 2 + 3 - 4 + 5 - 6 + … + 993?

Решение. Разность 1 - 2 имеет ту же четность, что и сумма 1 + 2, разность 3 - 4 - ту же четность, что и сумма 3 + 4, и т.д. Поэтому данная сумма имеет ту же четность, что и сумма 1 + 2 + 3 + 4 + 5 + 6 + … + 993. Из 993 слагаемых последней суммы 496 четных и 497 нечетных, следовательно, сумма нечетна.

Задача 7. В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки плюс и минус, чтобы получилось выражение, равное нулю?

Решение: Нет, нельзя. Четность полученного выражения всегда будет совпадать с четностью суммы 1 + 2 + ... + 10 = 55. Данная сумма всегда будет нечетной , а 0 - четное число.

Задача 8. Можно ли разменять 100 рублей при помощи 25 монет достоинством 1 и 5 рублей?

Решение. Нет, т.к. сумма нечетного количества нечетных слагаемых - нечетное число.

Задача 9 . В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Решение. Обозначим число жителей на этажах соответственно через a 1 , a 2 , a 3 , a 4 , a 5 , a число жителей в подъездах соответственно через b 1 , b 2 , b 3 , b 4 . Тогда общее число жителей дома можно подсчитать двумя способами — по этажам и по подъездам:

a 1 + a 2 + a 3 + a 4 + a 5 = b 1 + b 2 + b 3 + b 4 . Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части — четной. Следовательно, это невозможно.

Задача 10. Верно ли равенство 1 2 + 2 3 + 3 4 + … + 99 100 = 20002007?

Решение. Произведения четного и нечетного чисел четны, а сумма четных слагаемых всегда четна.

Задача 11. Четна или нечетна сумма всех натуральных чисел от 1 до 17?

Решение. Из 17 натуральных чисел 8 четных: 2, 4, 6, 8, 10, 12, 14, 16, а остальные 9 чисел нечетны. Сумма всех этих четных чисел четна, а сумма девяти нечетных - нечетна. Тогда сумма всех 17 чисел нечетна как сумма четного и нечетного чисел.

Задача 12. Кузнечик прыгает по прямой: первый раз на 1 см, второй раз на 2 см и т.д. Может ли он через 25 прыжков вернуться на прежнее место?

Решение. Чтобы вернуться на старое место, общее количество сантиметров должно быть четно, а сумма 1 + 2 + 3 + … + 25 нечетна. Поэтому вернуться на прежнее место кузнечик не сможет.

Задачи для самостоятельного решения

Задача 13. Можно ли разменять 25 рублей десятью монетами достоинством 1, 3 и 5 руб.?

Решение. Если мы сложим четное число каких-либо целых чисел, то получим число четное, а 25 — нечетное число. Поэтому разменять 25 руб. таким образом нельзя.

Задача 14. В магазин «Все для собак и кошек» привезли новые игрушки. Могут ли десять игрушек ценой в 3, 5 или 7 рублей стоить в сумме 53 рубля?

Решение. Сумма четного количества нечетных чисел четна. У нас есть 10 чисел (цена одной игрушки), все они нечетные, значит, их сумма должна быть четна. Но 53 - число нечетное, поэтому получить его в виде суммы 10 нечетных чисел нельзя.

Задача 15. У Антона было 5 плиток шоколада. Может ли Антон, поделив каждую плитку на 9, 15 или 25 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 5 нечетных чисел, получим нечетный результат. А число 100 четно.

Задача 16. У Нины было 11 плиток шоколада фабрики "Краскон". Может ли Нина, поделив каждую плитку на 7, 13 или 21 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 11 нечетных чисел, получим нечетный результат, а 100 - четное число.

Задача 17. Доказать, что в равенстве 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 =20, «?» - это знаки плюс или минус, допущена ошибка.

Решение. В выражении нечетное количество нечетных чисел. Ответ должен быть нечетным числом.

4. Задачи на чередование

Свойства чередования:

  1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).
  2. Если в некоторой замкнутой цепочке чередуются объекты двух видов:
  • начало и конец цепочки разных видов, то в ней четное число объектов;
  • начало и конец одного вида, то нечетное число.

3. Обратно: по четности длины чередующейся цепочки можно узнать, одного или разных видов её начало и конец.

Задача 18. Может ли вращаться система из 7 шестеренок, если первая сцеплена со второй, вторая с третьей и т.д., а седьмая сцеплена с первой?

Решение. Нет. Если первая вращается по часовой стрелке, то все нечетные шестеренки должны вращаться по часовой стрелке, а первая и седьмая одновременно вращаться по часовой стрелке не могут.

Задача 19. Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Решение. Нет, не может. Так как конь должен сделать 63 хода, то последним (нечетным) ходом он встанет на поле другой четности, нежели a1; но h8 имеет тот же цвет.

Задача 20. Все костяшки домино выложили (соблюдая правила игры) в одну длинную цепь. На одном конце этой цепи оказалось 5 очков. Сколько очков может быть на другом конце цепи?

Решение. Если где-то лежит костяшка ∗ − 5, то рядом с ней лежит костяшка 5 − ∗ — возникает разбиение на пары. Сколько костяшек с пятеркой всего? Все ли они в этом разбиении на пары участвуют?

Задачи на разбиение на пары

Свойство: если предметы можно разбить на пары, то их количество четно.

Задача 21. Можно ли нарисовать 9 - звенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

Решение. Если бы такое было возможно, то все звенья ломаной разбились бы на пары пересекающихся. Однако тогда число звеньев должно быть четным.

Задача 22. Семь тринадцатируков с планеты Тринадцатирук решили устроить турнир по армреслингу. Смогут ли они одновременно провести поединки для всех своих рук, чтобы все руки принимали участие, и в каждом поединке встречалось ровно две руки?

Решение. Тринадцатируки не смогут провести поединки для всех рук одновременно, так как в каждом поединке принимает участие две руки, а всего рук 13 · 7 = 91.

Задача 23. В народной дружине 100 человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое время оказаться так, что каждый с каждым дежурил ровно один раз?

Решение. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако 99 - нечетное число.

Итак, я начну свою историю с четных чисел. Какие числа четные? Любое целое число, которое можно разделить на два без остатка, считается четным. Кроме того, четные числа заканчиваются на одну из данного ряда цифру: 0, 2, 4, 6 или 8.

Например: -24, 0, 6, 38 — все это четные числа.

m = 2k — общая формула написания четных чисел, где k - целое число. Данная формула может понадобиться для решения многих задач или уравнений в начальных классах.

Есть еще один вид чисел в огромном царстве математики — это нечетные числа. Любое число, которое нельзя разделить на два без остатка, а при делении на два остаток равен единице, принято называть нечетным. Любое из них заканчивается на одну из таких цифр: 1, 3, 5, 7 или 9.

Пример нечетных чисел: 3, 1, 7 и 35.

n = 2k + 1 — формула, с помощью которой можно записать любые нечетные числа, где k - целое число.

Сложение и вычитание четных и нечетных чисел

В сложении (или вычитании) четных и нечетных чисел есть некоторая закономерность. Мы представили ее с помощью таблицы, которая находится ниже, для того чтобы вам было проще понять и запомнить материал.

Операция

Результат

Пример

Четное + Четное

Четное + Нечетное

Нечетное

Нечетное + Нечетное

Четные и нечетные числа будут вести себя так же, если вычитать, а не суммировать их.

Умножение четных и нечетных чисел

При умножении четные и нечетные числа ведут себя закономерно. Вам заранее будет известно, получится результат четным или нечетным. В таблице ниже представлены все возможные варианты для лучшего усвоения информации.

Операция

Результат

Пример

Четное * Четное

Четное * Нечетное

Нечетное * Нечетное

Нечетное

А теперь рассмотрим дробные числа.

Десятичная запись числа

Десятичные дроби — это числа со знаменателем 10, 100, 1000 и так далее, которые записаны без знаменателя. Целую часть отделяют от дробной с помощью запятой.

Например: 3,14; 5,1; 6,789 — это все

С десятичными дробями можно производить различные математические действия, такие как сравнение, суммирование, вычитание, умножение и деление.

Если вы хотите сравнять две дроби, сначала уравняйте количество знаков после запятой, приписывая к одному из них нули, а потом, отбросив запятую, сравните их как целые числа. Рассмотрим это на примере. Сравним 5,15 и 5,1. Для начала уравняем дроби: 5,15 и 5,10. Теперь запишем их, как целые числа: 515 и 510, следовательно, первое число больше, чем второе, значит 5,15 больше, чем 5,1.

Если вы хотите суммировать две дроби, следуйте такому простому правилу: начните с конца дроби и суммируйте сначала (например) сотые, потом десятые, затем целые. С помощью этого правила можно легко вычитать и умножать десятичные дроби.

А вот делить дроби нужно как целые числа, в конце отсчитывая, где надо поставить запятую. То есть сначала делите целую часть, а потом - дробную.

Так же десятичные дроби следует округлять. Для этого выберите, до какого разряда вы хотите округлить дробь, и замените соответствующее количество цифр нулями. Имейте ввиду, если следующая за этим разрядом цифра лежала в пределах от 5 до 9 включительно, то последнюю цифру, которая осталась, увеличивают на единицу. Если же следующая за этим разрядом цифра лежала в пределах от 1 до 4 включительно, то последнюю оставшуюся не изменяют.

  • Нечётное число - целое число , которое не делится на без остатка : …, −3, −1, 1, 3, 5, 7, 9, …

Если m чётно, то оно представимо в виде m = 2 k, а если нечётно, то в виде m = 2 k + 1, где k \in \mathbb Z.

История и культура

Понятие чётности чисел известно с глубокой древности и ему часто придавалось мистическое значение. В китайской космологии и натурософии чётные числа соответствуют понятию «инь », а нечётные - «ян » .

В разных странах существуют связанные с количеством даримых цветов традиции. Например в США , Европе и некоторых восточных странах считается, что чётное количество даримых цветов приносит счастье . В России и странах СНГ чётное количество цветов принято приносить лишь на похороны умершим. Однако, в случаях, когда в букете много цветов (обычно больше ), чётность или нечётность их количества уже не играет никакой роли. Например, вполне допустимо подарить даме букет из 12, 14, 16 и т. д. цветов или срезов кустового цветка, имеющих множество бутонов , у которых они, в принципе, не подсчитываются. Тем более это относится к бо́льшему количеству цветов (срезов), даримых в других случаях.

Практика

В высших учебных заведениях со сложными графиками учебного процесса применяются чётные и нечётные недели. Внутри этих недель отличается расписание учебных занятий и в некоторых случаях время их начала и окончания. Такая практика применяется для равномерности распределения нагрузки по аудиториям, учебным корпусам и для ритмичности занятий по дисциплинам с малой аудиторной нагрузкой (1 раз в 2 недели)

В графиках движения поездов применяются чётные и нечётные номера поездов, зависящие от направления движения (прямое или обратное). Соответственно чётностью/нечётностью обозначается направление, в котором проходит поезд через каждую станцию.

С чётными и нечётными числами месяца иногда увязаны графики движения поездов, которые организованы через день.

Напишите отзыв о статье "Чётные и нечётные числа"

Примечания

Ссылки

  • Последовательность A005408 в OEIS : нечётные числа
  • Последовательность A005843 в OEIS : чётные числа
  • Последовательность A179082 в OEIS : чётные числа с чётной суммой цифр в десятичной записи

Отрывок, характеризующий Чётные и нечётные числа

– Так, так, – сказал князь Андрей, обращаясь к Алпатычу, – все передай, как я тебе говорил. – И, ни слова не отвечая Бергу, замолкшему подле него, тронул лошадь и поехал в переулок.

От Смоленска войска продолжали отступать. Неприятель шел вслед за ними. 10 го августа полк, которым командовал князь Андрей, проходил по большой дороге, мимо проспекта, ведущего в Лысые Горы. Жара и засуха стояли более трех недель. Каждый день по небу ходили курчавые облака, изредка заслоняя солнце; но к вечеру опять расчищало, и солнце садилось в буровато красную мглу. Только сильная роса ночью освежала землю. Остававшиеся на корню хлеба сгорали и высыпались. Болота пересохли. Скотина ревела от голода, не находя корма по сожженным солнцем лугам. Только по ночам и в лесах пока еще держалась роса, была прохлада. Но по дороге, по большой дороге, по которой шли войска, даже и ночью, даже и по лесам, не было этой прохлады. Роса не заметна была на песочной пыли дороги, встолченной больше чем на четверть аршина. Как только рассветало, начиналось движение. Обозы, артиллерия беззвучно шли по ступицу, а пехота по щиколку в мягкой, душной, не остывшей за ночь, жаркой пыли. Одна часть этой песочной пыли месилась ногами и колесами, другая поднималась и стояла облаком над войском, влипая в глаза, в волоса, в уши, в ноздри и, главное, в легкие людям и животным, двигавшимся по этой дороге. Чем выше поднималось солнце, тем выше поднималось облако пыли, и сквозь эту тонкую, жаркую пыль на солнце, не закрытое облаками, можно было смотреть простым глазом. Солнце представлялось большим багровым шаром. Ветра не было, и люди задыхались в этой неподвижной атмосфере. Люди шли, обвязавши носы и рты платками. Приходя к деревне, все бросалось к колодцам. Дрались за воду и выпивали ее до грязи.
Князь Андрей командовал полком, и устройство полка, благосостояние его людей, необходимость получения и отдачи приказаний занимали его. Пожар Смоленска и оставление его были эпохой для князя Андрея. Новое чувство озлобления против врага заставляло его забывать свое горе. Он весь был предан делам своего полка, он был заботлив о своих людях и офицерах и ласков с ними. В полку его называли наш князь, им гордились и его любили. Но добр и кроток он был только с своими полковыми, с Тимохиным и т. п., с людьми совершенно новыми и в чужой среде, с людьми, которые не могли знать и понимать его прошедшего; но как только он сталкивался с кем нибудь из своих прежних, из штабных, он тотчас опять ощетинивался; делался злобен, насмешлив и презрителен. Все, что связывало его воспоминание с прошедшим, отталкивало его, и потому он старался в отношениях этого прежнего мира только не быть несправедливым и исполнять свой долг.
Правда, все в темном, мрачном свете представлялось князю Андрею – особенно после того, как оставили Смоленск (который, по его понятиям, можно и должно было защищать) 6 го августа, и после того, как отец, больной, должен был бежать в Москву и бросить на расхищение столь любимые, обстроенные и им населенные Лысые Горы; но, несмотря на то, благодаря полку князь Андрей мог думать о другом, совершенно независимом от общих вопросов предмете – о своем полку. 10 го августа колонна, в которой был его полк, поравнялась с Лысыми Горами. Князь Андрей два дня тому назад получил известие, что его отец, сын и сестра уехали в Москву. Хотя князю Андрею и нечего было делать в Лысых Горах, он, с свойственным ему желанием растравить свое горе, решил, что он должен заехать в Лысые Горы.
Он велел оседлать себе лошадь и с перехода поехал верхом в отцовскую деревню, в которой он родился и провел свое детство. Проезжая мимо пруда, на котором всегда десятки баб, переговариваясь, били вальками и полоскали свое белье, князь Андрей заметил, что на пруде никого не было, и оторванный плотик, до половины залитый водой, боком плавал посредине пруда. Князь Андрей подъехал к сторожке. У каменных ворот въезда никого не было, и дверь была отперта. Дорожки сада уже заросли, и телята и лошади ходили по английскому парку. Князь Андрей подъехал к оранжерее; стекла были разбиты, и деревья в кадках некоторые повалены, некоторые засохли. Он окликнул Тараса садовника. Никто не откликнулся. Обогнув оранжерею на выставку, он увидал, что тесовый резной забор весь изломан и фрукты сливы обдерганы с ветками. Старый мужик (князь Андрей видал его у ворот в детстве) сидел и плел лапоть на зеленой скамеечке.
Он был глух и не слыхал подъезда князя Андрея. Он сидел на лавке, на которой любил сиживать старый князь, и около него было развешено лычко на сучках обломанной и засохшей магнолии.
Князь Андрей подъехал к дому. Несколько лип в старом саду были срублены, одна пегая с жеребенком лошадь ходила перед самым домом между розанами. Дом был заколочен ставнями. Одно окно внизу было открыто. Дворовый мальчик, увидав князя Андрея, вбежал в дом.
Алпатыч, услав семью, один оставался в Лысых Горах; он сидел дома и читал Жития. Узнав о приезде князя Андрея, он, с очками на носу, застегиваясь, вышел из дома, поспешно подошел к князю и, ничего не говоря, заплакал, целуя князя Андрея в коленку.

Соображения четности (нечетности) часто используются при решении математических задач (и элементарных, и весьма "продвинутых"). В данной статье рассматриваются подходы к решению подобных задач.

Мы начнем с простейших примеров, а в заключительной части рассмотрим несколько "олимпиадных" заданий, в решении которых нам помогут соображения четности.

Четные и нечетные числа. Начальные сведения

В данной статье мы будем рассматривать главным образом натуральные или целые числа. Напомню, что число называется четным, если оно делится нацело на 2. Иначе говоря, любое четное число n можно представить в виде n = 2k, где k - целое число, а любое нечетное - в виде n = 2k + 1 (или n = 2k - 1). Ноль, естественно, будем считать четным числом.

Пример 1 . Числа 34 и 171 представьте в виде 2k или 2k + 1, где k-целое число.

34 = 2 17 (34 - четное число); 171 = 2 85 + 1 (171 - нечетное число).

Задание 1 . Числа 68, 133, -2246 и -8977 представьте в виде 2k или 2k+1, где k-целое число.

Задание 2 . Представьте число 18 в виде: а) суммы двух четных чисел, б) суммы двух нечетных чисел. Можно ли получить 18 при сложении четного и нечетного чисел?

Задание 3 . Представьте число 24 в виде: а) произведения двух четных чисел, б) произведения четного и нечетного чисел. Можно ли получить 24 при умножении двух нечетных чисел?

Сумма, произведение, частное четных (нечетных) чисел

Утверждение 1 . Сумма двух четных чисел - четное число.

Доказательство. Пусть числа m и n являются четными. Докажем, что число r = m + n также четно. m=2k, n=2p, где k и p - целые числа. Тогда r = m + n = 2k + 2p = 2(k + p) = 2s. Если числа k и p являются целыми, то их сумма s - тоже целое число. Мы доказали, что число r может быть представлено в виде произведения двойки и целого числа. Доказательство завершено.

Утверждение 2 . Сумма двух нечетных чисел - четное число. Докажите самостоятельно.

Утверждение 3 . Сумма четного и нечетного чисел - нечетное число. Докажите самостоятельно.

Утверждение 4 . Произведение двух нечетных чисел - нечетное число.

Доказательство. Пусть числа m и n являются нечетными. Докажем, что число r = m n также нечетно.
m = 2k + 1, n = 2p + 1, где k и p - целые числа.
Тогда r = m n = (2k+1) (2p+1) = 4kp + 2k + 2p + 1 = 2(2kp + k + p) + 1 = 2s + 1.

Если числа k и p являются целыми, то число s = 2kp + k + p - тоже целое число.
Мы доказали, что число r может быть представлено в виде r = 2s + 1, следовательно, является нечетным. Ч. т. д.

Утверждение 5 . Произведение двух четных чисел - четное число. Докажите самостоятельно.

Утверждение 6 . Произведение четного и нечетного чисел - четное число. Докажите самостоятельно.

А если мы поделим четное число на четное (не равное нулю)? Что получим: чет или нечет? Естественно, однозначного ответа дать нельзя. Например, при делении 12 на 4 мы получаем нечетный результат, а при делении 32 на 4 - четный.


Если вы уже заскучали, переходите ко 2-й части статьи . Потом всегда сможете вернуться. Если же все эти теоретические построения вас не слишком утомили, давайте продолжим.


А почему, собственно, мы рассматриваем только два числа. Давайте мыслить шире!

Утверждение 7 . Сумма любого количества четных чисел четна.

Доказательство. Пусть числа M 1 , M 2 , ..., M N являются четными, тогда их можно представить в виде 2K 1 , 2K 2 , ... , 2K N , где K 1 , K 2 , ..., K N - целые числа.

Тогда: M 1 + M 2 + ... + M N = 2K 1 + 2K 2 + ... + 2K N = 2(K 1 + K 2 + ... + K N) = 2S, где S-целое число. Четность доказана.

Утверждение 8 . Сумма четного количества нечетных чисел четна. Сумма нечетного количества нечетных чисел нечетна. Докажите самостоятельно.

Утверждение 9 . Произведение может быть нечетным только в том случае, если все сомножители нечетны. Докажите самостоятельно.

Так, сумма 2+4+6+...+1022+1024 четна, поскольку все слагаемые четны. Сумма 1+3+5+7+9 нечетна, т. к. содержит 5 нечетных слагаемых. Произведение 2*3*4*...*1001*1002 четно уже хотя бы по той причине, что первый сомножитель является четным.

Задание 4 . Четными или нечетными будут следующие выражения: а) 2+12+22+...+1002+1012+1022, б) 1+11+111+...+111111+1111111, в) 3*13*23*...*10003*10013*10023, г) 2*3*4*...*12357891 ?

Задание 5 . Докажите, что произведение всех простых чисел, не превосходящих 1000000, четно. Докажите, что произведение любого количества простых чисел, каждое из которых больше 100, нечетно. Напомню, что натуральное число называется простым, если делится только на себя и на 1.

И вновь о сумме и произведении

Пример 2 . Юный математик Петя сложил сумму двух целых чисел и их произведение. Он утверждает, что у него получилось число 56792. Возможно ли такое, если известно, что хотя бы одно из исходных чисел нечетно?

Решение. Обозначим исходные числа A и B. Очевидно, возможно 4 варианта:

  • A и В - четные числа (но этот случай в задаче не рассматривается),
  • A и B - нечетные числа,
  • A четно, а B нечетно,
  • A нечетно, B четно.

В принципе, два последних случая можно было бы безболезненно объединить, но для нас это сейчас несущественно. В предыдущем пункте мы выяснили все, что касается четности суммы и произведения. А теперь давайте составим таблицу. В первых двух колонках укажем четность чисел А и В, в 3-й колонке - четность суммы, в 4-й четность произведения, в 5-й - четность итогового числа.

A B A+B AB (A+B) + АВ
Ч Ч Ч Ч Ч
Н Н Ч Н Н
Ч Н Н Ч Н
Н Ч Н Ч Н

Во всех случаях (кроме первого) получаем нечетный результат!

Между прочим, наш юный друг Петя утверждает, что получил четное число. Мы доказали, что это невозможно. Петя ошибся.

Задание 6 . Юный математик Маша умножила произведение двух целых чисел на их сумму. Она утверждает, что получилось число 89999719. Права ли Маша?

Задание 7 . Юный математик Петя утверждает, что при сложении двух целых чисел получил 927, а при умножении - 6321. Возможно ли такое? Объясните ваш ответ.


Сознаю, что первая часть статьи может показаться читателю довольно утомительной и однообразной. К сожалению, обойтись без этих "скучных" базовых понятий нельзя. Обещаю, что дальше будет гораздо интереснее.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: