Простые машины (рычаг, блок, наклонная плоскость, клин). Строительные приборы. Как работают наклонные плоскости? Наклонная плоскость предельный угол наклонной плоскости

В данной статье рассказывается о том, как решать задачи про движение по наклонной плоскости. Рассмотрено подробное решение задачи о движении связанных тел по наклонной плоскости из ЕГЭ по физике.

Решение задачи о движении по наклонной плоскости

Прежде чем перейти непосредственно к решению задачи, как репетитор по математике и физике, рекомендую тщательно проанализировать ее условие. Начать нужно с изображения сил, которые действуют на связанные тела:

Здесь и — силы натяжения нити, действующие на левое и правое тело, соответственно, — сила реакции опоры, действующая на левое тело, и — силы тяжести, действующие на левое и правое тело, соответственно. С направлением этих сил все понятно. Сила натяжения направлена вдоль нити, сила тяжести вертикально вниз, а сила реакции опоры перпендикулярно наклонной плоскости.

А вот с направлением силы трения придется разбираться отдельно. Поэтому на рисунке она изображена пунктирной линией и подписана со знаком вопроса. Интуитивно понятно, что если правый груз будет «перевешивать» левый, то сила трения будет направлена противоположно вектору . Наоборот, если левый груз будет «перевешивать» правый, то сила трения будет сонаправлена с вектором .

Правый груз тянет вниз сила Н. Здесь мы взяли ускорение свободного падения м/с 2 . Левый груз вниз тоже тянет сила тяжести, но не вся целиком, а только ее «часть», поскольку груз лежит на наклонной плоскости. Эта «часть» равна проекции силы тяжести на наклонную плоскости, то есть катету в прямоугольном треугольнике , изображенном на рисунке, то есть равна Н.

То есть «перевешивает» все-таки правый груз. Следовательно, сила трения направлена так, как показано на рисунке (мы ее нарисовали от центра масс тела, что возможно в случае, когда тело можно моделировать материальной точкой):

Второй важный вопрос, с которым нужно разобраться, будет ли вообще двигаться эта связанная система? Вдруг окажется так, что сила трения между левым грузом и наклонной плоскостью будет настолько велика, что не даст ему сдвинуться с места?

Такая ситуация будет возможна в том случае, когда максимальная сила трения, модуль которой определяется по формуле (здесь — коэффициент трения между грузом и наклонной плоскостью, — сила реакции опоры, действующая на груз со стороны наклонной плоскости), окажется больше той силы, которая старается привести систему с движение. То есть той самой «перевешивающей» силы, которая равна Н.

Модуль силы реакции опоры равен длине катета в треугольнике по 3-музакону Ньютона (с какой по величине силой груз давит на наклонную плоскость, с такой же по величине силой наклонная плоскость действует на груз). То есть сила реакции опоры равна Н. Тогда максимальная величина силы трения составляет Н, что меньше, чем величина «перевешивающей силы».

Следовательно, система будет двигаться, причем двигаться с ускорением. Изобразим на рисунке эти ускорения и оси координат, которые нам понадобятся далее при решении задачи:

Теперь, после тщательного анализа условия задачи, мы готовы приступить к ее решению.

Запишем 2-ой закон Ньютона для левого тела:

А в проекции на оси координатной системы получаем:

Здесь с минусом взяты проекции, векторы которых направлен против направления соответствующей оси координат. С плюсом взяты проекции, векторы которых сонаправлен с соответствующей осью координат.

Еще раз подробно объясним, как находить проекции и . Для этого рассмотрим прямоугольный треугольник , изображенный на рисунке. В этом треугольнике и . Также известно, что в этом прямоугольном треугольнике . Тогда и .

Вектор ускорения целиком лежит на оси , поэтому и . Как мы уже вспоминали выше, по определению модуль силы трения равен произведению коэффициента трения на модуль силы реакции опоры. Следовательно, . Тогда исходная система уравнений принимает вид:

Запишем теперь 2-ой закон Ньютона для правого тела:

В проекции на ось получаем.

Итак, постараюсь подробно описать ход моих рассуждений по этому вопросу. На первом уроке ставлю перед учащимися вопрос: как может тело двигаться по наклонной плоскости? Вместе отвечаем: скатываться равномерно, с ускорением; покоиться на наклонной плоскости; удерживаться на ней; съезжать под действием силы тяги равномерно, с ускорением; заезжать под действием силы тяги равномерно, с ускорением. На рисунках на двух-трех примерах показываем, какие при этом на тело действуют силы. Попутно ввожу понятие скатывающей равнодействующей. Записываем уравнение движения в векторной форме, затем в нем заменяем сумму скатывающей равнодействующей (обозначайте, как вам нравится). Это делаем по двум причинам: во-первых, нет необходимости проецировать векторы сил на ось и решать два уравнения; во-вторых, правильно будет показано соотношение сил, исходя из условия задачи.

Покажу на конкретных примерах. Пример 1: тело под действием силы тяги съезжает равномерно (Рисунок 1).

Ученики первым делом должны усвоить алгоритм построения рисунка. Изображаем наклонную плоскость, посередине нее – тело в виде прямоугольника, через середину тела параллельно наклонной плоскости проводим ось . Направление оси не существенно, но в случае равноускоренного движения лучше показать в сторону вектора , чтобы в алгебраической форме в уравнении движения в правой части перед был знак «плюс». Далее строим силы. Силу тяжести проводим вертикально вниз произвольной длины (требую рисунки делать крупными, чтобы всем было все понятно). Затем из точки приложения силы тяжести – перпендикуляр к оси , вдоль которого пойдет сила реакции опоры . Параллельно этому перпендикуляру из конца вектора проводим пунктирную линию до пересечения с осью . Из этой точки – пунктирную линию, параллельную до пересечения с перпендикуляром – получаем вектор правильной длины. Таким образом, мы построили параллелограмм на векторах и , автоматически указав правильную величину силы реакции опоры и построив по всем правилам векторной геометрии равнодействующую этих сил , которую я называю скатывающей равнодействующей (диагональ, совпадающая с осью ). В этом месте, воспользовавшись методом из учебника, на отдельном рисунке показываю силу реакции опоры произвольной длины: сначала короче, чем нужно, а потом длиннее, чем нужно. Показываю равнодействующую силы тяжести и силы реакции опоры: в первом случае она направлена вниз под углом к наклонной плоскости (Рисунок 2), во втором случае – вверх под углом к наклонной плоскости (Рисунок 3).

Делаем очень важный вывод: соотношение между силой тяжести и силой реакции опоры должно быть таким, чтобы тело под их действием (или под действием скатывающей равнодействующей) в отсутствие других сил двигалось вниз вдоль наклонной плоскости. Далее я спрашиваю: какие еще силы действуют на тело? Ребята отвечают: сила тяги и сила трения. Я задаю следующий вопрос: какую силу покажем сначала, а какую потом? Добиваюсь правильного и обоснованного ответа: сначала в этом случае надо показать силу тяги, а затем силу трения, модуль которой будет равен сумме модулей силы тяги и скатывающей равнодействующей: , т.к. по условию задачи тело движется равномерно, следовательно, равнодействующая всех сил, действующих на тело, должна равняться нулю согласно первому закону Ньютона. Для контроля задаю провокационный вопрос: так сколько сил действует на тело? Ребята должны ответить – четыре (не пять!): сила тяжести, сила реакции опоры, сила тяги и сила трения. Теперь записываем уравнение движения в векторной форме согласно первому закону Ньютона:

Заменяем сумму векторов скатывающей равнодействующей :

Получаем уравнение, в котором все векторы параллельны оси . Теперь запишем это уравнение через проекции векторов на ось :

Эту запись в дальнейшем можно пропускать. Заменим в уравнении проекции векторов на их модули с учетом направлений:

Пример 2 : тело под действием силы тяги заезжает на наклонную плоскость с ускорением (Рисунок 4).

В этом примере ученики должны сказать, что после построения силы тяжести, силы реакции опоры и скатывающей равнодействующей следующей надо показать силу трения, последним – вектор силы тяги, который должен быть больше суммы векторов , т.к. равнодействующая всех сил должна быть направлена так же, как вектор ускорения согласно второму закону Ньютона. Уравнение движения тела должны записать согласно второму закону Ньютона:

Если есть возможность на уроке рассмотреть другие случаи, то не пренебрегаем этой возможностью. Если нет, то даю это задание домой. Кто-то может рассмотреть все оставшиеся случаи, кто-то некоторые – право выбора учеников. На следующем уроке проверяем, исправляем ошибки и переходим к решению конкретных задач, предварительно выразив из векторных треугольников и :

Равенство (2) желательно проанализировать для различных углов . При имеем: , как при движении горизонтально под действием горизонтальной силы тяги. С ростом угла его косинус уменьшается, следовательно, уменьшается и сила реакции опоры и становится все меньше и меньше силы тяжести. При угле она равна нулю, т.е. тело не действует на опору и опора, соответственно, «не реагирует».

Предвижу вопрос оппонентов: как применить эту методику для случаев, когда сила тяги горизонтальна или направлена под углом к наклонной плоскости? Отвечу на конкретных примерах.

а) Тело с ускорением затаскивают на наклонную плоскость, прикладывая силу тяги горизонтально (Рисунок 5).

Горизонтальную силу тяги раскладываем на две составляющие: вдоль оси – и перпендикулярную оси – (операция, обратная построению равнодействующей перпендикулярных сил). Записываем уравнение движения:

Заменяем скатывающей равнодействующей, а вместо пишем :

Из векторных треугольников выражаем : и : .

Под действием горизонтальной силы тело не только поднимается вверх по наклонной плоскости, но еще и дополнительно прижимается к ней. Поэтому возникает дополнительная сила давления, равная модулю вектора и, согласно третьему закону Ньютона, дополнительная сила реакции опоры : . Тогда сила трения будет: .

Уравнение движения примет вид:

Вот мы полностью расшифровали уравнение движения. Теперь осталось выразить из него искомую величину. Попробуйте решить эту задачу традиционным способом и вы получите такое же уравнение, только решение будет громоздче.

б) Тело стаскивают равномерно с наклонной плоскости, прикладывая силу тяги горизонтально (Рисунок 6).

В этом случае сила тяги кроме стаскивания тела вниз вдоль наклонной плоскости еще и отрывает его от наклонной плоскости. Итак, окончательное уравнение имеет вид:

в) Тело затаскивают равномерно на наклонную плоскость, прикладывая силу тяги под углом к наклонной плоскости (Рисунок 7).

Предлагаю рассмотреть конкретные задачи, дабы еще убедительнее прорекламировать мой методический подход к решению таких задач. Но прежде обращаю внимание на алгоритм решения (я думаю, все учителя физики на него обращают внимание учеников, и все мое повествование было подчинено этому алгоритму):

1) внимательно прочитав задачу, выяснить, как движется тело;
2) сделать рисунок с правильным, исходя из условия задачи, изображением сил;
3) записать уравнение движения в векторной форме согласно первому или второму закону Ньютона;
4) записать это уравнение через проекции векторов сил на ось x (этот шаг в дальнейшем, когда умение решать задачи по динамике будет доведено до автоматизма, можно опустить);
5) выразить проекции векторов через их модули с учетом направлений и записать уравнение в алгебраической форме;
6) выразить модули сил по формулам (если есть необходимость);
7) выразить искомую величину.

Задача 1. За какое время тело массой соскальзывает с наклонной плоскости высотой и углом наклона , если по наклонной плоскости с углом наклона оно движется равномерно?

Каково было бы решать эту задачу привычным способом!

Задача 2. Что легче: удержать тело на наклонной плоскости или двигать его по ней равномерно вверх?

Здесь при объяснении без скатывающей равнодействующей, на мой взгляд, не обойтись.

Как видно из рисунков, в первом случае сила трения помогает удерживать тело (направлена в ту же сторону, что и удерживающая сила), во втором случае она вместе со скатывающей равнодействующей направлена против движения. В первом случае , во втором случае .

Наклонная плоскость представляет собой плоскую поверхность, расположенную под тем или иным углом к горизонтали. Она позволяет поднять груз с меньшей силой, чем если бы этот груз поднимался вертикально вверх. На наклонной плоскости груз поднимается вдоль этой плоскости. При этом он преодолевает большее расстояние, чем если бы поднимался вертикально.

Примечание 1

Причем во сколько раз происходит выигрыш в силе, во столько раз будет больше расстояние, которое преодолеет груз.

Рисунок 1. Наклонная плоскость

Если высота, на которую надо поднять груз, равна $h$, и при этом затрачивалась бы сила $F_h$, а длина наклонной плоскости $l$, и при этом затрачивается сила $F_l$, то $l$ так относится к $h$, как $F_h$ относится к $F_l$: $l/h = F_h/F_l$... Однако $F_h$ - это вес груза ($P$). Поэтому обычно записывают так: $l/h = P/F$, где $F$ - сила, поднимающая груз.

Величина силы $F$, которую надо приложить к грузу весом $Р$, чтобы тело находилось в равновесии на наклонной плоскости, равна $F_1 = Р_h/l = Рsin{\mathbf \alpha }$, если сила $Р$ приложена параллельно наклонной плоскости (рис.2, а), и $F_2$ = $Р_h/l = Рtg{\mathbf \alpha }$, если сила $Р$ приложена параллельно основанию наклонной плоскости (рис.2, б).

Рисунок 2. Движение груза по наклонной плоскости

а) сила параллельна плоскости б) сила параллельна основанию

Наклонная плоскость дает выигрыш в силе, с ее помощью можно легче поднять груз на высоту. Чем меньше угол $\alpha $, тем больше выигрыш в силе. Если угол $\alpha $ меньше угла трения, то груз самопроизвольно не будет двигаться, и нужно усилие, чтобы тянуть его вниз.

Если учесть силы трения между грузом и наклонной плоскостью, то для $F_1$ и $F_2$ получаются следующие значения: $F_1=Рsin($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)/cos${\mathbf \varphi }$; $F_2=Рtg($${\mathbf \alpha }$$\pm$${\mathbf \varphi }$)

Знак плюс относится к передвижению вверх, знак минус - к опусканию груза. Коэффициент полезного действия наклонной плоскости ${\mathbf \eta }$1=sin${\mathbf \alpha }$cos${\mathbf \alpha }$/sin(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно плоскости, и ${\mathbf \eta }$2=tg${\mathbf \alpha }$/tg(${\mathbf \alpha }$+${\mathbf \varphi }$), если сила $Р$ направлена параллельно основанию наклонной плоскости.

Наклонная плоскость подчиняется «золотому правилу механики». Чем меньше угол между поверхностью и наклонной плоскостью (т. е. чем она более пологая, не круто поднимающаяся вверх), тем меньше надо прикладывать сил для подъема груза, но и большее расстояние необходимо будет преодолеть.

При отсутствии сил трения выигрыш в силе $K = P/F = 1/sin$$\alpha = l/h$. В реальных условиях из-за действия силы трения КПД наклонной плоскости меньше 1, выигрыш в силе меньше отношения $l/h$.

Пример 1

Груз массой 40 кг поднимают по наклонной плоскости на высоту 10 м при этом прикладывая силу 200 Н (рис.3). Какова длина наклонной плоскости? Трением пренебречь.

${\mathbf \eta }$ = 1

При движении тела по наклонной плоскости отношение прилагаемой силы к весу тела равно отношению длины наклонной плоскости к её высоте: $\frac{F}{P}=\frac{l}{h}=\frac{1}{{sin {\mathbf \alpha }\ }}$. Следовательно, $l=\frac{Fh}{mg}=\ \frac{200\cdot 10}{40\cdot 9,8}=5,1\ м$.

Ответ: Длина наклонной плоскости 5,1 м

Пример 2

Два тела с массами $m_1$ = 10 г и $m_2$ = 15 г связаны нитью, перекинутой через неподвижный блок, установленный на наклонной плоскости (рис. 4). Плоскость образует с горизонтом угол $\alpha $ = 30${}^\circ$. Найти ускорение, с которым будут двигаться эти тела.

${\mathbf \alpha }$ = 30 градусов

$g$ = 9.8 $м/c_2$

Направим ось ОХ вдоль наклонной плоскости, а ось ОY - перпендикулярно ей, и спроектируем на эти оси вектора $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$. Как видно из рисунка, равнодействующая сил, приложенных к каждому из тел, равна разности проекций векторов $\ {\overrightarrow{Р}}_1\ и\ {\overrightarrow{Р}}_2$ на ось ОХ:

\[\left|\overrightarrow{R}\right|=\left|P_{2x}-P_{1x}\right|=\left|m_2g{sin \alpha \ }-m_1g{sin \alpha \ }\right|=g{sin \alpha \left|m_2-m_1\right|\ }\] \[\left|\overrightarrow{R}\right|=9.8\cdot {sin 30{}^\circ \ }\cdot \left|0.015-0.01\right|=0.0245\ H\] \

Ответ: Ускорения тел $a_1=2,45\frac{м}{с^2};\ \ \ \ \ \ a_2=1,63\ м/с^2$

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.

Тело, которое соскальзывает вниз по наклонной плоскости . В этом случае на него действуют следующие силы:

Сила тяжести mg, направленная вертикально вниз;

Сила реакции опоры N, направленная перпендикулярно плоскости;

Сила трения скольжения Fтр, направлена противоположно скорости (вверх вдоль наклонной плоскости при соскальзывании тела).

Введем наклонную систему координат, ось OX которой направлена вдоль плоскости вниз. Это удобно, потому что в этом случае придется раскладывать на компоненты только один вектор - вектор силы тяжести mg, а вектора силы трения Fтр и силы реакции опоры N уже направлены вдоль осей. При таком разложении x-компонента силы тяжести равна mg sin(α) и соответствует «тянущей силе», ответственной за ускоренное движение вниз, а y-компонента - mg cos(α) = N уравновешивает силу реакции опоры, поскольку вдоль оси OY движение тела отсутствует.

Сила трения скольжения Fтр = µN пропорциональна силе реакции опоры. Это позволяет получить следующее выражение для силы трения: Fтр = µmg cos(α). Эта сила противонаправлена «тянущей» компоненте силы тяжести. Поэтому для тела, соскальзывающего вниз, получаем выражения суммарной равнодействующей силы и ускорения:

Fx = mg(sin(α) – µ cos(α));

ax = g(sin(α) – µ cos(α)).

ускорение:

скорость равна

v=ax*t=t*g(sin(α) – µ cos(α))

через t=0.2 с

скорость равна

v=0.2*9.8(sin(45)-0.4*cos(45))=0.83 м/с

Силу, с которой тело притягивается к Земле под действием поля тяготения Земли, называют силой тяжести. По закону всемирного тяготения на поверхности Земли (или вблизи этой поверхности) на тело массой m действует сила тяжести

Fт=GMm/R2 (2.28)

где М - масса Земли; R - радиус Земли.

Если на тело действует только сила тяжести, а все другие силы взаимно уравновешены, тело совершает свободное падение. Согласно второму закону Ньютона и формуле (2,28) модуль ускорения свободного падения g находят по формуле

g=Fт/m=GM/R2. (2.29)

Из формулы (2.29) следует, что ускорение свободного падения не зависит от массы m падающего тела, т.е. для всех тел в данном месте Земли оно одинаково. Из формулы (2.29) следует, что Fт = mg. В векторном виде

В § 5 было отмечено, что поскольку Земля не шар, а эллипсоид вращения, ее полярный радиус меньше экваториального. Из формулы (2.28) видно, что по этой причине сила тяжести и вызываемое ею ускорение свободного падения на полюсе больше, чем на экваторе.

Сила тяжести действует на все тела, находящиеся в поле тяготения Земли, однако не все тела падают на Землю. Это объясняется тем, что движению многих тел препятствуют другие тела, например опоры, нити подвеса и т. п. Тела, ограничивающие движение других тел, называют связями. Под действием силы тяжести связи деформируются и сила реакции деформированной связи по третьему закону Ньютона уравновешивает силу тяжести.

В § 5 отмечалось также, что на ускорение свободного падения влияет вращение Земли. Это влияние объясняется так. Системы отсчета, связанные с поверхностью Земли (кроме двух, связанных с полюсами Земли), не являются, строго говоря, инерциальными системами отсчета - Земля вращается вокруг своей оси, а вместе с ней движутся по окружностям с центростремительным ускорением и такие системы отсчета. Эта неинерциальность систем отсчета проявляется, в частности, в том, что значение ускорения свободного падения оказывается различным в разных местах Земли и зависит от географической широты того места, где находится связанная с Землей система отсчета, относительно которой определяется ускорение свободного падения.

Измерения, проведенные на разных широтах, показали, что числовые значения ускорения свободного падения мало отличаются друг от друга. Поэтому при не очень точных расчетах можно пренебречь неинерциальностью систем отсчета, связанных с поверхностью Земли, а также отличием формы Земли от сферической, и считать, что ускорение свободного падения в любом месте Земли одинаково и равно 9,8 м/с2.

Из закона всемирного тяготения следует, что сила тяжести и вызываемое ею ускорение свободного падения уменьшаются при увеличении расстояния от Земли. На высоте h от поверхности Земли модуль ускорения свободного падения определяют по формуле

Установлено, что на высоте 300 км над поверхностью Земли ускорение свободного падения меньше, чем у поверхности Земли, на 1 м/с2.

Следовательно, вблизи Земли (до высот нескольких километров) сила тяжести практически не изменяется, а потому свободное падение тел вблизи Земли является движением равноускоренным.

Вес тела. Невесомость и перегрузки

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).



Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа.

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Силы Fт и Fуп направлены по одной вертикальной прямой. Поэтому если ускорение тела а направлено вниз (т.е. совпадает по направлению с ускорением свободного падения g), то по модулю

Если же ускорение тела направлено вверх (т. е. противоположно направлению ускорения свободного падения), то

Р = m = m(g+а).

Следовательно, вес тела, ускорение которого совпадает по направлению с ускорением свободного падения, меньше веса покоящегося тела, а вес тела, ускорение которого противоположно направлению ускорения свободного падения, больше веса покоящегося тела. Увеличение веса тела, вызванное его ускоренным движением, называют перегрузкой.

При свободном падении a=g. следует, что в таком случае Р=0, т. е. вес отсутствует. Следовательно, если тела движутся только под действием силы тяжести (т. е. свободно падают), они находятся в состоянии невесомости. Характерным признаком этого состояния является отсутствие у свободно падающих тел деформаций и внутренних напряжений, которые вызываются у покоящихся тел силой тяжести. Причина невесомости тел заключается в том, что сила тяжести сообщает свободно падающему телу и его опоре (или подвесу) одинаковые ускорения.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: