Переработка нефти. Нефтеперерабатывающие заводы. Этапы переработки нефти

Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

С момента поступления на нефтеперерабатывающий завод нефть и получаемые из нее нефтепродукты проходят следующие основные этапы:

1. Подготовка нефти к переработке.

2. Первичная переработка нефти.

3. Вторичная переработка нефти.

4. Очистка нефтепродуктов.

Схема, отражающая взаимосвязь этих этапов, приведена на рис. 4.1.1.

Подготовка нефти к переработке заключается в ее дополнитель­ном обезвоживании и обессоливании. Необходимость дополнитель­ной подготовки обусловлена тем, что для обеспечения высоких пока­зателей работы установок по переработке нефти в них необходимо


Рис. 4.1.1. Технологические потоки современного НПЗ (упрощенная схема): I - подготовка нефти
к переработке; II
- первичная перегонка нефти; III - вторичная переработка нефти; IV - очистка
нефтепродуктов


Глава 4. Переработка нефти, газа и углеводородного сырья 173

Подавать сырье с содержанием солей не более 6 г/л и воды 0,2%. Поэто­му нефть, поступающую на нефтеперерабатывающий завод (НПЗ), под­вергают дополнительному обезвоживанию и обессоливанию.

Доведение содержания воды и солей до требуемых показателей осуществляется на электрообессоливающих установках (ЭЛОУ) сле­дующим образом. Нефть несколькими потоками с помощью насосов прокачивается через подогреватели, где нагревается отработавшим паром. После этого в поток добавляется деэмульгатор, и нефть посту­пает в отстойники, где от нее отделяется вода. Для вымывания солей в нефть добавляют щелочную воду. Основное ее количество затем от­деляют в электродегидраторе первой ступени. Окончательное обез­воживание нефти осуществляется в электродегидраторе второй сту­пени.

Переработка нефти начинается с ее перегонки (первичная пере­работка нефти). Нефть представляет собой сложную смесь большого количества взаимно растворимых углеводородов, имеющих различ­ные температуры начала кипения. В ходе перегонки, повышая темпе­ратуру, из нефти выделяют углеводороды, выкипающие в различных интервалах температур.

Для получения данных фракций применяют процесс, называемый ректификацией и осуществляемый в ректификационной колонне. Ректификационная колонна представляет собой вертикальный ци­линдрический аппарат высотой 20...30 м и диаметром 2...4 м. Внутрен­ность колонны разделена на отдельные отсеки большим количеством горизонтальных дисков, в которых имеются отверстия для прохож­дения через них паров нефти. Жидкость перемещается по сливным патрубкам.

Перед закачкой в ректификационную колонну нефть нагревают в трубчатой печи до температуры 350...360 °С. При этом легкие угле­водороды, бензиновая, керосиновая и дизельная фракции переходят в парообразное состояние, а жидкая фаза с температурой кипения выше 350 °С представляет собой мазут.

После ввода данной смеси в ректификационную колонну мазут сте­кает вниз, а углеводороды, находящиеся в парообразном состоянии, поднимаются вверх. Кроме того, вверх поднимаются пары углеводо­родов, испаряющиеся из мазута, нагреваемого в нижней части колон­ны до 350 "С.

Поднимаясь вверх, пары углеводородов за счет контакта с жидко­стью (орошением), подаваемой сверху, постепенно охлаждаются. По­этому их температура в верхней части колонны становится равной


174 Часть I. Основы нефтегазового дела

По мере остывания паров нефти конденсируются соответствующие углеводороды. Технологический процесс рассчитан таким образом, что в самой верхней части колонны конденсируется бензиновая фракция, ниже - керосиновая, еще ниже - фракция дизельного топлива. Несконденсировавшиеся пары направляются на газофракционирова­ние, где из них получают сухой газ (метан, этан), пропан, бутан и бензиновую фракцию.

Перегонка нефти с целью получения указанных фракций (по то­пливному варианту) производится на атмосферных трубчатых уста­новках (AT). Для более глубокой переработки нефти используются атмосферно-вакуумные трубчатые установки (АВТ), имеющие кро­ме атмосферного вакуумный блок, где из мазута выделяют масля­ные фракции (дистилляты), вакуумный газойль, оставляя в остатке гудрон.

Методы вторичной переработки нефти делятся на две группы - термические и каталитические.

К термическим методам относятся термический крекинг, коксо­вание и пиролиз.

Термический крекинг - это процесс разложения высокомолеку­лярных углеводородов на более легкие при температуре 470...540 °С и давлении 4...6 МПа. Сырьем для термического крекинга является ма­зут и другие тяжелые нефтяные остатки. При высоких температуре и давлении длинноцепочные молекулы сырья расщепляются. Продук­ты реакции разделяются с получением топливных компонентов, газа и крекинг-остатка.

Коксование - это форма термического крекинга, осуществляемо­го при температуре 450...550 °С и давлении 0,1...0,6 МПа. При этом по­лучаются газ, бензин, керосино-газойлевые фракции, а также кокс.

Пиролиз - это термический крекинг, проводимый при темпера­туре 750...900 °С и давлении, близком к атмосферному, с целью полу­чения сырья для нефтехимической промышленности. Сырьем для пи­ролиза являются легкие углеводороды, содержащиеся в газах, бензи­ны первичной перегонки, керосины термического крекинга, керосино-газойлевая фракция. Продукты реакции разделяются с по­лучением индивидуальных непредельных углеводородов (этилен, про­пилен и др.). Из жидкого остатка, называемого смолой пиролиза, мо­гут быть извлечены ароматические углеводороды.

К каталитическим методам относятся каталитический крекинг, риформинг.

Каталитический крекинг - это процесс разложения высокомоле­кулярных углеводородов при температурах 450...500 °С и давлении


Глава 4. Переработка нефти, газа и углеводородного сырья 175

0,2 МПа в присутствии катализаторов - веществ, ускоряющих реак­цию крекинга и позволяющих осуществлять ее при более низких, чем при термическом крекинге, давлениях.

В качестве катализаторов используются, в основном, алюмосили­каты и цеолиты.

Сырьем для каталитического крекинга являются вакуумный га­зойль, а также продукты термического крекинга и коксования мазу­тов и гудронов. Получаемые продукты - газ, бензин, кокс, легкий и тяжелый газойли.

Риформинг - это каталитический процесс переработки низкоок­тановых бензиновых фракций, осуществляемый при температуре око­ло 500 °С и давлении 2...4 МПа. В результате структурных преобразо­ваний октановое число углеводородов в составе катализата резко по­вышается. Данный катализат является основным высокооктановым компонентом товарного автомобильного бензина. Кроме того, из ка­тализата могут быть выделены ароматические углеводороды (бензол, толуол, этилбензол, ксилолы).

Гидрогенизационными называются процессы переработки неф­тяных фракций в присутствии водорода, вводимого в систему извне. Гидрогенизационные процессы протекают в присутствии катализа­торов при температуре 260...430 °С и давлении 2...32 МПа.

Применение гидрогенизационных процессов позволяет углубить переработку нефти, обеспечив увеличение выхода светлых нефтепро­дуктов, а также удалить нежелательные примеси серы, кислорода, азота (гидроочистка).

Фракции (дистилляты), получаемые в ходе первичной и вторичной переработки нефти, содержат в своем составе различные примеси. Состав и концентрация примесей, содержащихся в дистиллятах, за­висят от вида используемого сырья, применяемого процесса его пере­работки, технологического режима установки. Для удаления вредных примесей дистилляты подвергаются очистке.

Для очистки светлых нефтепродуктов применяются следующие процессы:

1) щелочная очистка (выщелачивание);

2) кислотно-щелочная очистка;

3) депарафинизация;

4) гидроочистка;

5) ингибирование.

Щелочная очистка заключается в обработке бензиновых, керосино-вых и дизельных фракций водными растворами каустической или каль­цинированной соды. При этом из бензинов удаляют сероводород и час-


176 Часть I. Основы нефтегазового дела

Тично меркаптаны, из керосинов и дизельного топлива - нафтеновые кислоты.

Кислотно-щелочная очистка применяется с целью удаления из дис­тиллятов непредельных и ароматических углеводородов, а также смол. Заключается она в обработке продукта сначала серной кислотой, а затем - в ее нейтрализации водным раствором щелочи.

Депарафинизация используется для понижения температуры за­стывания дизельных топлив и заключается в обработке дистиллята раствором карбамида. В ходе реакции парафиновые углеводороды об­разуют с карбамидом соединение, которое сначала отделяется от про­дукта, а затем при нагревании разлагается на парафин и карбамид.

Гидроочистка применяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций. Для этого в систему при температуре 350...430 °С и давлении 3...7 МПа в присутствии ката­лизатора вводят водород. Он вытесняет серу в виде сероводорода.

Гидроочистку применяют также для очистки продуктов вторично­го происхождения от непредельных соединений.

Ингибирование применяется для подавления реакций окисления и полимеризации непредельных углеводородов в бензинах термиче­ского крекинга путем введения специальных добавок.

Для очистки смазочных масел применяют следующие процессы:

1) селективную очистку растворителями;

2) депарафинизацию;

3) гидроочистку;

4) деасфальтизацию;

5) щелочную очистку.

Селективными растворителями называют вещества, которые об­ладают способностью извлекать при определенной температуре из нефтепродукта только какие-то определенные компоненты, не рас­творяя других компонентов и не растворяясь в них.

Очистка производится в экстракционных колоннах, которые бы­вают либо полыми внутри, либо с насадкой или тарелками различно­го типа.

Для очистки масел применяют следующие растворители: фурфу­рол, фенол, пропан, ацетон, бензол, толуол и др. С их помощью из масел удаляют смолы, асфальтены, ароматические углеводороды и твердые парафиновые углеводороды.

В результате селективной очистки образуются две фазы: полезные компоненты масла (рафинат) и нежелательные примеси (экстракт).

Депарафинизации подвергают рафинаты селективной очистки, по­лученные из парафинистой нефти и содержащие твердые углеводо-


Глава 4. Переработка нефти, газа и углеводородного сырья 177

Роды. Если этого не сделать, то при понижении температуры масла теряют подвижность и становятся непригодными для эксплуатации.

Депарафинизация осуществляется фильтрацией после предвари­тельного охлаждения продукта, разбавленного растворителем.

Целью гидроочистки является улучшение цвета и стабильности ма­сел, повышение их вязкостно-температурных свойств, снижение кок­суемости и содержания серы. Сущность данного процесса заключа­ется в воздействии водорода на масляную фракцию в присутствии ка­тализатора при температуре, вызывающей распад сернистых и других соединений.

Деасфальтизация полугудрона производится с целью их очистки от асфальто-смолистых веществ. Для разделения полугудрона на де-асфальтизат (масляная фракция) и асфальт применяется экстракция легкими углеводородами (например, сжиженным пропаном).

Щелочная очистка применяется для удаления из масел нафтено­вых кислот, меркаптанов, а также для нейтрализации серной кисло­ты и продуктов ее взаимодействия с углеводородами, остающимися после деасфальтизации.


Похожая информация.


Владимир Хомутко

Время на чтение: 7 минут

А А

Как происходит первичная переработка нефти?

Нефть – это сложная смесь углеводородных соединений. Выглядит она как маслянистая вязкая жидкость с характерным запахом, цвет которой в основном варьируется от темно-коричневого до черного, хотя бывают и светлые, почти прозрачные нефти.

Эта жидкость обладает слабой флюоресценцией, её плотность меньше, чем у воды, в которой она почти не растворяется. Плотность нефти может иметь имеет значение от 0,65-0,70 грамм на кубический сантиметр (легкие сорта), а также 0,98-1,00 грамма на кубический сантиметр (тяжелые сорта).

Самый простой способ обезвоживания нефти на месторождении – термохимический способ удаления воды при нормальном атмосферном давлении.

Суть его заключается в том, что в подогретую до 30-ти – 50-ти градусов в нефть добавляют специальное поверхностно-активное вещество, называемое деэмульгатор, после чего полученная смесь отстаивается в специальных резервуарах. Если не обеспечить необходимую герметичность емкостей отстойников, то возникают серьезные потери сырья вследствие испарительных процессов. Поэтому в основном термохимический отстой происходит в герметичных резервуарах под давлением.

Если в нефти содержание солей невелико, то они практически полностью удаляются в процессе сепарации и отстаивания. Однако, большей части добываемых нефтей все-таки необходимо дополнительное обессоливание.

Для этого процесса также применимы термохимические методики, но в большинстве случаем применяется способ, называемый электрообессоливанием. Он сочетает в себе термохимический отстой с дополнительной обработкой нефтяной эмульсии, которая происходит в электрических полях. Установки, с помощью которых проводится этот процесс, называются электрообессоливающими (сокращенно – ЭЛОУ).

После обессоливания на ЭЛОУ смесь поступает в систему магистральных трубопроводов с целью её дальнейшей транспортировки на предприятия перерабатывающего комплекса (сокращенно – НПЗ).

Физические методы переработки нефти – прямая перегонка

Процессы прямой перегонки сырой нефти происходят на трубчатых установках двух типов – при значении атмосферного давления (установки АТ) и в вакууме различной глубины (ВТ). На отечественных НПЗ, как правило, оба типа объединяют в одну комбинированную установку АВТ – атмосферно-вакуумного трубчатого типа.

Название трубчатая объясняется тем, что сырье перед разделением его на фракции нагревается в змеевиках печей трубчатого типа.

АВТ имеет в своем составе два блока – атмосферный и вакуумный. Атмосферная перегонка нефти (или дистилляция) при естественном значении давления позволяет получать светлые , к которым относятся бензины, керосины и дизельные дистилляты.

Температура их выкипания – не выше 360-ти градусов Цельсия. Выход таких фракций, в зависимости от физико-химического состава перерабатываемого сырья, составляет от 45-ти до 60-ти процентов от общего количества сырой нефти. Остаток атмосферной перегонки называется мазутом.

Сам процесс переработки (разделение на фракции) предварительно нагретой нефти происходит в ректификационной колонне, которая выглядит как цилиндрический вертикальный агрегат, оборудованный изнутри специальными контактными устройствами, называемыми тарелками. Через эти тарелки выделяемые пары нефтепродуктов движутся вверх, а жидкие фазы опускаются вниз.

Ректификационные колонны могут быть разных размеров и различных конфигураций, однако их используют на всех предприятиях нефтепереработки. Количество тарелок в таких устройствах может колебаться от 20-ти до 60-ти штук.

В нижней части этой колонны предусмотрен подвод тепла, а в верхней – его отвод, поэтому температура в колонне постепенно понижается от нижней части к верхней. Это позволяет отводить бензиновые фракции в виде паров с верхней части аппарата. Керосиновые и дизельные дистилляты конденсируются и выводятся в других частях ректификационного колонного аппарата, а жидкий остаток в виде мазута откачивается с нижней части и поступает на вакуумный блок.

Задача вакуумной перегонки – отбор из мазута дистиллятов масляного типа (если НПЗ специализируется на производстве масел и смазок) либо широкой масляной фракции широкого спектра, которая называется вакуумный газойль (если специализация НПЗ – производство моторного топлива). После вакуумной перегонки образуется остаток, называемый гудроном.

Необходимость такой переработки мазута под вакуумом объясняется тем, что при значении температуры более 380-ти градусов начинается процесс крекинга (термического разложения углеводородов), а точка выкипания вакуумного газойля – это более 520-ти градусов. Из-за этого перегонку необходимо проводить при остаточном значении давления на уровне 40-60 миллиметров ртутного столба, что дает возможность уменьшить максимальне температурное значение в установке до 360-ти – 380-ти градусов.

Вакуумная среда в такой колонне создается с помощью специализированного оборудования, основным ключевым элементом которого являются либо жидкостные, либо паровые эжекторы.

Получаемая прямой перегонкой продукция

С помощью первичной перегонки нефтяного сырья получают следующие продукты:

  • углеводородный газ, который выводят посредством головки стабилизации; применяется в качестве бытового топлива и сырья для процессов газофракционирования;
  • бензиновые фракции (температура выкипания – до 180 градусов); используется в качестве сырья для процессов вторичной перегонки в установках каталитического риформинга и крекинга, пиролиза и других видов переработки нефти (точнее, её фракций), с целью получения товарных автомобильных бензинов;
  • керосиновые фракции (температура выкипания – от 120-ти до 315 градусов); после прохождения гидроочистки их применяют как реактивное и тракторное топливо;
  • атмосферный газойль (дизельные фракции), который выкипает в диапазоне от 180-ти до 350-ти градусов; после чего, пройдя соответствующую обработку и очистку, он применяется как топливо для дивгателей дизельного типа;
  • мазут, который выкипает при температурах свыше 350-ти градусов; используется как топливо для котельных и как сырьё для термических крекинговых установок;
  • вакуумный газойль с температурой выкипания от 350 до 500 градусов и более; является сырьём для каталитического и гидрокрекинга, а также для производства масляных нефтепродуктов;
  • гудрон – температура выкипания – более 500 градусов; который выступает сырьем для установок коксования и термического крекинга, с целью получения битумов и различных видов нефтяных масел.

Технологическая схема прямой перегонки (из учебника в редакции Глаголевой и Капустина)

Расшифруем обозначения:

  • К-1 – колонна отбензинивания;
  • К-2 – колонна атмосферной переработки нефти;
  • К-3 – колонна отпаривания;
  • К-4 – установка стабилизации;
  • К-5 – колонна вакуумной переработки;
  • Э-1…Э-4 – электрические дегидраторы;
  • П-1 и П-2 – подогревательные печи;
  • КХ-1…КХ-4 – устройства охлаждения и конденсирования;
  • Е-1 и Е-2 – рефлюксные емкости;
  • А-1 – вакуумный насос паро-эжекторного типа;
  • I – сырая нефть;
  • II – стабилизационная головка;
  • III – стабилизированный бензин;
  • IV – керосиновая фракция;
  • V – атмосферный газойль (дизельные фракции);
  • VI – вакуумный газойль;
  • VII – гудрон (остаток, образовавшийся после того, как была проведена вакуумная обработка);
  • VIII – выхлопные эжекторные газы;
  • IX – вещество ПАВ (деэмульгатор);
  • X – вода, сбрасываемая в канализационные стоки;
  • XI – водяной пар.

В колонне К-1 отбирается бензиновая фракция, которая затем конденсируется в ХК-1 и поступает в ёмкость Е-1.

Наполовину отбензиненная переработанная нефть с нижней части К-1 через печь трубчатого типа П-1 попадает в К-2 (атмосферная колонна). Часть потока такой нефти возвращается обратно в К-1, давая тепло, необходимое для ректификационных процессов.

В К-2 происходит дальнейшее фракционирование. Самая верхняя фракция К-2 – тяжелый бензин, который после конденсации поступает в Е-2. Керосин и дизельная фракция отводятся из К-2 с помощью боковых погон и попадают для отпаривания в К-3.

В К-3 происходит удаление легких фракций, после чего дизельный дистиллят и керосин через подогревательные теплообменники и холодильники выводят из установки.

Снизу К-2 отбирается жидкий мазут, затем он подается в печь П-2, а потом – в вакуумную колонну К-5, где его разделяют на гудрон и вакуумный газойль.

Сверху их К-5 с пароэжекторным насосом А-1 отсасывают водяной пар, воздух и образовавшиеся и газы, а также небольшое количество легких дизельных продуктов. Вакуумный газойль и гудрон пропускаются через подогреватели (теплообменники), а затем после конденсации в холодильниках они отводятся из установки.

Бензин из Е-1 и Е-2 подогревают и подают в колонну стабилизации К-4. Через верха К-4 (стабилизационную головку) отводятся сжиженные газы, а с нижней её части – стабилизированный жидкий бензин.

Так в общих чертах выглядит процесс первичной нефтеобработки.

Нет соответствующих видео

Владимир Хомутко

Время на чтение: 5 минут

А А

Современные технологии углубления переработки нефти

Глубина (сокращенно – ГНП) является важнейшим показателям, характеризующим эффективность использования единицы нефтяного сырья.

Достижение значения этого показателя на уровне 85-90 процентов – главная задача отечественной нефтепереработки. В 2009-ом году среднее значение показателя ГПН по российской перерабатывающей отрасли составляло примерно 70 процентов, о больше 80-ти показывали только 5-ть из 28-ми крупнейших НПЗ. Согласно программе, разработанной Министерством энергетики РФ, 80-85 процентов ГПН планируется достичь к 2020-му году.

В стратегическом плане основными целями модернизации российской нефтепереработки являются:

  • максимизация производства топлив, отвечающих стандарту Евро-5;
  • минимизация при этом выхода мазута.

И как должна развиваться углубленная переработка нефти тоже понятно – необходимо строительство и введение в эксплуатацию новые конверсионные процессы, с целью увеличения их годовой мощности почти вдвое: с 72-х до 136-ти миллионов тонн.

К примеру, на предприятиях мирового лидера в нефтеперерабатывающей отрасли – США, доля углубляющих переработку процессов составляет более 55-ти процентов, а в нашей стране – только 17-ть.

Изменение этой ситуации возможно, но с помощью каких технологий? Применение классического набора процессов является долгим и весьма затратным путем. На современном этапе крайне необходимы самые эффективные технологии, которые можно было бы применить на каждом российском НПЗ. Поиск таких решений должен проводиться с учетом специфических свойств тяжелых нефтяных остатков, таких, как повышенное содержание асфальтеновых и смолистых веществ и высокий уровень коксуемости.

Именно эти свойства остатков косвенно подталкивают специалистов к тому, что классические технологии тяжелых остатков (например, коксование, деасфальтизация и термический крекинг) ограниченны в своих возможностях по отбору светлых дистиллятов, а значит, углубление переработки нефти с их помощью будет недостаточным.

Доступные современные технологии

Основные углубляющие технологии в основаны на процессе замедленного коксования гудронов, которые обеспечивают максимальный выход дистиллятов (от 60-ти до 80-ти процентов от общего объема перерабатываемого сырья). При этом получаемые фракции относятся к средним и газойлевым дистиллятам. Средние фракции отправляются на гидроочистку для получения дизельных топлив, а тяжелые газойлевые – подвергаются каталитической переработке.

Если взять такие страны, как Канада и Венесуэла, то в них уже больше двух десятилетий замедленное коксование применяется в качестве базового процесса промысловой переработки нефтей тяжелых сортов. Однако, для сырья с высоким содержанием серы коксование неприменимо по причинам экологического характера. Кроме того, вырабатываемый в колоссальных объемах высокосернистый кокс в качестве топлива эффективного применения не имеет, а подвергать его обессериванию – попросту нерентабельно.

России кокс плохого качества, тем более – в таких количествах, не нужен тоже. Кроме того, замедленное коксование является весьма энергоемким процессом, вредным с точки зрения экологии и нерентабельным при малых мощностях переработки. В связи с этими факторами, нужно найти другие углубляющие технологии.

Гидрокрекинг и газификация – самая дорогостоящая глубокая нефтепереработка, поэтому в ближайшее время они на российских НПЗ применяться не будут.

Поэтому и уделять им внимание мы в этой статье не станем. России необходимы наименее капиталоемкие, но достаточно эффективные конверсионные технологии.

Поиск таких технологических решений ведется давно, и основной задачей такого поиска является получение квалифицированных остаточных продуктов.

Таковыми являются:

  • высокоплавкий пек;
  • «жидкий кокс»;
  • различные марки битумов.

Кроме того, выход остатков должен быть минимален, чтобы его переработка с помощью коксования, газификации и гидрокрекинга было рентабельна.

Также одним из критериев выбора метода вторичной углубленной переработки остатков нефтяного сырья является получение востребованного качественного продукта без потери эффективности самой технологии. В нашей стране таким продуктом, вне всякого сомнения, является дорожный битум высокого качества, поскольку состояние российских дорог является извечной проблемой.

Поэтому, если удастся подобрать и реализовать эффективный процесс получения средних дистиллятов и остатков в виде качественных битумов – это даст возможность одновременно решить и проблему углубления нефтепереработки, и обеспечить дорожно-строительную отрасль высококачественным остаточным продуктом.

Среди таких технологических процессов, которые можно внедрить на российских перерабатывающих предприятиях, внимания достойны следующие методики:

Это – широко известный технологический процесс, используемый в производстве битумов и гудронов. Стоит сразу сказать, что примерно 80-90 процентов получаемых вакуумной мазутной перегонкой гудронов по своим качественным характеристикам не соответствуют требованиям, предъявляемым к товарным битумам, и необходима их дальнейшая переработка с помощью окислительных процессов.

Как правило, гудроны перед окислением подвергают дополнительному висбрекингу, с целью понизить значение вязкости получаемого котельного топлива, а также для уменьшения концентрации в битумном сырье трудноокисляемых парафинов.

Если говорить о получаемых с помощью этого процесса вакуумных газойлях, то для них характерны:

  • высокая плотность (больше 900 килограмм на кубический метр);
  • высокой степень вязкости;
  • высокие значения температур застывания (нередко – больше млюс тридцати – сорока градусов Цельсия).

Такие высоковязкие и, в основном, высокопарафинистые газойли по сути представляют собой полупродукты, которые необходимо подвергнуть дальнейшей каталитической переработке. Основная масса получаемых гудронов – это котельное топливо марки М-100.

Исходя из вышесказанного, вакуумная переработка мазута уже не удовлетворяет современные требования к процессам, которые призваны углубить нефтепереработку, вследствие чего в качестве базового процесса, способного кардинально увеличить ГПН, её рассматривать не стоит.

Пропановая деасфальтизация, как правило, используется для получения высокоиндексных масел.

Деасфальтизация гудронов при помощи бензина применяется в основном для выработки сырья, которое затем идет на производство битумов, хотя выделяемая при этом асфальтовая фаза далеко не всегда имеет свойства, необходимые для получения товарного битума нужного качества. В связи с этим получаемый асфальтит нужно дополнительно подвергать или окислению, или разбавлению масляной фазой.

Легкой фазой этого технологического процесса является деасфальтизат. Его показатели еще тяжелее, чем у вакуумного газойля:

  • значение плотности – более 920-ти килограммов на кубометр;
  • температура застывания – больше сорока градусов Цельсия;
  • большее значение вязкости.

Все это требует дополнительной каталитической переработки. Кроме того, деасфальтизат, в силу своей высокой вязкости, очень трудно перекачивать.

Но самой большой проблемой деасфальтизации является высокая степень её энергоемкости, из-за чего размер капитальных вложений, по сравнению с вакуумной перегонкой, возрастает больше, чем в 2 раза.

Основная масса получаемого асфальтита требует дополнительной переработки с помощью конверсионных процессов: замедленного коксования или газификации.

В связи со всем сказанным выше, деасфальтизация также не отвечает основным требованиям к технологии, призванной одновременно углубить нефтепереработку и получить качественные дорожные битумы, поэтому в качестве эффективной технологии увеличения ГПН также не подходит.

Висбрекинг мазута

Этот техпроцесс переживает свое второе рождение и становится все более востребованным.

Если ранее висбрекинг применялся для понижения значения вязкости гудронов, то на современном этапе развития технологии он становится основным углубляющим нефтепереработку процессом. Практически все крупнейшие фирмы мира (Chioda, Shell, KBR, Foster Wuiller, UOP и так далее) за последнее время разработали сразу несколько оригинальных технологических решений.

Основными достоинствами этих современных термических процессов являются:

  • простота;
  • высокая степень надежности;
  • малая стоимость необходимого оборудования;
  • рост значения выхода средних дистиллятов, получаемых из тяжелых нефтяных остатков, на 40 – 60 процентов.

Кроме того, современный висбрекинг дает возможность получать качественные дорожные битумы и такое энергетическое топливо, как «жидкий кокс».

Например, такие крупные корпорации, как Chioda и Shell, отправляют тяжелые газойли (как вакуумные, так и атмосферные) в печи жесткого крекинга, что позволяет исключить выход фракций, температура кипения которых больше 370-ти градусов Цельсия. В получаемых продуктах остаются только бензиновые и дизельные дистилляты и очень тяжелый остаток, а вот тяжелых видов газойлей – нет совсем!

Технология «Висбрекинг – ТЕРМАКАТ»

Эта современная технология позволяет получить из перерабатываемого мазута от 88-ми до 93-х процентов дизельно-бензиновых дистиллятов.

При разработке технологии «Висбрекинг-ТЕРМАКАТ» удалось выйти на управление сразу двумя параллельно происходящими процессами: термодеструкцией и термополиконденсацией. При этом деструкция происходит в пролонгированном режиме, а термополиконденсация – в отложенном режиме.

Нефтепереработка – достаточно сложный процесс, для проведения которого требуется привлечение . Из добытого природного сырья получают множество продуктов – разные типы топлива, битумы, керосины, растворители, смазки, нефтяные масла и другие. Переработка нефти и начинается с транспортировки углеводородов на завод. Производственный процесс происходит в несколько этапов, каждый из которых очень важен с технологической точки зрения.

Процесс переработки

Процесс переработки нефти начинается с ее специализированной подготовки. Это вызвано наличием в природном сырье многочисленных примесей. В нефтеносной залежи содержится песок, соли, вода, грунт, газообразные частицы. Для добычи большого количества продуктов и сохранения месторождения энергоресурса используют воду. Это имеет свои преимущества, но значительно снижает качество полученного материала.

Наличие примесей в составе нефтепродуктов делает невозможной их транспортировку к заводу. Они провоцируют образование налета на теплообменных аппаратах и других емкостях, что значительно снижает их срок службы.

Поэтому добытые материалы подвергаются комплексной очистке – механической и тонкой. На данном этапе производственного процесса происходит разделение полученного сырья на нефть и . Это происходит при помощи специальных нефтяных сепараторов.

Для очистки сырья в основном его отстаивают в герметических резервуарах. Для активации процесса разделения материал подвергают действию холода или высокой температуры. Электрообессоливающие установки применяются для удаления, содержащихся в сырье, солей.

Как происходит процесс разделения нефти и воды?

После первичной очистки получают труднорастворимую эмульсию. Она представляет собой смесь, в которой частички одной жидкости равномерно распределяются во второй. На этом основании выделяют 2 типа эмульсий:

  • гидрофильная. Представляет собой смесь, где частицы нефти находятся в воде;
  • гидрофобная. Эмульсия в основном состоит из нефти, где находятся частички воды.

Процесс разрушения эмульсии может происходить механическим, электрическим или химическим способом. Первый метод подразумевает отстаивание жидкости. Это происходит при определенных условиях – подогрев до температуры 120-160 градусов, повышение давления до 8-15 атмосфер. Расслаивание смеси обычно происходит в течение 2-3 часов.

Чтобы процесс разделение эмульсии прошел удачно, необходимо не допускать испарение воды. Также выделение чистой нефти осуществляется при помощи мощных центрифуг. Эмульсия разделяется на фракции при достижении 3,5-50 тысяч оборотов в минуту.

Применение химического метода подразумевает применение специальных поверхностно-активных веществ, называемых деэмульгаторами. Они помогают растворить адсорбционную пленку, в результате чего нефть очищается от частиц воды. Химический метод зачастую применяется совместно с электрическим. Последний способ очистки подразумевает воздействие на эмульсию электрического тока. Он провоцирует объединение частиц воды. В результате он легче удаляются из смеси, что позволяет получить нефть высочайшего качества.

Первичная переработка

Добыча и переработка нефти происходит в несколько этапов. Особенностью производства различных продуктов из природного сырья считается то, что даже после качественной очистки полученный продукт не подлежит применению по прямому назначению.

Исходный материал характеризуется содержанием различных углеводородов, которые существенно отличаются молекулярным весом и температурой кипения. В его составе присутствуют вещества нафтеновой, ароматической, парафиновой природы. Также в исходном сырье содержатся сернистые, азотистые и кислородные соединения органического типа, которые также должны быть удалены.

Все существующие способы переработки нефти направлены на ее разделение на группы. В процессе производства получают широкий спектр продукции с разными характеристиками.

Первичная переработка природного сырья осуществляется на основании разных температур кипения ее составляющих частей. Для осуществления данного процесса привлекаются специализированные установки, которые позволяют получить различные нефтепродукты – от мазута до гудрона.

Если перерабатывать природное сырье таким способом, не удастся получить материал, готовый к дальнейшему использованию. Первичная перегонка направлена лишь на определение физико-химических свойств нефти. После ее проведения можно определить необходимость осуществления дальнейшей переработки. Также устанавливают тип оборудования, которое необходимо привлечь для выполнения нужных процессов.

Первичная переработка нефти

Способы перегонки нефти

Выделяют следующие методы переработки нефти (перегонки):

  • однократное испарение;
  • многократное испарение;
  • перегонка с постепенным испарением.

Метод однократного испарения подразумевает переработку нефти при воздействии высокой температуры с заданным значением. В результате образуются пары, которые поступают в специальный аппарат. Его называют испарителем. В данном устройстве цилиндрической формы пары отделяются от жидкостной фракции.

При многократном испарении сырье подвергают обработке, при которой несколько раз осуществляют повышение температуры по заданному алгоритму. Последний способ перегонки является более сложным. Переработка нефти с постепенным испарением подразумевает плавное изменение основных рабочих параметров.

Оборудование для перегонки

Промышленная переработка нефти осуществляется при помощи нескольких аппаратов.

Трубчатые печи. В свою очередь их также разделяют на несколько видов. Это атмосферные, вакуумные, атмосферно-вакуумные печи. При помощи оборудования первого типа осуществляется неглубокая переработка нефтепродуктов, что позволяет получить мазут, бензиновые, керосиновые и дизельные фракции. В вакуумных печах в результате более эффективной работы сырье разделяют на:

  • гудрон;
  • масляные частицы;
  • газойлевые частицы.

Полученные продукты полностью подходят для производства кокса, битума, смазочных материалов.

Ректификационные колонны. Процесс переработки нефтяного сырья при помощи данного оборудования подразумевает ее нагревание в змеевике до температуры 320 градусов. После этого смесь поступает в промежуточные уровни ректификационной колонны. В среднем она имеет 30-60 желобов, каждый из которых размещен с определенным интервалом и оснащен ванной с жидкостью. Благодаря этому пары стекают вниз в виде капель, поскольку образуется конденсат.

Существует также переработка с помощью теплообменных аппаратов.

Вторичная переработка

После определения свойств нефти, в зависимости от потребности в определенном конечном продукте, выбирается тип вторичной перегонки. В основном она заключается в термически-каталитическом воздействии на исходное сырье. Глубокая переработка нефти может происходить при помощи нескольких методов.

Топливный. Применение данного способа вторичной перегонки позволяет получить ряд высококачественных продуктов – автомобильных бензинов, дизельных, реактивных, котельных топлив. Для осуществления переработки не нужно привлекать много оборудования. В результате применения данного метода из тяжелых фракций сырья и осадка получают готовый продукт. К топливному методу перегонки относят:

  • крекинг;
  • риформинг;
  • гидроочистку;
  • гидрокрекинг.

Топливно-масляный. В результате применения данного метода перегонки получают не только различные топлива, но и асфальт, смазочные масла. Это осуществляется при помощи метода экстракции, деасфальтизации.

Нефтехимический. В результате применения данного метода с привлечением высокотехнологичного оборудования получают большое количество продукции. Это не только топливо, масла, а и пластмассы, каучук, удобрения, ацетон, спирт и многое другое.

Как из нефти и газа получаются окружающие нас предметы - доступно и понятно

Данный метод считается более всего распространенным. С его помощью осуществляется переработка сернистой или высокосернистой нефти. Гидроочистка позволяет существенно повысить качество получаемых видов топлива. Из них удаляют различные добавки – сернистые, азотистые, кислородные соединения. Обработка материала происходит на специальных катализаторах в водородной среде. При этом температура в оборудовании достигает показателей 300-400 градусов, а давление – 2-4 Мпа.

В результате перегонки, содержащиеся в сырье, органические соединения разлагаются при взаимодействии с водородом, циркулирующем внутри аппарата. В итоге образуется аммиак, сероводород, которые удаляются из катализатора. Гидроочистка позволяет переработать 95-99% сырья.

Каталитический крекинг

Перегонка осуществляется при помощи цеолитсодержащих катализаторов при температуре 550 градусов. Крекинг считается очень эффективным методом переработки подготовленного сырья. С его помощью из мазутных фракций можно получить высокооктановый автомобильный бензин. Выход чистого продукта в данном случае составляет 40-60%. Также получают жидкий газ (10-15% от исходного объема).

Каталитический риформинг

Риформинг осуществляется при помощи алюмоплатинового катализатора при температуре 500 градусов и давлении 1-4 Мпа. При этом внутри оборудования присутствует водородная среда. Данный метод применяется для превращения нафтеновых и парафиновых углеводородов в ароматические. Это позволяет существенно повысить октановое число производимой продукции. При использовании каталитического риформинга выход чистого материала составляет 73-90% от залученного сырья.

Гидрокрекинг

Позволяет получить жидкостное топливо при воздействии высокого давления (280 атмосфер) и температуры (450 градусов). Также данный процесс происходит с применением сильных катализаторов – оксидов молибдена.

Если гидрокрекинг сочетать с другими методами переработки природного сырья, выход чистых продуктов в виде бензина и реактивного топлива составляет 75-80%. При применении качественных катализаторов их регенерация может не проводиться 2-3 года.

Экстракция и деасфальтизация

Экстракция подразумевает разделение подготовленного сырья на нужные фракции при помощи растворителей. В дальнейшем производится депарафинизация. Она позволяет существенно снизить температуру застывания масла. Также для получения продукции высокого качества ее подвергают гидроочистке. В результате проведения экстракции можно получить дистдизельное топливо. Также с помощью данной методики производят извлечение ароматических углеводородов из подготовленного сырья.

Деасфальтизация необходима для того, чтобы из конечных продуктов дестиляции нефтяного сырья получить смолисто-асфальтеновые соединения. Образовавшиеся вещества активно применяются для производства битума, в качестве катализаторов для осуществления других методов переработки.

Другие методики переработки

Переработка природного сырья после первичной перегонки может осуществляться и другими способами.

Алкилирование. После переработки подготовленных материалов получают высококачественные компоненты для бензина. Метод основан на химическом взаимодействии олефиновых и парафиновых углеводородов, в результате чего получают высококипящий парафиновый углеводород.

Изомеризация . Применение данного метода позволяет получить из низкооктановых парафиновых углеводородов вещество с более высоким октановым числом.

Полимеризация . Позволяет осуществить превращение бутиленов и пропилена в олигомерные соединения. В результате получают материалы для производства бензинов и для проведения различных нефтехимических процессов.

Коксование . Применяется для производства нефтяного кокса из тяжелых фракций, получаемых после перегонки нефти.

Нефтеперерабатывающая отрасль относится к перспективным и развивающимся. Производственный процесс все время усовершенствуется за счет введения нового оборудования и методик.

Видео: Переработка нефти



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: