Исследовательская работа "формула пика". Формула пика в школьном курсе планиметрии

Старкова Кристина, ученица 8Б класса

В работе рассмотрена теорема Пика и ее доказательство.

Рассмотрены задачи на нахождение площади многоугольников

Скачать:

Предварительный просмотр:

УПРАВЛЕНИЕ ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

АДМИНИСТРАЦИИ ЧАЙКОВСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

ПЕРМСКОГО КРАЯ

VI МУНИЦИПАЛЬНАЯ КОНФЕРЕНЦИЯ ИССЛЕДОВАТЕЛЬСКИХ РАБОТ
УЧАЩИХСЯ

Муниципальное автономное общеобразовательное учреждение

«средняя общеобразовательная школа №11»

СЕКЦИЯ: МАТЕМАТИКА

Применение формулы Пика

Учащаяся 8 «Б» класса

МАОУ СОШ №11Чайковский

Руководитель:Батуева Л,Н.,

Учитель математики МАОУ СОШ№11

г. Чайковский

2012 год

I. Введение……………………………………………………. 2

II. Формула Пика

2.1.Решетки.Узлы………………………………………… .4

2.2.Триангуляция многоугольника………………………5

2.3. Доказательство теоремы Пика………………………6

2.4 Исследование площадей многоугольников…………9

2.5. Вывод…………………………………………………..12

III.Геометрические задачи с практическим содержанием…13

IV. Заключение………………………………………………..14

V. Список используемой литературы………………………..16

  1. Введение

Увлечение математикой часто начинается с размышления над какой-то задачей. Так при изучении темы «Площади многоугольников» встал вопрос есть ли задачи, отличные от задач рассмотренных в учебники геометрии. Это задачи на клетчатой бумаге. У нас возникали вопросы: в чём заключается особенность таких задач, существуют ли специальные методы и приёмы решения задач на клетчатой бумаге. Увидев такие задачи в контрольно – измерительных материалах ЕГЭ и ГИА, решила обязательно исследовать задачи на клетчатой бумаге, связанные с нахождением площади изображённой фигуры.

Я приступила к изучению литературы, Интернет-ресурсов по данной теме. Казалось бы, что увлекательного можно найти на клетчатой плоскости, то есть, на бесконечном листке бумаги, расчерченном на одинаковые квадратики? Не судите поспешно. Оказывается, задачи, связанные с бумагой в клеточку, достаточно разнообразны. Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке. Для многих задач на бумаге в клетку нет общего правила решения, конкретных способов и приёмов. Вот это их свойство обуславливает их ценность для развития не конкретного учебного умения или навыка, а вообще умения думать, размышлять, анализировать, искать аналогии, то есть, эти задачи развивают мыслительные навыки в самом широком их понимании.

Мы определили:

Объект исследования : задачи на клетчатой бумаге

Предмет исследования : задач на вычисление площади многоугольника на клетчатой бумаге, методы и приёмы их решения.

Методы исследования : моделирование, сравнение, обобщение, аналогии, изучение литературных и Интернет-ресурсов, анализ и классификация информации.

  1. Цель исследования: Вывести и проверить формулы вычисления площадей геометрических фигур с помощью формулы Пика

Для достижения поставленной цели предусматриваем решение следующих задач:

  1. Подобрать необходимую литературу
  2. Отобрать материал для исследования, выбрать главную, интересную, понятную информацию
  3. Проанализировать и систематизировать полученную информацию
  4. Найти различные методы и приёмы решения задач на клетчатой бумаге
  5. Создать электронную презентацию работы для представления собранного материала одноклассникам

многообразие задач на бумаге в клеточку, их «занимательность», отсутствие общих правил и методов решения вызывают у школьников затруднения при их рассмотрении

  1. Гипотеза :. Площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по формуле планиметрии.

При решении задач на клетчатой бумаге нам понадобится геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

II. Формула Пика

2.1.Решетки.Узлы.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты; множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

Внутренние узлы многоугольника - красные.

Узлы на гранях многоугольника - синие.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу). Точнее, если S – площадь многоугольника, В - число клеток, которые целиком лежат внутри многоугольника, и Г - число клеток, которые имеют с внутренностью многоугольника хоть одну общую точку.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах клетчатой бумаги – в таких, где пересекаются линии сетки.

Площадь любого треугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по линиям сетки, проходящим через вершины нарисованного треугольника.

2.2.Триангуляция многоугольника

Любой многоугольник с вершинами в узлах сетки может быть триангулирован – разбит на «простые» треугольники.

Пусть на плоскости задан некоторый многоугольник и некоторое конечное множество К точек, лежащих внутри многоугольника и на его границе (причём все вершины многоугольника принадлежат множеству К ).

Триангуляцией с вершинами К называется разбиение данного многоугольника на треугольники с вершинами в множестве К такое, что каждая точка из К служит вершиной каждому из тех треугольников триангуляции, которым эта точка принадлежит (то есть точки из К не попадают внутрь или на стороны треугольников, рис. 1.37).

Рис. 1.37

Теорема 2 . а) Любой n -угольник можно разрезать диагоналями на треугольники, причём количество треугольников будет равно n – 2 (это разбиение – триангуляция с вершинами в вершинах n -угольника).

Рассмотрим невырожденный простой целочисленный многоугольник (т.е. он связный - любые две его точки могут быть соединены непрерывной кривой, целиком в нем содержащейся, и все его вершины имеют целые координаты, его граница - связная ломаная без самопересечений, и он имеет ненулевую площадь).

Для вычисления площади такого многоугольника можно воспользоваться следующей теоремой:

2.3. Доказательство теоремы Пика.

Пусть В - число целочисленных точек внутри многоугольника, Г - количество целочисленных точек на его границе, - его площадь. Тогда справедлива формула Пика : S=В+Г2-1

Пример. Для многоугольника на рисунке В=23 (желтые точки), Г=7, (синие точки, не забудем о вершинах!), поэтому квадратных единиц.

Сначала заметим, что формула Пика верна для единичного квадрата. Действительно, в этом случае мы имеем В=0, Г=4 и .

Рассмотрим прямоугольник со сторонами, лежащими на линиях решетки. Пусть длины его сторон равны и . Имеем в этом случае,В=(а-1)(b-1) , Г=2a+2b, тогда по формуле Пика,

Рассмотрим теперь прямоугольный треугольник с катетами, лежащими на осях координат. Такой треугольник получается из прямоугольника со сторонами и , рассмотренного в предыдущем случае, разрезанием его по диагонали. Пусть на диагонали лежат целочисленных точек. Тогда для этого случая В=а-1)b-1 , 2 Г= Г=2a+2b 2 +с-1 и получаем, что 4)Теперь рассмотрим произвольный треугольник. Его можно получить, отрезав от прямоугольника несколько прямоугольных треугольников и, возможно, прямоугольник (см. рисунки). Поскольку и для прямоугольника, и для прямоугольного треугольника формула Пика верна, мы получаем, что она будет справедлива и для произвольного треугольника.

Остается сделать последний шаг: перейти от треугольников к многоугольникам. Любой многоугольник можно разбить на треугольники (например, диагоналями). Поэтому нужно просто доказать, что при добавлении любого треугольника к произвольному многоугольнику формула Пика остается верной. Пусть многоугольник и треугольник имеют общую сторону. Предположим, что для формула Пика справедлива, докажем, что она будет верна и для многоугольника, полученного из добавлением . Так как и имеют общую сторону, то все целочисленные точки, лежащие на этой стороне, кроме двух вершин, становятся внутренними точками нового многоугольника. Вершины же будут граничными точками. Обозначим число общих точек через и получим B=MT=BM+BT+c-2 - число внутренних целочисленных точек нового многоугольника, Г=Г(М)+Г(T)-2(с-2)-2 - число граничных точек нового многоугольника. Из этих равенств получаем: BM+BT+c-2 , Г=Г(М)+Г(T)-2(с-2)-2 . Так как мы предположили, что теорема верна для и для по отдельности, то S(MT)+S(M)+S(T)=(В(М)+ ГМ2 -1)+В(T)+ ГT2 -1)=(В(М)+ В(T))+( ГМ2+ГT2)-2 =Г(MT)-(c-2)+ B(MT)+2(c-2)+22 -2= Г(MT)+ B(MT)2-1 .Тем самым, формула Пика доказана.

2.4 Исследование площадей многоугольников.

2) На клетчатой бумаге с клетками размером 1 см х 1 см изображен

треугольник.Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=12ah

Sтр.ABD=1/2 AD ∙ BD=1/2 ∙ 2 ∙ 1=1

Sтр.BDC=1/2 DC ∙ BD=1/2 ∙ 3 ∙ 1=1,5

Sтр.ABC=Sтр.BDC-Sтр.ABD=

1,5-1=0,5

S= В+Г2-1

Г=3 ;В=0.

S=0+3/2-1=0,5

3)На клетчатой бумаге с клетками размером 1 см х 1 см изображен четырех- угольник. Найдите его площадь в квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S=a∙b

Sкв.KMNE=7 ∙ 7=49

Sтр.AKB=1/2 ∙ KB ∙ AK=1/2 ∙ 4 ∙ 4=8

Sтр.AKB=Sтр.DCE=8

Sтр.AND= 1/2 ∙ ND ∙ AN=1/2 ∙ 3 ∙ 3=4,5

Sтр.AND=Sтр.BMC=4,5

Sпр.= Sкв.KMNE- Sтр.AKB- Sтр.DCE- Sтр.AND- Sтр.BMC=49-8-8-4,5-4,5=24

S= В+Г2-1

Г=14;В=19.

S=18+14/2-1=24

4)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 7 ∙1= 3,5

S2= 12a∙ b=1/2 ∙ 7 ∙ 2=7

S3= 12a∙ b=1/2 ∙ 4 ∙ 1=2

S4= 12a∙ b=1/2 ∙ 5 ∙ 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3.5-7-2-2,5-1=32см²

S= В+Г2-1

Г=5;В=31.

S=31+ 42 -1=32см²

5)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах.

S= a ∙b

a=36+36=62

b=9+9=32

S= 62∙32 =36 см 2

S= В+Г2-1

Г=18, В=28

S=28+ 182 -1=36см 2

6)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S=4,5+18+4,5=27 см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

7)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

S1= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S2= 12a∙ b=1/2 ∙ 6 ∙ 6=18

S3= 12a∙ b=1/2 ∙ 3 ∙ 3=4,5

S4= 12a∙ b=1/2 ∙ 6 ∙ 6=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

S= В+Г2-1

Г=18;В=28.

S=28+ 182 -1=36см²

8)На клетчатой бумаге с клетками размером 1 см х 1 см изображен

четырех угольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1= 12a∙ b=1/2 ∙ 2 ∙ 4=4

S2= 12ah =1/2 ∙ 4 ∙ 4=8

S3= 12ah =1/2 ∙ 8 ∙ 2=8

S4= 12ah =1/2 ∙ 4 ∙ 1=2

Sпр.= a∙ b=6 ∙ 8=48

S5=48-4-8-8-2=24 см²

S= Г+В2-1

Г=16;В=17.

S=17+ 162 -1=24 см²

Вывод

  1. Сравнив результаты в таблицах и доказав теорему Пика,я пришла к выводу,что площадь фигуры, вычисленная по формуле Пика равна площади фигуры, вычисленной по выведенной формуле планиметрии

Итак, моя гипотеза оказалась верной

III.Геометрические задачи с практическим содержанием.

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 9 . Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

Решение.

Рис. 10 В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

Задача 10 . Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём S площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + - 1

В = 7, Г = 4. S = 7 + 4/2 – 1 = 8 (см²)

Рис. 11 1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

Заключение

В процессе исследования я изучила справочную, научно-популярную литературу, научилась работать в программе Notebook. Узнала, что

Задача на нахождение площади многоугольника с вершинами в узлах сетки с подвигла австрийского математика Пика в 1899 году доказать замечательную формулу Пика.

В результате моей работы я расширила свои знания о решении задач на клетчатой бумаге, определили для себя классификацию исследуемых задач, убедились в их многообразии.

Я научилась вычислять площади многоугольников, нарисованных на клетчатом листке Рассмотренные н задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных.

Я пришла к выводу, что тема, которая меня заинтересовала, достаточно многогранна, задачи на клетчатой бумаге многообразны, методы и приёмы их решения также разнообразны. Поэтому наша я решила продолжить работу в этом направлении.

Литература

1.Геометрия на клетчатой бумаге. Малый МЕХмат МГУ.

2.Жарковская Н. М., Рисс Е. А . Геометрия клетчатой бумаги. Формула Пика // Математика, 2009, № 17, с. 24-25.

3.Задачи открытого банка заданий по математике ФИПИ, 2010 – 2011

4.В.В.Вавилов, А.В.Устинов.Многоугольники на решетках.М.МЦНМО,2006.

5.Мтематические этюды. etudes.ru

6.Л.С.Атанасян, В.Ф. Бутузов, С.Б.Кадомцев и др.Геометрия.7-9 классы.М. Просвещение,2010

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Я, ученик 6 класса. Изучать геометрию начал ещё с прошлого года, ведь занимаюсь я в школе по учебнику «Математика. Арифметика. Геометрия» под редакцией Е.А. Бунимович, Л.В.Кузнецова, С.С. Минаева и другие.

Наибольшее мое внимание привлекли темы «Площади фигур», « Составление формул». Я заметил, что площади одних и тех же фигур можно находить различными способами. В быту мы часто сталкиваемся с задачами нахождения площади. Например, найти площадь пола, который придется покрасить. Любопытно ведь, чтобы купить необходимое количество обоев для ремонта, нужно знать размеры комнаты, т.е. площадь стен. Вычисление площади квадрата, прямоугольника и прямоугольного треугольника не вызывало у меня затруднений.

Заинтересовавшись этой темой, я начал искать дополнительный материал в Интернете. В результате поисков я натолкнулся на формулу Пика- это формула для вычисления площади многоугольника, нарисованного на клетчатой бумаге. Вычисление площади по этой формуле мне показалось доступным любому ученику. Именно поэтому я решил провести исследовательскую работу.

Актуальность темы:

    Данная тема является дополнением и углублением изучения курса геометрии.

    Изучение данной темы поможет лучше подготовиться к олимпиадам и экзаменам.

Цель работы:

    Ознакомиться с формулой Пика.

    Овладеть приемами решений геометрических задач с использованием формулы Пика.

    Систематизировать и обобщить теоретический и практический материалы.

Задачи исследования:

    Проверить эффективность и целесообразность применения формулы при решении задач.

    Научиться применять формулу Пика в задачах разной сложности.

    Сравнить задачи, решенные с помощью формулы Пика и традиционным способом.

Основная часть

1.1. Историческая справка

Георг Алекса́ндр Пик - австрийский математик, родился 10 августа 1859 года. Он был одарённым ребёнком, его обучал отец, возглавлявший частный институт. В 16 лет Георг закончил школу и поступил в Венский университет. В 20 лет получил право преподавать физику и математику. Всемирную известность ему принесла формула для определения площади решетки полигонов. Свою формулу он опубликовал в статье в 1899 году. Она стала популярной, когда польский ученый Хьюго Штейнгауз включил ее в 1969 году в издание математических снимков.

Георг Пик получил образование в Венском университете и защитил кандидатскую в 1880 году. После получения докторской степени он был назначен помощником Эрнеста Маха в Шерльско- Фердинандском университете в Праге. Там же он стал преподавателем. Он оставался в Праге до своей отставки в 1927 году, а затем вернулся в Вену.

Пик возглавлял комитет в немецком университете Праги, который назначил Эйнштейна профессором кафедры математической физики в 1911 году.

Он был избран членом Чешской академии наук и искусств, но был исключен после захвата нацистами Праги.

Когда нацисты вошли в Австрию 12 марта 1938 года, он вернулся Прагу. В марте 1939 года нацисты вторглись в Чехословакию. 13 июля 1942 года Пик был депортирован в созданный нацистами в северной Чехии лагерь Терезиенштадт, где умер две недели спустя в возрасте 82 лет.

1.2. Исследование и доказательство

Свою исследовательскую работу я начал с выяснения вопроса: площади каких фигур я смогу найти? Составить формулу для вычисления площади различных треугольников и четырехугольников я мог. А как же быть с пяти-, шести-, и вообще с многоугольниками?

В ходе исследования на различных сайтах я увидел решения задач на вычисление площади пяти-, шести-, и других многоугольников. Формула, позволяющая решать данные задачи, называлась формулой Пика. Она выглядит так:S=B+Г/2-1 , где В - количество узлов, лежащих внутри многоугольника, Г - количество узлов, лежащих на границе многоугольника. Особенность данной формулы состоит в том, что её можно применять только для многоугольников, нарисованных на клетчатой бумаге.

Любой такой многоугольник легко разбить на треугольники с вершинами в узлах решётки, не содержащие узлов ни внутри, ни на сторонах. Можно показать, что площади всех этих треугольников одинаковы и равны ½, а следовательно, площадь многоугольника равна половине их числа Т.

Чтобы найти это число, обозначим через n число сторон многоугольника, через В - число узлов внутри него,через Г - число узлов на сторонах, включая вершины. Общая сумма углов всех треугольников равна 180°. Т.

Теперь найдем сумму другим способом.

Сумма углов с вершиной в любом внутреннем узле составляет 2.180°, т.е. общая сумма углов равна 360°. В; общая сумма углов при узлах на сторонах, но не в вершинах равна (Г- n)180 °, а сумма углов при вершинах многоугольника будет равна (Г- 2)180 °. Таким образом, Т= 2.180°. В+(Г-n)180 °+(n-2)180 °. Выполнив раскрытие скобок и разделив на 360°, получаем формулу для площади S многоугольника, известную как формула Пика.

2. Практическая часть

Эту формулу решил проверить на заданиях из сборника ОГЭ-2017. Взял задачи на вычисление площади треугольника, четырехугольника и пятиугольника. Решил сравнить ответы, решая двумя способами: 1) дополнил фигуры до прямоугольника и из площади полученного прямоугольника вычел площадь прямоугольных треугольников; 2) применил формулу Пика.

S = 18-1,5-4,5 = 12 и S = 7+12/2-1= 12

S = 24-9-3 = 12 и S = 7+12/2-1 = 12

S = 77-7,5-12-4,5-4 =49 и S = 43+14/2-1 = 49

Сравнив полученное, делаю вывод, что обе формулы дают один и тот же ответ. Найти площадь фигуры по формуле Пика, оказалось быстрее и легче, ведь вычислений было меньше. Легкость решения и экономия времени на вычислениях мне пригодятся в будущем при сдаче ОГЭ.

Это подтолкнуло меня на проверку возможности применения формулы Пика на более сложных фигурах.

S = 0 + 4/2 -1 = 1

S = 5+11/2-1 = 9,5

S = 4+16/2-1 = 1

Заключение

Формула Пика проста в понимании и удобна в применении. Во-первых, достаточно уметь считать, делить на 2, складывать и вычитать. Во-вторых, можно найти площадь и сложной фигуры, не затратив много времени. В-третьих, эта формула работает для любого многоугольника.

Недостаток в том, что Формула Пика применима только для фигур, которые нарисованы на клетчатой бумаге и вершины лежат на узлах клеток.

Я уверен, что при сдаче выпускных экзаменов, задачи на вычисление площади фигур не будут вызывать затруднения. Ведь я уже знаком с формулой Пика.

Список литературы

    Бунимович Е.А., Дорофеев Г.В., Суворова С.Б. и др. Математика. Арифметика. Геометрия. 5 класс: учебн. для общеобразоват. организаций с прил. на электрон. носителе -3-е изд.-М.: Просвещение, 2014.- 223, с. : ил. - (Сферы).

    Бунимович Е.А., Кузнецова Л.В., Минаева С.С. и др. Математика. Арифметика. Геометрия. 6 класс: учебн. для общеобразоват. организаций-5-е изд.-М.: Просвещение, 2016.-240с. : ил.- (Сферы).

    Васильев Н.Б. Вокруг формулы Пика. //Квант.- 1974.-№2. -с.39-43

    Рассолов В.В. Задачи по планиметрии. / 5- изд.,испр. И доп. - М.: 2006.-640с.

    И.В. Ященко.ОГЭ. Математика: типовые экзаменационные варианты: О-39 36 вариантов - М.: Издательство «Национальное образование», 2017. -240 с. - (ОГЭ. ФИПИ- школе).

    «Решу ОГЭ»: математика. Обучающая система Дмитрия Гущина. ОГЭ-2017: задания, ответы, решения [Электронный ресурс]. Режим доступа: https://oge.sdamgia.ru/test?id=6846966 (дата обращения 02.04.2017)

Библиографическое описание: Татьяненко А. А., Татьяненко С. А. Вычисление площадей фигур, изображенных на клетчатой бумаге // Юный ученый. — 2016. — №3..03.2019).





При подготовке к основному государственному экзамену я встретился с заданиями, в которых требуется вычислить площадь фигуры, изображенной на клетчатом листе бумаги. Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой трапецию, параллелограмм или треугольник. Достаточно хорошо знать формулы вычисления площадей этих фигур, посчитать количество клеточек и вычислить площадь. Если фигура представляет собой некоторый произвольный многоугольник, то здесь необходимо использовать особые приемы. Меня заинтересовала данная тема. И естественно возникли вопросы: где в повседневной жизни могут возникнуть задачи на вычисление площадей на клетчатой бумаге? В чем особенность таких задач? Существуют ли другие методы или же универсальная формула для вычисления площадей геометрических фигур, изображенных на клетчатой бумаге?

Изучение специальной литературы и интернет источников, показало, что существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако, в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата. Более того, мною проведен опрос друзей и одноклассников (в двух формах: при личной беседе и в социальных сетях), в котором приняли участие 43 учащихся школ города Тобольска. Данный опрос показал, что всего один человек (учащийся 11 класса) знаком с формулой Пика для вычисления площадей.

Пусть задана прямоугольная система координат. В этой системе рассмотрим многоугольник, который имеет целочисленные координаты. В учебной литературе точки с целочисленными координатами называются узлами. Причем многоугольник не обязательно должен быть выпуклым. И пусть требуется определить его площадь.

Возможны следующие случаи.

1. Фигура представляет собой треугольник, параллелограмм, трапецию:

1) подсчитывая клеточки нужно найти высоту, диагонали или стороны, которые требуются для вычисления площади;

2) подставить найденные величины в формулу площади.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 1 с размером клетки 1см на 1 см.

Рис. 1. Треугольник

Решение. Подсчитываем клеточки и находим: . По формуле получаем: .

2 Фигура представляет собой многоугольник

Если фигура представляет собой многоугольник то возможно использовать следующие методы.

Метод разбиения:

1) разбить многоугольник на треугольники, прямоугольники;

2) вычислить площади полученных фигур;

3) найти сумму всех площадей полученных фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом разбиения.

Рис. 2. Многоугольник

Решение. Способов разбиения существует множество. Мы разобьем фигуру на прямоугольные треугольники и прямоугольник как показано на рисунке 3.

Рис. 3. Многоугольник. Метод разбиения

Площади треугольников равны: , , , площадь прямоугольника - . Складывая площади всех фигур получим:

Метод дополнительного построения

1) достроить фигуру до прямоугольника

2) найти площади полученных дополнительных фигур и площадь самого прямоугольника

3) из площади прямоугольника вычесть площади всех «лишних» фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом дополнительного построения.

Решение. Достроим нашу фигуру до прямоугольника как показано на рисунке 4.

Рис. 4. Многоугольник. Метод дополнения

Площадь большого прямоугольника равна , прямоугольника, расположенного внутри - , площади «лишних» треугольников - , , тогда площадь искомой фигуры .

При вычислении площадей многоугольников на клетчатой бумаге возможно использовать еще один метод, который носит название формула Пика по фамилии ученого ее открывшего.

Формула Пика

Пусть у многоугольника, изображённого на клетчатой бумаге только целочисленные вершины. Точки у которых обе координаты целые называются узлами решетки. Причем, многоугольник может быть как выпуклым, так и невыпуклым.

Площадь многоугольника с целочисленными вершинами равна , где B - количество целочисленных точек внутри многоугольника, а Г - количество целочисленных точек на границе многоугольника.

Например, для многоугольника, изображенного на рисунке 5.

Рис. 5. Узлы в формуле Пика

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см по формуле Пика.

Рис. 6. Многоугольник. Формула Пика

Решение. По рисунку 6: В=9, Г=10, тогда по формуле Пика имеем:

Ниже приведены примеры некоторых задач, разработанных автором на вычисление площадей фигур, изображенных на клетчатой бумаге.

1. В детском саду дети сделали аппликации родителям в подарок (рис.7). Найдите площадь аппликации. Размер каждой клетки равен 1см 1см.

Рис. 7. Условие задачи 1

2. Один гектар еловых насаждений может задерживать в год до 32 т пыли, сосновых - до 35 т, вяза - до 43 т, дуба - до 50 т. бука - до 68 т. Посчитайте, сколько тонн пыли задержит ельник за 5 лет. План ельника изображен на рисунке 8 (масштаб 1 см. - 200 м.).

Рис. 8. Условие задачи 2

3. В орнаментах хантов и манси, преобладают геометрические мотивы. Часто встречаются стилизованные изображения животных. На рисунке 9 изображен фрагмент мансийского орнамента «Заячьи ушки». Вычислите площадь закрашенной части орнамента.

Рис. 9. Условие задачи 3

4. Требуется покрасить стену заводского здания (рис. 10). Рассчитайте требуемое количество водоэмульсионной краски (в литрах). Расход краски: 1 литр на 7 кв. метров Масштаб 1см - 5м.

Рис. 10. Условие задачи 4

5. Звездчатый многоугольник - плоская геометрическая фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения. Особого внимания заслуживает пятиконечная звезда - пентаграмма. Пентаграмма - это символ совершенства, ума, мудрости и красоты. Это простейшая форма звезды, которую можно изобразить одним росчерком пера, ни разу не оторвав его от бумаги и при этом ни разу же не пройдя дважды по одной и той же линии. Нарисуйте пятиконечную звездочку не отрывая карандаша от листа клетчатой бумаги, так, чтобы все углы получившегося многоугольника находились в узлах клетки. Вычислите площадь полученной фигуры.

Проанализировав математическую литературу и разобрав большое количество примеров по теме исследования, я пришел к выводу, что выбор метода вычисления площади фигуры на клетчатой бумаге зависит от формы фигуры. Если фигура представляет собой треугольник, прямоугольник, параллелограмм или трапецию, то удобно воспользоваться всем известными формулами для вычисления площадей. Если фигура представляет собой выпуклый многоугольник, то возможно использовать как метод разбиения, так и дополнения (в большинстве случаях удобнее - метод дополнения). Если фигура представляет собой невыпуклый или звездчатый многоугольник, то удобнее применить формулу Пика.

Поскольку формула Пика является универсальной формулой для вычисления площадей (если вершины многоугольника находятся в узлах решетки), то ее можно использовать для любой фигуры. Однако, если многоугольник занимает достаточно большую площадь (или клетки мелкие), то велика вероятность допустить ошибку в подсчетах узлов решетки. Вообще, в ходе исследования, я пришел к выводу, что при решении подобных задач в ОГЭ лучше воспользоваться традиционными методами (разбиения или дополнения), а результат проверить по формуле Пика.

Литература:

  1. Вавилов В. В., Устинов А. В. Многоугольники на решетках. - М.: МЦНМО, 2006. - 72 с.
  2. Васильев И. Н. Вокруг формулы Пика// Научно-популярный физико-математический журнал «Квант». - 1974. - № 12. Режим доступа: http://kvant.mccme.ru/1974/12/vokrug_formuly_pika.htm
  3. Жарковская Н., Рисс Е. Геометрия клетчатой бумаги. Формула Пика. // Первое сентября. Математика. - 2009. -№ 23. - с.24,25.

В Викисловаре есть статья «пика» Пика В военном деле: Пика холодное колющее оружие, разновидность длинного копья. Пикинёры вид пехоты в европейских армиях XVI начала XVIII веков. Пикельхельм (п … Википедия

Теорема Пика (комбинаторная геометрия) - В=7, Г=8, В + Г/2 − 1= 10 Теорема Пика классический результат комбинаторной геометрии и геометрии чисел. Площадь многоугольника с целочисле … Википедия

Треугольник - У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия

Трапеция - У этого термина существуют и другие значения, см. Трапеция (значения). Трапеция (от др. греч. τραπέζιον «столик»; … Википедия

Четырёхугольник - ЧЕТЫРЁХУГОЛЬНИКИ ┌─────────────┼────────────┐ невыпуклый выпуклый самопересекающийся … Википедия

Двуугольник - Правильный двуугольник на поверхности сферы Двуугольник в геометрии это … Википедия

Пятиугольник - Правильный пятиугольник (пентагон) Пятиугольник многоугольник с пятью углами. Также пятиугольником называют всякий предмет такой формы. Сумма внут … Википедия

Шестиугольник - Правильный шестиугольник Шестиугольник многоугольник с шестью углами. Также шестиугольником называют всякий предмет такой формы. Сумма внутренних углов выпуклого шестиугольника р … Википедия

Додекагон - Правильный додекагон Додекагон (греч … Википедия

Прямоугольник - Прямоугольник параллелограмм, у которого все углы прямые (равны 90 градусам). Примечание. В евклидовой геометрии для того, чтобы четырёхугольник был прямоугольником, достаточно, чтобы хотя бы три его угла были прямые. Четвёртый угол (в силу … Википедия

Книги

  • Эффект плато. Как преодолеть застой и двигаться дальше , Салливан Б.. Эффект плато - эта пугающая формула «после каждого успеха приходит застой», понимание того, что ваши усилия больше не приносят результата, - мощный закон природы, который касается каждого из… Купить за 460 руб
  • Математический клуб «Кенгуру». Выпуск № 8. Математика на клетчатой бумаге , . Выпуск посвящен различным задачам и играм, связанным с листом клетчатой бумаги. В частности, в нем подробно рассматривается вычисление площади многоугольника, вершины которого расположены в…

Многоугольник без самопересечений называется решётчатым, если все его вершины находятся в точках с целочисленными координатами (в декартовой системе координат).

Теорема Пика

Формула

Пусть дан некоторый решётчатый многоугольник, с ненулевой площадью.

Обозначим его площадь через ; количество точек с целочисленными координатами, лежащих строго внутри многоугольника — через ; количество точек с целочисленными координатами, лежащих на сторонах многоугольника — через .

Тогда справедливо соотношение, называемое формулой Пика :

В частности, если известны значения I и B для некоторого многоугольника, то его площадь можно посчитать за , даже не зная координат его вершин.

Это соотношение открыл и доказал австрийский математик Георг Александр Пик (Georg Alexander Pick) в 1899 г.

Доказательство

Доказательство производится в несколько этапов: от самых простых фигур до произвольных многоугольников:

Обобщение на высшие размерности

К сожалению, эта столь простая и красивая формула Пика плохо обобщается на высшие размерности.

Наглядно показал это Рив (Reeve), предложив в 1957 г. рассмотреть тетраэдр (называемый теперь тетраэдром Рива ) со следующими вершинами:




где — любое натуральное число. Тогда этот тетраэдр при любых не содержит внутри ни одной точки с целочисленными координатами, а на его границе — лежат только четыре точки , , , и никакие другие. Таким образом, объём и площадь поверхности этого тетраэдра могут быть разными, в то время как число точек внутри и на границе — неизменны; следовательно, формула Пика не допускает обобщений даже на трёхмерный случай.

Тем не менее, некоторое подобное обобщение на пространства большей размерности всё же имеется, — это многочлены Эрхарта (Ehrhart Polynomial), но они весьма сложны, и зависят не только от числа точек внутри и на границе фигуры.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: