Использование свойств корней при преобразовании иррациональных выражений, примеры, решения. Использование свойств корней при преобразовании иррациональных выражений, примеры, решения И глаза начинают светиться

Алгебра. 8 класс

Учитель: Кулешова Татьяна Николаевна

Тема: Преобразование выражений, содержащих квадратные корни

Тип урока: обобщение и систематизация знаний

Цель урока: формирование умений учащихся преобразовывать выражения, содержащих квадратные корни

Задачи:

Образовательные: знать свойства арифметического квадратного корня; научиться преобразовывать такие выражения, содержащие квадратные корни, как вынесение множителя из – под знака корня, внесение множителя в знак корня и освобождение от иррациональности в знаменателе дроби;

Развивающие: развивать познавательные и творческие способности, мышление, наблюдательность, сообразительность и навыки самостоятельной деятельности; привитие интереса к математике;

Воспитательные : умение работать в команде (группе), желания активно учиться с интересом; четкость и организованность в работе; дать каждому ученику достичь успеха;

Оборудование: Школьные принадлежности, доска, мел, учебник, раздаточный материал.

План урока

  1. Организационный момент
  2. Целеполагание
  3. Повторение
  4. Самостоятельная работа
  5. Диктант
  6. Тест
  7. Работа по учебнику
  8. Инструктаж домашнего задания
  9. Итоги урока. Рефлексия

Ход работы

  1. Организационный момент

Мотивация урока

«Закройте глаза, сядьте поудобнее. Представьте что-то очень приятное вам. Вам хорошо, удобно. Вокруг вас много друзей. Среди них и натуральные числа, с которыми мы с вами хорошо знакомы. Ряды наших друзей пополняются и к ним присоединились дробные числа. А вот подошли и отрицательные числа. А теперь вы идете на встречу рациональным и иррациональным числам. Пройдёт время, и мы познакомимся с вами с новыми числами и, пока на свете существует математика, эти числа бесконечны».

« Знание – только тогда знание, когда оно приобретено усилиями своей мысли, а не памятью ».Л. Н. Толстой.-Эти слова Л. Н. Толстого важны и актуальны при изучении математики, ведь математика одна из немногих наук, где надо постоянно размышлять. Ваша задача показать свои знания и умения в процессе устной работы, тестирования, работы у доски.

У каждого из вас на столе лежит оценочный лист, после каждого выполненного задания не забываем выставлять оценки, а в конце урока поставить итоговую оценку.

  1. Целеполагание

Решите анаграмму (Работа в группах)

ОБ – ЗО – РА – ПРЕ – НИЕ – ВА ПРЕОБРАЗОВАНИЕ

НИЙ – РА – ЖЕ – ВЫ ВЫРАЖЕНИЙ

ЩИХ – ДЕР – ЖА – СО СОДЕРЖАЩИХ

РАТ – КВ – НЫЕ – АД КВАДРАТНЫЕ

НИ – КО – Р КОРНИ

Решив анаграмму, учащиеся определяют тему урока

Как вы думаете, чем мы будем заниматься на уроке?

Давайте вместе сформулируем цель нашего урока.

  1. Повторение ранее изученного материала

А 1) Устный счёт:

Проверка теории: Соединить линией соответствующие части определения.


оценка -2 балла

2). Завершить утверждение.

а) Корень из произведения неотрицательных множителей равен произведению корней из этих множителей. (оценка -2 балла)

б) Всякая бесконечная непериодическая десятичная дробь называется иррациональным числом. (оценка -2 балла)

в) Корень из дроби, числитель которой является неотрицательным числом, а знаменатель положительным, равен корню из числителя, деленного на корень из знаменателя.( оценка -2 балла)

3) Установить соответствие (2 балла)


В. 3 учащихся получают по алгоритму преобразований выражений, содержащих квадратные корни. Задание: изобразить, начертить, написать, показать и т.д. и защитить (спикер).

3) Извлечь корень

  1. Разложить знаменатель дроби на множители.
  2. Если знаменатель имеет вид или содержит множитель , то числитель и знаменатель следует умножить на или на .
  3. Преобразовать числитель и знаменатель дроби, если возможно, то сократить полученную дробь.
  1. Самостоятельная работа

Вынеси множитель из-под знака корня:

(2 балла )

3)

Упростите выражение (4 балла)

  1. Тест на ноутбуке (оценка выставляется автоматически)

1) 6 =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - , г) .

  1. Диктант:

Вариант-1

Ответы:

За каждое правильно выполненное задание 0,5 балла.

  1. Работа по учебнику- работа на доске: каждый учащийся получает конкретный пример, по очереди решают на доске, все записывают в тетради. (1 балл)
  2. Информация о домашнем задании
  3. Подведение итогов урока. Рефлексия

Оценивание

Оценочный лист. Ф.И учащегося _______________________Оценка _____

Этап урока

Баллы

Устный счёт

Самостоятельная работа

Тест

Диктант

Работа по учебнику- работа на доске

Дополнительные задания

Итого баллов за урок

Моё настроение в конце урока- после оценки за урок

Перевод баллов в оценку

25 баллов и более – оценка «5»

24 – 18 баллов – оценка «4»

17 – 9 баллов – оценка «3»

0 – 8 баллов – оценка «2»

Для оценивания всей работы за урок используется «Перевод баллов в оценку» - с обратной стороны оценочного листа.

Заполните до конца оценочный лист. Оценки за урок.

Закончить урок я хочу стихотворением великого математика Софьи Ковалевской.

Если в жизни ты хоть на мгновенье

Истину в сердце своем ощутил,

Если луч света сквозь мрак и сомненье

Ярким сияньем твой путь озарил:

Что бы в решенье твоем неизменном

Рок ни назначил тебе впереди,

Память об этом мгновенье священном

Вечно храни, как святыню в груди.

Тучи сберутся громадой нестройной,

Небо покроется черною мглой,

С ясной решимостью, с верой спокойной

Бурю ты встреть и померься с грозой.

В этом стихотворении выражено стремление к знаниям, умение преодолевать все преграды, которые встречаются на пути. А как мы сегодня с вами преодолевали преграды? Чем мы занимались на уроке?

- Сегодня мы повторили определение и свойства арифметического квадратного корня; вынесение множителя за знак корня, внесение множителя под знак корня, формулы сокращённого умножения; ознакомились и закрепили некоторые способы преобразования выражений, содержащих квадратные корни.

Все работали плодотворно, активно и коллективно в течение урока.

Урок окончен. Всем спасибо за урок!

Внести множитель под знак корня:

1) 6 =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - , г) .

Тест Ф.И.____________________

Внести множитель под знак корня:

1) 6 =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - =

а) , б) , в) - , г) .

2) 5 =

3) 3 =

а) , б) , в) - , г) .

Алгоритм вынесения множителя из-под знака корня

1) Представим подкоренное выражение в виде произведения таких множителей, чтобы из одного можно было бы извлечь квадратный корень.

2) Применим теорему о корне из произведения.

3) Извлечь корень

Алгоритм внесения множителя под знак корня

1) Представим произведение в виде арифметического квадратного корня.

2) Преобразуем произведение квадратных корней в квадратный корень из произведения подкоренных выражений.

3) Выполним умножение под знаком корня.

Алгоритм освобождения от иррациональности в знаменателе дроби:

1) Разложить знаменатель дроби на множители.

Видеоурок «Преобразование выражений, содержащих операцию извлечения квадратного корня» - наглядное пособие, с помощью которого учителю легче сформировать умения и навыки в решении задач, содержащих выражения с квадратным корнем. В ходе урока напоминаются теоретические основы, служащие основанием для проведения операций над числами и переменными, имеющимися в подкоренном выражении, описывается решение множества видов задач, которые могут потребовать умения пользоваться формулами преобразования выражений, содержащих квадратный корень, даются методы избавления от иррациональности в знаменателе дроби.

Видеоурок начинается с демонстрации названия темы. Отмечается, что ранее на уроках выполнялись преобразования рациональных выражений. При этом использовались теоретические сведения об одночленах и многочленах, методы работы с многочленами, алгебраическими дробями, а также формулы сокращенного умножения. В данном видеоуроке рассматривается введение операции по извлечению квадратного корня для преобразования выражений. Ученикам напоминаются свойства операции по извлечению квадратного корня. Среди таких свойств указано, что после извлечения квадратного корня из квадрата числа получается само число, корень произведения двух чисел равен произведению двух корней от этих чисел, корень частного двух чисел равен частному корней от членов частного. Последнее рассмотренное свойство - извлечение квадратного корня из числа, возведенного в четную степень √a 2 n , которое в результате образует число в степени a n . Рассмотренные свойства действительны для любых неотрицательных чисел.

Рассматриваются примеры, в которых требуются преобразования выражений, содержащих квадратный корень. Указано, что в данных примерах предусмотрено, что aи b являются неотрицательными числами. В первом примере необходимо упростить выражения √16a 4 /9b 4 и √a 2 b 4 . В первом случае применяется свойство, определяющее, что корень квадратный произведения двух чисел равен произведению корней из них. В результате преобразования получается выражение ab 2 . Во втором выражении используется формула преобразования квадратного корня частного в частное корней. Итогом преобразования является выражение 4a 2 /3b 3 .

Во втором примере необходимо вынести из-под знака квадратного корня множитель. Рассматривается решение выражений √81а, √32а 2 , √9а 7 b 5 . На примере преобразования четырех выражений показывается, как применяется формула преобразования корня произведения нескольких чисел для решения подобных задач. При этом отдельно отмечаются случаи, когда выражения содержат числовые коэффициенты, параметры в четной, нечетной степени. В результате преобразования получаются выражения √81а=9√а, √32а 2 =4а√2, √9а 7 b 5 =3а 3 b 2 √ab.

В третьем примере необходимо произвести операцию, противоположную той, что в предыдущей задаче. Для внесения множителя под знак квадратного корня также необходимо уметь пользоваться изученными формулами. Предлагается в выражениях 2√2 и 3a√b/√3a внести множитель перед скобками под знак корня. Используя известные формулы, множитель, стоящий перед знаком корня, возводится в квадрат и помещается в виде множителя в произведение под знаком корня. В первом выражении в результате преобразования получается выражение √8. Во втором выражении сначала применяется формула коня произведения для преобразования числителя, а затем формула корня частного - для преобразования всего выражения. После сокращения числителя и знаменателя в подкоренном выражении, получается √3ab.

В примере 4 необходимо выполнить действия в выражениях (√a+√b)(√a-√b). Для решения данного выражения вводятся новые переменные, заменяющие одночлены, содержащие знак корня √a=х и √b=у. после подстановки новых переменных, очевидна возможность использования формулы сокращенного умножения, после чего выражение получает вид х 2 -у 2 . Возвращаясь к исходным переменным, получаем a-b. Второе выражение (√a+√b) 2 также можно преобразовать с помощью формулы сокращенного умножения. После раскрытия скобок получаем результат a+2√ab+b.

В примере 5 производится разложение на множители выражений 4a-4√ab+b и х√х+1. Для решения данной задачи необходимо выполнить преобразования, выделить общие множители. После применения свойств квадратного корня для решения первого выражения сумма преобразуется в квадрат разности (2√а-√b) 2 . Для решения второго выражения необходимо занести под корень множитель перед знаком корня, а затем применить формулу для суммы кубов. Результатом преобразования становится выражение (√х+1)(х 2 -√х+1).

Пример 6 демонстрирует решение задачи, где нужно упростить выражение (а√а+3√3)(√а-√3)/((√а-√3) 2 +√3а). Решение задания выполняется в четыре действия. В первом действии числитель преобразуется в произведение с помощью формулы сокращенного умножения - суммы кубов двух чисел. Во втором действии преобразуется знаменатель выражения, который получает вид а-√3а+3. После преобразования становится возможным сокращение дроби. В последнем действии применяется также формула сокращенного умножения, которая помогает получить окончательный результат а-3.

В седьмом примере необходимо избавиться от квадратного корня в знаменателях дробей 1/√2 и 1/(√3-√2). При решении задания используется основное свойство дроби. Чтобы избавиться от корня в знаменателе, числитель и знаменатель умножаются на одинаковое число, с помощью которого подкоренное выражение возводится в квадрат. В результате вычислений получаем 1/√2=√2/2 и 1/(√3-√2)=√3+√2.

Указываются особенности математического языка при работе с выражениями, содержащими корень. Отмечается, что содержание квадратного корня в знаменателе дроби означает содержание иррациональности. А об избавлении от знака корня в таком знаменателе говорят как об избавлении от иррациональности в знаменателе. Описываются методы, как можно избавиться от иррациональности - для преобразования знаменателя вида √а необходимо умножить числитель одновременно со знаменателем на число √а, а для устранения иррациональности для знаменателя вида √а-√b, числитель и знаменатель умножаются на сопряженное выражение √а+√b. Отмечается, что избавление от иррациональности в таком знаменателе очень части облегчает решение задачи.

В конце видеоурока рассматривается упрощение выражения 7/√7-2/(√7-√5)+4/(√5+√3). Чтобы упростить выражение, применяются рассмотренные выше способы избавления от иррациональности в знаменателе дробей. Полученные выражения складываются, после чего упрощенный вид выражения имеет вид √5-2√3.

Видеоурок «Преобразование выражений, содержащих операцию извлечения квадратного корня» рекомендуется применять на традиционном школьном уроке для формирования навыков решения заданий, в которых содержится квадратных корень. С этой же целью видео может быть использовано учителем в ходе дистанционного обучения. Также материал может быть рекомендован ученикам для самостоятельной работы дома.

§ 1 Преобразование выражений, содержащих операцию извлечения квадратного корня

Давайте вспомним свойства квадратных корней: если a, b - неотрицательные числа a, b ≥ 0, то справедливы следующие равенства:

Используя эти формулы, можно выполнять различные преобразования выражений, содержащих операцию извлечения квадратного корня, но с условием, что переменные этих выражений принимают только неотрицательные значения. Сделав такое предположение, рассмотрим несколько примеров.

Пример 1: Упросить выражение:

Поскольку в выражении присутствует дробь, для его преобразования воспользуемся вторым свойством:

Для преобразования знаменателя использовали третье свойство:

В результате первоначальное выражение принимает вид:

Пример 2: Вынести множитель из-под знака квадратного корня:

При решении примера под буквой А воспользуемся первым и третьим свойствами квадратного корня:

Аналогично преобразуем выражение, представленное в задании под буквой Б:

Пример 3: Внести множитель под знак квадратного корня для

Чтобы внести множитель под знак корня, используем третье свойство справа налево:

Решим несколько задач по преобразованию выражений, содержащих операцию извлечения квадратного корня, пользуясь формулами сокращенного умножения. Прежде вспомним и выпишем их:

(a + b)2 = a2 + 2ab + b2

(a - b)2 = a2 - 2ab + b2

a2 - b2 = (a + b)(a - b)

a3 - b3 = (a-b)(a2 + ab + b2)

a3 + a3 = (a + b)(a2 - ab + b2)

Пример 4: Упросить выражение:

Для решения представим число три как квадратный корень из трех в квадрате:

а в знаменателе воспользуемся формулой разности квадратов, тогда получим:

Пример 5: Упростить выражение:

Для решения, во-первых, рассмотрим выражение:

Если предположить, что

то

используя формулу суммы кубов

Получаем

Сделаем соответствующую замену.

Во-вторых, от операции деления на (a - b) перейдем к операции умножения на обратную дробь:

В-третьих, первую дробь в скобке сократим на выражение:

а затем произведем операцию умножения.

Предположим:

используя формулу разности квадратов, получаем:

Выражение в числителе первой дроби по формуле квадрата разности можно записать:

Сделаем соответствующие замены. В числителе и знаменателе первой дроби есть общий множитель, поэтому после сокращения в заключение остается только сложить дроби с одинаковыми знаменателями.

Если знаменатель алгебраической дроби содержит знак квадратного корня, то говорят, что в знаменателе содержится иррациональность. Преобразование выражения к такому виду, чтобы в знаменателе дроби не оказалось знаков квадратных корней, называют освобождением от иррациональности в знаменателе.

§ 2 Алгоритм освобождения от иррациональности в знаменателе дроби

1. Разложить знаменатель дроби на множители;

2. Если знаменатель имеет вид:

Если знаменатель имеет вид:

или содержит множитель такого вида, то числитель и знаменатель дроби следует умножить соответственно на:

3. Преобразовать числитель и знаменатель дроби, если возможно, то сократить полученную дробь. Выражения вида:

Рассмотрим, как избавиться от иррациональности в знаменателе на примерах:

А) Преобразуем выражение:

Воспользуемся алгоритмом освобождения от иррациональности в знаменателе дроби: умножим на:

числитель и знаменатель. Получим:

Б) Преобразуем выражение:

В данном примере числитель и знаменатель дроби умножается на сопряженное выражение:

Итак, мы разобрали несколько примеров на упрощение выражений, содержащих квадратные корни.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1Учебник для общеобразовательных учреждений / А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2 Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская. – 8-е изд., – М.: Мнемозина, 2006. – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.: Мнемозина, 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина, 2013. - 112с.


Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: