Пределы монотонных функций. Свойства функций — Гипермаркет знаний Ограниченность функции на множестве

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Коэффициенты а, b, с определяют расположение графика на координатной плоскости

Коэффициент а определяет направление ветвей. График квадратичной функции - парабола. Координаты вершины параболы находятся по формулам:

Свойства функции:

2. Множество значений одного из промежутков: или.

3. Функция принимает нулевые значения при , где дискриминант вычисляется по формуле:.

4. Функция непрерывна на всей области определения и производная функции равна .

Будем называть функцию y=f(x) ОГРАНИЧЕННОЙ СВЕРХУ (СНИЗУ) на множестве А из области определения D(f), если существует такое число M , что для любых x из этого множества выполняется условие

При помощи логических символов определение может быть записано в виде:

f (x) ограничена сверху на множестве

(f (x) ограничена снизу на множестве

Вводятся в рассмотрение и функции, ограниченные по модулю или просто ограниченные.

Будем называть функцию ОГРАНИЧЕННОЙ на множестве А из области определения , если существует положительное число M, что

На языке логических символов

f(x) ограничена на множестве

Функция, не являющаяся ограниченной, называется неограниченной. Мы знаем, что определения, данные через отрицание, малосодержательны. Чтобы сформулировать это утверждение как определение, воспользуемся свойствами кванторных операций (3.6) и (3.7). Тогда отрицание ограниченности функции на языке логических символов даст:

f(x) ограничена на множестве

Полученный результат позволяет сформулировать следующее определение.

Функция называется НЕОГРАНИЧЕННОЙ на множестве А, принадлежащем области определения функции, если на этом множестве для любого положительного числа М найдется такое значение аргумента х, что значение все равно превзойдет величину М, то есть .

В качестве примера рассмотрим функцию

Она определена на всей действительной оси. Если взять отрезок [–2;1] (множество А), то на нем она будет ограничена и сверху, и снизу.

Действительно, чтобы показать ее ограниченность сверху, надо рассмотреть предикат

и показать, что найдется (существует) такое М, что для всех x, взятых на отрезке [–2;1], будет справедливо

Найти такое М не представляет труда. Можно считать М = 7, квантор существования предполагает отыскание хотя бы одного значения М. Наличие такого М и подтверждает тот факт, что функция на отрезке [–2;1] ограничена сверху.

Чтобы доказать ее ограниченность снизу, надо рассмотреть предикат

Значением М, обеспечивающим истинность данного предиката, является, например, М = –100.



Можно доказать, что функция будет ограничена и по модулю: для всех x из отрезка [–2;1] значения функции совпадают со значениями , поэтому в качестве М можно взять, к примеру, прежнее значение М = 7.

Покажем, что та же функция, но на промежутке , будет неограниченной, то есть

Чтобы показать, что такие x существуют, рассмотрим утверждение

Отыскивая искомые значения x среди положительных значений аргумента, получим

Это значит, что какое бы положительное Ммы ни брали, значения x, обеспечивающие выполнение неравенства

получаются из соотношения .

Рассматривая функцию на всей действительной оси, можно показать, что она неограничена по модулю.

Действительно, из неравенства

То есть, каким бы большим ни было положительное M, или обеспечат выполнение неравенства .

ЭКСТРЕМУМ ФУНКЦИИ.

Функция имеет в точке с локальный максимум (минимум), если существует такая окрестность этой точки, что для x ¹с из этой окрестности выполняется неравенство


особо, что точка экстремума может быть только внутренней точкой промежутка и f(x) в ней должна быть обязательно определена. Возможные случаи отсутствия экстремума изображены на рис. 8.8.

Если функция возрастает (убывает) на некотором промежутке иубывает (возрастает) на некотором промежутке , то точка с является точкой локального максимума (минимума).

Отсутствие максимума функции f(x) в точке с можно сформулировать так:

_______________________

f(x) имеет максимум в точке c

Это означает, что если точка c не есть точка локального максимума, то какой бы ни была окрестность, включающая в себя точку cкак внутреннюю, в ней найдется хотя бы одно значение x не равное c, при котором . Таким образом, если в точке c нет максимума, то в этой точке экстремума может не быть вообще или же это точка минимума (рис. 8.9).

Понятие экстремума дает сравнительную оценку значения функции в какой-либо точке по отношению к близлежащим. Подобное сравнение значений функций можно провести и для всех точек некоторого промежутка.

НАИБОЛЬШИМ (НАИМЕНЬШИМ) значением функции на множестве будем называть ее значение в точке из этого множества такое, что– при . Наибольшее значение функции достигается во внутренней точке отрезка , а наименьшее на его левом конце.

Чтобы определить наибольшее (наименьшее) значение функции, заданной на отрезке, надо среди всех значений ее максимумов (минимумов), а также значений, принимаемых на концах промежутка, выбрать наибольшее (наименьшее) число. Оно и будет наибольшим (наименьшим) значением функции. Это правило будет уточнено в дальнейшем.

Проблема отыскания наибольшего и наименьшего значений функции на открытом промежутке не всегда решается достаточно легко. Например, функция

в интервале (рис. 8.11) их не имеет.

Убедимся, например, что эта функция не имеет наибольшего значения. В самом деле, учитывая монотонность функции , можно утверждать, что как бы близко мы ни задавали слева от единицы значения х, найдутся другие х, в которых значения функции будут больше ее значений во взятых фиксированных точках, но все же меньше единицы.

Теорема о пределе монотонной функции. Приводится доказательство теоремы, используя два метода. Также даны определения строго возрастающей, неубывающей, строго убывающей и невозрастающей функций. Определение монотонной функции.

Содержание
Функция не ограничена сверху


1.1. Пусть число b конечное: .
1.1.2. Пусть функция не ограничена сверху.


.


при .

Обозначим . Тогда для любого существует , так что
при .
Это означает, что предел слева в точке b равен (см. «Определения односторонних бесконечных пределов функции в конечной точке»).

b рано плюс бесконечности
Функция ограничена сверху

1. Пусть функция не убывает на интервале .
1.2.1. Пусть функция ограничена сверху числом M : при .
Докажем, что в этом случае существует предел .

Поскольку функция ограничена сверху, то существует конечная верхняя грань
.
Согласно определению точной верхней грани, выполняются следующие условия:
;
для любого положительного существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при . Или
при .

Итак, мы нашли, что для любого существует число , так что
при .
«Определения односторонних пределов на бесконечности»).

Функция не ограничена сверху

1. Пусть функция не убывает на интервале .
1.2. Пусть число b равно плюс бесконечности: .
1.2.2. Пусть функция не ограничена сверху.
Докажем, что в этом случае существует предел .

Поскольку функция не ограничена сверху, то для любого числа M существует такой аргумент , для которого
.

Поскольку функция не убывает, то при . Тогда при .

Итак, для любого существует число , так что
при .
Это означает, что предел при равен (см. «Определения односторонних бесконечных пределов на бесконечности»).

Функция не возрастает

Теперь рассмотрим случай, когда функция не возрастает. Можно, как и выше, рассмотреть каждый вариант по отдельности. Но мы охватим их сразу. Для этого используем . Докажем, что в этом случае существует предел .

Рассмотрим конечную нижнюю грань множества значений функции:
.
Здесь B может быть как конечным числом, так и бесконечно удаленной точкой . Согласно определению точной нижней грани, выполняются следующие условия:
;
для любой окрестности точки B существует такой аргумент , для которого
.
По условию теоремы, . Поэтому .

Поскольку функция не возрастает, то при . Поскольку , то
при .
Или
при .
Далее замечаем, что неравенство определяет левую проколотую окрестность точки b .

Итак, мы нашли, что для любой окрестности точки , существует такая проколотая левая окрестность точки b , что
при .
Это означает, что предел слева в точке b равен :

(см. универсальное определение предела функции по Коши).

Предел в точке a

Теперь покажем, что существует предел в точке a и найдем его значение.

Рассмотрим функцию . По условию теоремы, функция является монотонной при . Заменим переменную x на - x (или сделаем подстановку , а затем заменим переменную t на x ). Тогда функция является монотонной при . Умножая неравенства на -1 и меняя их порядок приходим к выводу, что функция является монотонной при .

Аналогичным способом легко показать, что если не убывает, то не возрастает. Тогда согласно доказанному выше, существует предел
.
Если не возрастает, то не убывает. В этом случае существует предел
.

Теперь осталось показать, что если существует предел функции при , то существует предел функции при , и эти пределы равны:
.

Введем обозначение:
(1) .
Выразим f через g :
.
Возьмем произвольное положительное число . Пусть есть эпсилон окрестность точки A . Эпсилон окрестность определяется как для конечных, так и для бесконечных значений A (см. «Окрестность точки»). Поскольку существует предел (1), то, согласно определению предела, для любого существует такое , что
при .

Пусть a - конечное число. Выразим левую проколотую окрестность точки -a , используя неравенства:
при .
Заменим x на -x и учтем, что :
при .
Последние два неравенства определяют проколотую правую окрестность точки a . Тогда
при .

Пусть a - бесконечное число, . Повторяем рассуждения.
при ;
при ;
при ;
при .

Итак, мы нашли, что для любого существует такое , что
при .
Это означает, что
.

Теорема доказана.

См. также:

Урок и презентация на тему: "Свойства функции. Возрастание и убывание функции"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное учебное пособие для 9 класса "Правила и упражнения по геометрии"
Электронное учебное пособие "Понятная геометрия" для 7-9 классов

Ребята, мы продолжаем изучать числовые функции. Сегодня мы остановимся на такой теме, как свойства функции. Функции обладают многими свойствами. Вспомните, какие свойства мы с вами совсем недавно изучили. Правильно, область определения и область значений, они являются одними из ключевых свойств. Никогда не забывайте про них и помните, что функция всегда обладает этими свойствами.

В этом разделе, мы с вами определим некоторые свойства функций. Порядок, в котором мы будем их определять, рекомендую соблюдать и при решении задач.

Возрастание и убывание функции

Первое свойство, которое мы определим, это возрастание и убывание функции.

Функция называется возрастающей на множестве Х⊂D(f), если для любых х1 и х2, таких, что х1 < x2 - выполняется неравенство f(x1) < f(x2). То есть большему значению аргумента, соответствует большее значение функции.
Функция называется убывающей на множестве Х⊂D(f), если для любых х1 и х2, таких, что х1 < x2 - выполняется неравенство f(x1)>f(x2). То есть большему значению аргумента, соответствует меньшее значение функции.

Понятия "возрастание" и "убывание" функции очень легко понять, если внимательно посмотреть на графики функции. Для возрастающей функции: мы как бы поднимаемся в горку, для убывающей соответственно - спускаемся. Общий вид возрастающих и убывающих функции представлен на графиках ниже.




Возрастание и убывание функции в общем случае называется монотонностью. То есть, наша задача -это найти промежутки убывания и возрастания функции. В общем случае это формулируется так: найти промежутки монотонности или исследовать функцию на монотонность.

Исследовать на монотонность функцию $y=3x+2$.
Решение: Проверим функцию для любых х1 и х2 и пусть х1 < x2.
$f(x1)=3x1+2$
$f(x2)=3x2+2$
Поскольку, х1< x2, то f(x1) < f(x2), т. е. большему значению аргумента, соответствует большее значение функции.

Ограниченность функции

Функцию $y=f(x)$ называют ограниченной снизу на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Функцию $y=f(x)$ называют ограниченной сверху на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Если промежуток Х не указывается, то считают, что функция ограничена на всей области определения. Функция ограниченная и сверху, и снизу называется ограниченной.

Ограниченность функции легко читается по графику. Можно провести некоторую прямую
$у=а$, и если функция выше этой прямой, то ограниченность снизу. Если ниже, то соответственно сверху. Ниже представлен график ограниченной снизу функции. График ограниченной функции, ребята, попробуйте нарисовать сами.


Исследовать на ограниченность функцию $y=\sqrt{16-x^2}$.
Решение: Корень квадратный из некоторого числа больше либо равен нуля. Очевидно, что наша функция, также больше либо равна нуля, то есть ограниченна снизу.
Корень квадратный мы можем извлекать только из неотрицательного числа, тогда $16-x^2≥0$.
Решением нашего неравенства будет промежуток [-4;4]. На этом отрезке $16-x^2≤16$ или $\sqrt{16-x^2}≤4$, но это значит ограниченность сверху.
Ответ: наша функция ограниченна двумя прямыми $у=0$ и $у=4$.

Наибольшее и наименьшее значение

Наименьшим значение функции y= f(x) на множестве Х⊂D(f), называется некоторое число m, такое, что:

б) Для любого хϵХ, выполняется $f(x)≥f(x0)$.

Наибольшим значение функции y=f(x) на множестве Х⊂D(f), называется некоторое число m, такое что:
a) Существует некоторое х0, что $f(x0)=m$.
б) Для любого хϵХ, выполняется $f(x)≤f(x0)$.

Наибольшее и наименьшее значение принято обозначать y наиб. и y наим. .

Понятия ограниченности и наибольшего с наименьшим значением функции тесно связаны. Выполняются следующие утверждения:
а) Если существует наименьшее значение у функции, то она ограничена снизу.
б) Если существует наибольшее значение у функции, то она ограничена сверху.
в) Если функция не ограничена сверху, то наибольшего значения не существует.
г) Если функция не ограничена снизу, то наименьшего значения не существует.

Найти наибольшее и наименьшее значение функции $y=\sqrt{9-4x^2+16x}$.
Решение: $f(x)=y=\sqrt{9-4x^2+16x}=\sqrt{9-(x-4)^2+16}=\sqrt{25-(x-4)^2}≤5$.
При $х=4$ $f(4)=5$, при всех остальных значениях функция принимает меньшие значения или не существует, то есть это наибольшее значение функции.
По определению: $9-4x^2+16x≥0$. Найдем корни квадратного трехчлена $(2х+1)(2х-9)≥0$. При $х=-0,5$ и $х=4,5$ функция обращается в ноль, во всех остальных точках она больше нуля. Тогда, по определению, наименьшее значению функции равно нулю.
Ответ: y наиб. =5 и y наим. =0.

Ребята мы с вами еще изучали понятия выпуклости функции. При решении некоторых задач, нам это свойство может понадобиться. Это свойство, также легко определяется с помощью графиков.

Функция выпукла вниз, если любые две точки графика исходной функции соединить, и график функции окажется ниже линии соединения точек.

Функция выпукла вверх, если любые две точки графика исходной функции соединить, и график функции окажется выше линии соединения точек.



Функция непрерывна, если график нашей функции не имеет разрывов, например, как график функции выше.

Если требуются найти свойства функции, то последовательность поиска свойств такова:
а) Область определения.
б) Монотонность.
в) Ограниченность.
г) Наибольшее и наименьшее значение.
д) Непрерывность.
е) Область значений.

Найти свойства функции $y=-2x+5$.
Решение.
а) Область определения D(y)=(-∞;+∞).
б) Монотонность. Проверим для любых значений х1 и х2 и пусть х1 < x2.
$f(x1)=-2x1+2$.
$f(x2)=-2x2+2$.
Поскольку х1 < x2, то f(x1) < f(x2), то есть большему значению аргумента, соответствует меньшее значение функции. Функция убывает.
в) Ограниченность. Очевидно, что функция не ограничена.
г) Наибольшее и наименьшее значение. Поскольку функция не ограничена, то наибольшего и наименьшего значений не существует.
д) Непрерывность. График нашей функции не имеет разрывов, тогда функция непрерывна.
е) Область значений. Е(у)=(-∞;+∞).

Задачи на свойства функции для самостоятельного решения

Найти свойства функции:
а) $y=2x+7$,
б) $y=3x^2$,
в) $y=\frac{4}{x}$.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: