Использование тригонометрии при строительстве зданий. Учебный проект "тригонометрия в окружающем нас мире и жизни человека". История происхождения основных понятий

Сам термин, давший название этому разделу математики, впервые был обнаружен в заголовке книги под авторством немецкого ученого-математика Питискуса в 1505 году. Слово «тригонометрия » имеет греческое происхождение и означает «измеряю треугольник ».


Древние люди вычисляли высоту дерева, сравнивая длину его тени с длиной тени от шеста, высота которого была известна. По звездам вычисляли местонахождение корабля в море.

2. Тригонометрия в физике

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям.

Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Наряду с поступательными и вращательными движениями тел в механике значительный интерес представляют и колебательные движения.

Механическими колебаниями называют движения тел, повторяющиеся точно (или приблизительно) через одинаковые промежутки времени. Закон движения тела, совершающего колебания, задается с помощью некоторой периодической функции времени x = f(t). Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примером волны такого рода могут служить волны, бегущие по натянутому резиновому жгуту или по струне.

Примерами простых колебательных систем могут служить груз на пружине или математический маятник (рис.1).

Рис.1. Механические колебательные системы.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными. Свободные колебаниясовершаются под действием внутренних сил системы, после того, как система была выведена из состояния равновесия. Колебания груза на пружине или колебания маятника являются свободными колебаниями. Колебания, происходящие под действием внешних периодически изменяющихся сил, называются вынужденными.

3.Тригонометрия в астрономии


Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1-2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах - секстантах и квадрантах.

4. Тригонометрия в медицине

Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь. Живые организмы не только улавливают свет и тепло Солнца и Луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы Луны и движение нашей планеты.

Биологические ритмы, биоритмы, - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, целых организмах и популяциях.

Биоритмы подразделяют на физиологические , имеющие периоды от долей секунды до нескольких минут и экологические, по длительности совпадающие с каким либо ритмом окружающей среды. К ним относят суточные, сезонные, годовые, приливные и лунные ритмы. Основной земной ритм – суточный, обусловлен вращением Земли вокруг своей оси, поэтому практически все процессы в живом организме обладают суточной периодичностью.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное и электромагнитное поле, морские приливы и отливы, под влиянием этого вращения закономерно изменяются.

Мы на семьдесят пять процентов состоим из воды, и если в момент полнолуния воды мирового океана поднимаются на 19 метров над уровнем моря и начинается прилив, то вода, находящаяся в нашем организме так же устремляется в верхние отделы нашего тела. И у людей с повышенным давлением часто наблюдаются обострения болезни в эти периоды, а натуралисты, собирающие лекарственные травы, точно знают в какую фазу луны собирать «вершки – (плоды) », а в какую – «корешки ».

Вы замечали, что в определенные периоды ваша жизнь делает необъяснимые скачки? Вдруг откуда не возьмись - бьют через край эмоции. Повышается чувствительность, которая внезапно может смениться полной апатией. Творческие и бесплодные дни, счастливые и несчастные моменты, резкие скачки настроения. Подмечено, что возможности человеческого организма меняются периодически. Эти знания лежат в основе «теории трех биоритмов ».


Физический биоритм – регулирует физическую активность. В течение первой половины физического цикла человек энергичен, и достигает лучших результатов в своей деятельности (вторая половина – энергичность уступает лености).

Эмоциональный ритм – в периоды его активности повышается чувствительность, улучшается настроение. Человек становится возбудимым к различным внешним катаклизмам. Если у него хорошее настроение, он строит воздушные замки, мечтает влюбиться и влюбляется. При снижении эмоционального биоритма происходит упадок душевных сил, пропадает желание, радостное настроение.

Интеллектуальный биоритм - он распоряжается памятью, способностью к обучению, логическому мышлению. В фазе активности наблюдается подъем, а во второй фазе спад творческой активности, отсутствуют удача и успех.

Теория трех ритмов

Физический цикл -23 дня. Определяет энергию, силу, выносливость, координацию движения

Эмоциональный цикл - 28 дней. Состояние нервной системы и настроение

Интеллектуальный цикл - 33 дня. Определяет творческую способность личности.

Тригонометрия встречается и в природе. Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси,медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии.

Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Тригонометрия в медицине и биологии

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси,медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.


1)Тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

2)Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tg(x)
5.Вывод

В результате выполнения исследовательской работы:

· Я познакомился с историей возникновения тригонометрии.

· Систематизировал методы решения тригонометрических уравнений.

· Узнал о применениях тригонометрии в архитектуре, биологии, медицине.




Математическая работа
« Тригонометрия и ее практическое применение »

Выполнила:

студентка 2 курса

группы КД-207

Суворова Елена Викторовна
Руководитель:

преподаватель математики

Орлова Галина Николаевна

Введение 3

История тригонометрии 5

Архитектура 6

Биология. Медицина 7

Заключение 11


Введение 3

История тригонометрии 5

Синус, косинус, тангенс, котангенс 5

Архитектура 6

Биология. Медицина 7

Определение расстояния до недоступной точки 8

Заключение 11


Введение

Тригонометрия -одна из самых древних и интересных наук, занимающаяся изучением геометрических фигур. Наш мир невозможно представить без их существования. Эта наука имеет огромный запас различных теорем, которые постоянно применятся как при решение математических задач, так и в жизни.

Многие задаются вопросами : зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Цель : уметь доказывать теоремы косинусов и синусов, применять их в решение задач, выбирать правильный ход решения при их использовании, знать, где данные теоремы применяются в жизни, рассмотреть задачи с практическим содержанием.

История тригонометрии

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса. Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (“ trigonan” – треугольник, “ metreo”- измеряю). Возникновение тригонометрии связано с землемерием, астрономией и строительным делом. Наибольший стимул для развития тригонометрии возник в связи с решением задач астрономии (для решения задач определения местонахождения судна, предсказания затемнения и т.д.) Начиная с 17 в. Тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т.д.



Синус, косинус, тангенс, котангенс

Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.

Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.

Тангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к прилежащему катету.

Котангенсом острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему катету.

Архитектура

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения

Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Биология. Медицина

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму кривой, которая напоминает график функции y=tgx.

Тригонометрия помогает нашему мозгу определять расстояния до объектов. Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории вновь позабыли.

Определение расстояния до недоступной точки

Предположим, что нам нужно найти расстояние от пункта А до недоступного пункта В. Для этого на местности выбираем точку С, провешиваем отрезок АС и измеряем его. Затем с помощью астролябии измеряем углы А и С. На листе бумаги строим какой-нибудь треугольник А1В1С1, у которого и измеряем длины сторон А1В1 и АС1 этого треугольника. Так как треугольник АВС пропорционален треугольнику А1В1С1, то По известным расстояниям АС, А1С1 и А1В1 находим расстояние АВ. Для упрощения вычислений удобно построить треугольник А1В1С1 так, чтобы А1С1:АС=1:1000. Например, если АС=130м, то расстояние А1С1 возьмём равным 130 мм. В этом случае

поэтому, измерив расстояние А1В1 в миллиметрах, мы сразу получаем расстояние АВ в метрах. ПРИМЕР. Пусть Строим треугольник А1В1С1 так, чтобы Измеряем отрезок А1В1. Он равен 153 мм, поэтому искомое расстояние равно 153 м.

Задачи

Задача №1

Катер пересекает реку. Скорость течения v1, скорость катера относительно воды v2. Под каким углом α к берегу должен идти катер, чтобы пересечь реку за минимальное время; по кратчайшему пути?


v2

Решение:

Заключение

В ходе исследования выяснено, что изучать тригонометрию интересно и полезно, так как тригонометрия в жизни нам встречается часто.

Решение задач на вычисление способствует развитию конструктивного мышления, аналитического и логического мышления - что необходимо в современной жизни.

Установлено, что систематическая работа по формированию навыков решения задач по геометрии с применением тригонометрии способствует развитию общего интеллектуального развития учащихся, их творческих способностей, потенциала школьника, умению разбираться в создавшейся ситуации, делать нужные умозаключен, при этом главная цель - не получение результата решения задачи, а само решение задачи, как совокупность логических шагов, приводящих к получению ответа. Очень важно научиться использовать оптимальные методы решения задач, среди которых тригонометрический метод является наиболее простейшим.

Цель достигнута : Научилась доказывать теоремы косинусов и синусов, применять их в решение задач, выбирать правильный ход решения при их использовании, узнала, где данные теоремы применяются в жизни, рассмотрела задачи с практическим содержанием.

Родикова Валерия, Типсин Эльдар

Первые математические знания появляются в глубокой древности (IV-III век до нашей эры) в Древней Греции. В XVII-XVIII веках происходит фундаментальное наполнение науки. Ученые разных стран в разные периоды развития цивилизации вносили свой вклад в становление современной математики. Область математики, изучающая тригонометрические функции, называется тригонометрией. Люди самых разных профессий используют элементы тригонометрии в своей работе. Это - исследователи в различных научных и прикладных областях, физики, конструкторы, специалисты по компьютерным технологиям, дизайнеры, авторы мультимедиа-презентаций, медики, специалисты в разных областях. В данном проекте исследовалось применение тригонометрии в архитектуре.

Скачать:

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Работу выполнили: Родикова Валерия, Типсин Эльдар, обучающиеся 10«А» класса МБОУ «Белоярская СОШ №1» Руководитель: Желнирович Н.В., учитель математики Тригонометрия в архитектуре 2013 г. Районная научно-исследовательская конференция обучающихся «Будущая элита Верхнекетья »

ТРИГОНОМЕТРИЯ – (от греч. trigwnon – треугольник и metrew – измеряю) –наука, изучающая зависимости между углами и сторонами треугольников и тригонометрические функции.

Мы предположили, что тригонометрия применяется не только в началах анализа и алгебре, но и во многих других науках, например в архитектуре Гипотеза

Знакомство со сферами применения тригонометрии в архитектуре. Цели работы

Узнать, как тригонометрия применяется в архитектуре Исследовать применение тригонометрии в этой области задачи

Заха Хадид Заха Хадид (31 октября 1950, Багдад, Ирак) - британский архитектор арабского происхождения. Представительница деконструктивизма. В 2004 году стала первой в истории женщиной-архитектором, награждённой Притцкеровской премией. Деконструктиви́зм - направление в современной архитектуре. Для деконструктивистских проектов характерны визуальная усложнённость, неожиданные изломанные и нарочито деструктивные формы, а также подчёркнуто агрессивное вторжение в городскую среду.

мост Шейха Зайда в Абу- Даби,ОАЭ

Анто́ни Пла́сид Гильем Гауди́-и-Курне́т - испанский архитектор, большинство причудливо-фантастических работ которого возведено в Барселоне. Стиль, в котором творил Гауди, относят к модерну. Однако в своём творчестве он использовал элементы самых различных стилей, подвергая их переработке. Моде́рн - художественное направление в искусстве, е го отличительными особенностями является отказ от прямых линий и углов в пользу более естественных, «природных» линий.

Детская школа Гауди в Барселоне, испания

Поверхности Гауди k =1, a =1

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сантьяго Калатрава Вальс - испанский архитектор и скульптор, автор многих футуристических построек в разных странах мира.

Винодельня « Бодегас Исиос » испания

КАНДЕ́ЛА Феликс (1910-1997), мексиканский архитектор и инженер. Создатель разнообразных железобетонных сводов-оболочек; разработал тонкостенные покрытия в форме гиперболических параболоидов.

Ресторан в Лос- Манантиалесе, аргентина [ a d cos (t) + d d t , b d sin (t), c d t + e d t 2 ]

Страховая корпорация Swiss Re в Лондоне, Великобритания x = λ y = f (λ) cos θ z = f (λ) sin θ

Готическая архитектура Собор Парижской Богоматери 1163г. – середина XIV века.

Берлинские синусоиды, германия

РЕЗУЛЬТАТЫ Проект «Школы будущего»

: Мы выяснили, что тригонометрия применяется не только в алгебре и началах анализа, но и во многих других науках Тригонометрия является основой для создания многих шедевров искусства и архитектуры Научились видеть тригонометрию в постройке моделей зданий. Вывод

Спасибо за внимание!

ТРИГОНОМЕТРИЯ В НАШЕЙ ЖИЗНИ

Многие задаются вопросами: зачем нужна тригонометрия? Как она используется в нашем мире? С чем может быть связана тригонометрия? И вот ответы на эти вопросы. Тригонометрия или тригонометрические функции используются в астрономии (особенно для расчётов положения небесных объектов), когда требуется сферическая тригонометрия, в морской и воздушной навигации, в теории музыки, в акустике, в оптике, в анализе финансовых рынков, в электронике, в теории вероятности, в статистике, в биологии, в медицинской визуализации,например, компьютерной томографии и ультразвук, в аптеках, в химии, в теории чисел, в сейсмологии, в метеорологии, в океанографии, во многих физических науках, в межевании и геодезии, в архитектуре, в фонетике, в экономике, в электротехнике, в машиностроении, в гражданском строительстве, в компьютерной графике, в картографии, в кристаллографии, в разработке игр и многих других областях.

Геодезия

Часто с синусами и косинусами приходится сталкиваться геодезистам. Они имеют специальные инструменты для точного измерения углов. При помощи синусов и косинусов углы можно превратить в длины или координаты точек на земной поверхности.

Древняя астрономия

Зачатки тригонометрии можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. 56-я задача из папируса Ринда (II тысячелетие до н. э.) предлагает найти наклон пирамиды, высота которой равна 250 локтей, а длина стороны основания - 360 локтей.

Дальнейшее развитие тригонометрии связано с именем астронома Аристарха Самосского (III век до н. э.). В его трактате «О величинах и расстояниях Солнца и Луны» ставилась задача об определении расстояний до небесных тел; эта задача требовала вычисления отношения сторон прямоугольного треугольника при известном значении одного из углов. Аристарх рассматривал прямоугольный треугольник, образованный Солнцем, Луной и Землёй во время квадратуры . Ему требовалось вычислить величину гипотенузы (расстояние от Земли до Солнца) через катет (расстояние от Земли до Луны) при известном значении прилежащего угла (87°), что эквивалентно вычислению значения sin угла 3 . По оценке Аристарха, эта величина лежит в промежутке от 1/20 до 1/18, то есть расстояние до Солнца в 20 раз больше, чем до Луны ; на самом деле Солнце почти в 400 раз дальше, чем Луна, ошибка возникла из-за неточности в измерении угла.

Несколько десятилетий спустя Клавдий Птоломей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике. Среди прочего, описана стереографическая проекция, исследованы несколько практических задач, например: определить высоту и азимут небесного светила по его склонению и часовому углу. С точки зрения тригонометрии, это значит, что надо найти сторону сферического треугольника по другим двум сторонам и противолежащему углу.

В общем, можно сказать, что тригонометрия использовалась для:

· точного определения времени суток;

· вычисления будущего расположения небесных светил, моментов их восхода и заката, затмений Солнца и Луны;

· нахождения географических координат текущего места;

· вычисления расстояния между городами с известными географическими координатами.

Гномон- древнейший астрономический инструмент, вертикальный предмет (стела, колонна, шест),

позволяющий по наименьшей

длине его тени (в полдень) определить угловую высоту солнца.

Так, под котангенсом понималась длина тени от вертикального гномонавысотой 12 (иногда 7) единиц; первоначально эти понятия использовались для расчёта солнечных часов. Тангенсом называлась тень от горизонтального гномона. Косекансом и секансом назывались гипотенузы соответствующих прямоугольных треугольников (отрезки AO на рисунке слева)

Архитектура

Широко используется тригонометрия в строительстве, а особенно в архитектуре. Большинство композиционных решений и построений

Рисунков проходило именно с помощью геометрии. Но теоретические данные мало что значат. Хочу привести пример на построение одной скульптуры французского мастера Золотого века искусства.

Пропорциональное соотношение в построении статуи было идеально. Однако при поднятии статуи на высокий пьедестал, она смотрелась уродливой. Скульптором не было учтено, что в перспективе к горизонту уменьшаются многие детали и при взгляде снизу вверх уже не создается впечатления ее идеальности. Велось

множество расчетов, чтобы фигура с большой высоты смотрелась пропорционально. В основном они были основаны на методе визирования, то есть приблизительного измерения, на глаз. Однако коэффициент разности тех или иных пропорций позволили сделать фигуру более приближенной к идеалу. Таким образом, зная примерное расстояние от статуи до точки зрения, а именно от верха статуи до глаз человека и высоту статуи, можно рассчитать синус угла падения взгляда с помощью таблицы (тоже самое мы можем сделать и с нижней точкой зрения), тем самым найдем точку зрения

Ситуация меняется, так как статую поднимают на высоту, поэтому расстояние от верхушки статуи до глаз человека увеличивается, следовательно и синус угла падения увеличивается. Сравнив изменения расстояния от верхушки статуи до земли в первом и во втором случаи, можно найти коэффициент пропорциональности. Впоследствии мы получим чертеж, а потом скульптуру, при поднятии которой зрительно фигура будет приближена к идеалу

Медицина и биология .

Модель боритмов можно построить с помощью тригонометрических функций. Для построения модели биоритмов необходимо ввести дату рождения человека, дату отсчета (день, месяц, год) и длительность прогноза (кол-во дней).

Формула сердца . В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрической активности сердца или, другими словами, электрокардиографии. Формула представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, тем самым, постановку диагноза и начало собственно лечения.

Также тригонометрия помогает нашему мозгу определять расстояния до объектов.

Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения. Строго говоря, идея "измерения углов" не является новой. Еще художники Древнего Китая рисовали удаленные объекты выше в поле зрения, несколько пренебрегая законами перспективы. Сформулировал теорию определения расстояния по оценке углов арабский ученый XI века Альхазен. После долгого забвения в середине прошлого столетия идею реанимировал психолог Джеймс

Гибсон (James Gibson), строивший свои выводы на основе опыта работы с пилотами военной авиации. Однако после того о теории

вновь позабыли.

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения. При плавании тело рыбы принимает форму

кривой, которая напоминает график функции y=tgx.

Измерительные работы



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: