Масса. Полные уроки — Гипермаркет знаний. Взаимодействие тел. Сила. Второй закон Ньютона Что изменяется при взаимодействии тел

Взаимодействие тел. 2. Виды взаимодейст­вия. 3. Сила. 4. Силы в механике.

Простые наблюдения и опыты, например с те­лежками (рис. 3), приводят к следующим качествен­ным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной;

б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или, чем ближе два одно­именных заряда, тем сильнее они будут притяги­ваться. В простейших случаях взаимодействия коли­чественной характеристикой является сила. Сила - причина ускорения тел по отношению к инерциальной системе отсчета или их деформации. Сила - это

векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимо­действии. Сила характеризуется: а) модулем; б) точ­кой приложения; в) направлением.

Единица измерения силы - ньютон. 1 нью­тон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с в направлении действия этой силы, если другие тела на него не действуют. Равнодей­ствующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу.

R=F1+F2+...+Fn,.

Качественно по своим свойствам взаимодей­ствия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием заря­дов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинами­ке: сила Ампера - F = IlBsina , сила Лоренца - F = qv Bsin a ., кулоновская сила - F = q 1 q 2 / r 2 ; и гравитационные силы: закон всемирного тяготе­ния-F = Gm 1 m 2 / r 2 . Такие механические силы, как

сила упругости и сила трения, возникают в резуль­тате электромагнитного взаимодействия. Для их рас­чета необходимо использовать формулы: .Fynp = -kx (закон Гука), Fтр = MN - сила трения.

На основании опытных данных были сформу­лированы законы Ньютона. Второй закон Ньютона. Ускорение, с которым движется тело, прямо про­порционально равнодействующей всех сил, дей­ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую­щая сила: а = F / m .

Для решения задач закон часто записывают в виде: F = та.

Третий закон является обобщением и звучит так: Тела действуют друг на друга с силами рвными по модулю и противоположными по направлению.

Первый закон: существуют такие системы отсчета, относительно которых поступательно движущиеся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действие других тел компенсирутся).

Вопрос 4

Инерциальные системы отсчета

Инерциальные системы отсчета.Первый закон ньютона

Вопрос 3

Первый закон Ньютона – (закон инерции) существуют такие системы отсчета относительно которых поступательно движущее тело сохраняя скорость неизменна или покоится или движется прямолинейно и равномерно, если на него не действует внешние тела или их действие равного нулю тоесть скомпенсирована.

Система отсчёта, в которой справедлив закон инерции: материальная точка, когда на неё не действуют никакие силы (или действуют силы взаимно уравновешенные), находится в состоянии покоя или равномерного прямолинейного движения. Всякая система отсчёта, движущаяся по отношению к И. с. о. поступательно, равномерно и прямолинейно, есть также И. с. о. Следовательно, теоретически может существовать сколько угодно равноправных И. с. о., обладающих тем важным свойством, что во всех таких системах законы физики одинаковы (так называемый принцип относительности).

Взаимодействие тел. Причиной изменения скорости движения тела всегда является его взаимодействие с другими телами.

После выключения двигателя автомобиль постепенно замедляет свое движение и останавливается. Основная причина изменения скорости движения автомобиля - взаимодействие его колес с дорожным покрытием.

Неподвижно лежащий на земле мяч никогда сам собой не приходит в движение. Скорость мяча изменяется только в результате действия на него других тел, например ноги футболиста.

Постоянство отношения модулей ускорений. При взаимодействии двух тел всегда изменяются скорости и первого, и второго тела, т. е. оба тела приобретают ускорения. Модули ускорений двух взаимодействующих тел могут быть различными, но их отношение оказывается постоянным при любых взаимодействиях:

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие её витков. Или чем ближе два одноимённых заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия к оличественной характеристикой является сила .

Масса тела. Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью.

Количественной мерой инертности тела является масса тела. Чем большей массой обладает тело, тем меньшее ускорение оно получает при взаимодействии.

Поэтому в физике принято, чтоотношение масс взаимодействующих тел равно обратному отношению модулей ускорений:

За единицу массы в Международной системе принята масса специального эталона, изготовленного из сплава платины и иридия. Масса этого эталона называется килограммом (кг).



Массу любого тела можно найти, осуществив взаимодействие этого тела с эталоном массой.

По определению понятия массы отношение масс взаимодействующих тел равно обратному отношению модулей их ускорений (5.2). Измерив модули ускорений тела и эталона, можно найти отношение массы тела к массе эталона:

Отношение массы тела к массе эталона равно отношению модуля ускорения эталона к модулю ускорения тела при их взаимодействии.

Масса тела может быть выражена через массу эталона:

Масса тела - это физическая величина, характеризующая его инертность.

Сила – причина ускорения тел по отношению к инерциальной системе отсчёта или их деформации. Сила – это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.

второй закон ньютона – сила действующая на тело равно произведению массы тела на сообщенное этой силой ускорения.

Определение 1

Взаимодействие в физике - это воздействие частиц или тел друг на друга, приводящее к изменению состояния их движения.

Изменение состояния тел в пространстве

Несмотря на разнообразие воздействий тел друг на друга, в природе имеется лишь четыре типа фундаментальных воздействия:

  • гравитационные;
  • слабые взаимодействия;
  • сильные взаимодействия;
  • электромагнитные взаимодействия.

Любые изменения в природе происходят в результате взаимодействия между телами. Чтобы изменить положение вагона на рельсах, железнодорожники направляют к нему локомотив, который смещает вагон с места и приводит его в состояние движения. Парусник может длительное время стоять у берега, пока не подует попутный ветер, который подействует на его паруса. Колеса игрушечной машины могут вращаться с любой скоростью, но игрушка не изменит своего положения, если под нее не подложить дощечку или линейку. Форму или размер пружины можно изменить, лишь подвесив к ней грузило или потянув рукой за один из ее концов.

Все тела в природе действуют один на другого или непосредственно через физические поля. Если тепловоз действует на вагон и меняет его скорость, то скорость тепловоза при этом также меняется в результате обратного действия вагона. Солнце действует на Землю и тела, удерживая ее на орбите. Но и Земля притягивает Солнце, и в свою очередь меняет его траекторию. Итак, во всех случаях можно говорить лишь о взаимном действие тел - взаимодействие.

При взаимодействии меняются скорости тел или их частей. С другой стороны, взаимодействуя с разными телами, оно по-разному будет изменять свою скорость. Так, парусник может приобрести скорости из-за действия на него ветра. Но такого же результата можно достигнуть, включив двигатель, размещенный на паруснике. Его может сдвинуть с места и катер, действующий на парусник через трос. Чтобы не называть каждый раз все взаимодействующие тела, или тела, которые действуют на данное него, все эти действия объединяют одним понятие силы.

Что такое сила?

Сила, воспринимая его как физическое понятие может быть большей или меньшей, а также учитывая вызванные ею изменения в состоянии тела или его частей.

Определение 2

Сила – это физическая величина, которая характеризуется как действие одного тела на другое.

Действие тепловоза на вагон будет значительно интенсивней, чем действие нескольких грузчиков. Под действием тепловоза вагон быстрее сдвинется с места и начнет двигаться с большей скоростью, чем тогда, когда вагон будут толкать грузчики, которые чуть сместят вагон или вовсе не сдвинут с места.

Для того чтобы производить математические расчеты, силу обозначают латинской буквой $F$.

Как и все остальные физические величины, сила имеет определенные единицы. В наши дни наука пользуется единицей, которая называется ньютоном ($H$). Она получила такое название в честь ученого Исаака Ньютона, который внес значительный вклад в развитие физической и математической науки.

И. Ньютон - выдающийся английский ученый, основатель классической физики. Его научные работы касаются механики, оптики, астрономии и математики. Он сформулировал законы классической механики, открыл дисперсии света, разработал дифференциальный и интегральное исчисления и т.д.

Измерение силы

Для измерения силы применяют специальные приборы, которые называются динамометрами. Стоит отметить, что указать числовое значение силы не всегда достаточно для определения данных ее действия. Нужно знать точку ее приложения и направление действия.

Если высокий брусок, что стоит на столе, толкать в нижней части, то он будет скользить на поверхности стола. Если же к нему прилагать силу в верхней его части, то он просто опрокинется.

Понятно, что направление падения бруска зависит от того, в каком направлении будем его толкать. Итак, сила это также направление. От направления силы зависит изменение скорости тела, на которые эта сила действует.

Пользуясь графическом методом, можно проводить различные математические операции с силами. Так, если в одной точке на теле прилагаемые силы $2H$ и $CH$ действуют в одном направлении, то их действие можно заменить одной силой, которая работает в том же направлении, а ее значение равняется сумме значений каждой из сил. Вектор этой силы имеет длину, которая равняется сумме длин обоих векторов.

Равнодействующая сила - это сила, действие которой одинаково действует на нескольких сил, приложенных к телу в определенной точке.

Возможен иной случай, когда силы прилагаемые в одной точке тела, действуют в противоположных напрямую. В таком случае их можно заменить одной силой, движущейся в направлении большей силы, а ее значение равняется разности значений каждой силы. Длина вектора этой силы равняется разницей длины векторов прилагаемых сил.

Инерция - это явление сохранения телами постоянной скорости, когда на них не действуют другие тела. Состоит данное явление в том, что для изменения скорости тела требуется определенное время. Инерцию нельзя измерить, ее можно только наблюдать, или воспроизвести.

Заметим, что в земных условиях нельзя создать обстоятельства, при которых на тело не действуют силы, ведь всегда существует земное притяжение, сила сопротивления двигательные и тому подобное. Явление инерции открыл известный ученый Галилео Галилей.Стоит отметить, что для прямого измерения массы применяют различные весы. Среди них самые распространенные и самые простые - рычажные. На этих весах сравнивают взаимодействие с Землей тела и эталонных гирь, возложенных на чашу весов. На практике применяют и другие весы, которые приспособлены к различным условиям работы и имеют разные конструкции. В данном случае, точность измерения массы имеет большое значение.

В чем причина движения тел? Ответ на этот вопрос дает раздел механики, называемый динамикой.
Как можно изменить скорость тела, заставить его двигаться быстрее или медленнее? Только при взаимодействии с другими телами. При взаимодействии тела могут поменять не только скорость, но и направление движения и деформироваться, изменив при этом форму и объем. В динамике для количественной меры взаимодействия тел друг на друга введена величина названная силой. А изменение скорости за время действия силы характеризуется ускорением. Сила есть причина ускорения.

Понятие силы

Сила – это векторная физическая величина, характеризующая действие одного тела на другое, проявляющееся в деформации тела или изменении его движения относительно других тел.

Сила обозначается буквой F. За единицу измерения в системе СИ принят Ньютон (Н), который равен силе, под действием которой тело массой в один килограмм получает ускорение в один метр на секунду в квадрате. Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения.
Для измерения сил служит специальный прибор называемый динамометром.

Сколько же сил в природе?

Силы можно разделить на два типа:

  1. Действуют при непосредственном взаимодействии, контактные (упругие силы, силы трения);
  2. Действуют на расстоянии, дальнодействующие (сила притяжения, сила тяжести, магнитные, электрические).

При непосредственном взаимодействии, например выстрел из игрушечного пистолета, тела испытывают изменение формы и объема по сравнению с первоначальным состоянием, то есть деформацию сжатия, растяжения, изгиба. Сжата пружина пистолета перед выстрелом, деформируется пулька при ударе о пружину. В данном случае силы действуют в момент деформации и исчезают вместе с ней. Силы такие называют упругими. Силы трения возникают при непосредственном взаимодействии тел, когда они катятся, скользят друг относительно друга.

Примером сил, действующих на расстоянии, может служить камень, брошенный вверх, вследствие притяжения он упадет на Землю, приливы и отливы, возникающие на океанских побережьях. С увеличением расстояния такие силы убывают.
В зависимости от физической природы взаимодействия силы можно разделить на четыре группы:

  • слабые;
  • сильные;
  • гравитационные;
  • электромагнитные.

Со всеми типами этих сил мы встречаемся в природе.
Гравитационные или силы всемирного тяготения являются самыми универсальными, все, что имеет массу способно испытывать эти взаимодействия. Они вездесущи и всепроникающие, но очень слабы, поэтому мы их не замечаем, особенно на огромных расстояниях. Гравитационные силы дальнодействующие, связывают все тела во Вселенной.

Электромагнитные взаимодействия возникают между заряженными телами или частицами, посредством действия электромагнитного поля. Электромагнитные силы позволяют нам видеть предметы, так как свет это одна из форм электромагнитных взаимодействий.

Слабые и сильные взаимодействия стали известны благодаря изучению строения атома и атомного ядра. Сильные взаимодействия возникают между частицами в ядрах. Слабые характеризуют взаимные превращения друг в друга элементарных частиц, действуют при реакциях термоядерного синтеза и радиоактивных распадах ядер.

Если на тело действует несколько сил?

При действии нескольких сил на тело одновременно заменяют это действие одной силой, равной их геометрической сумме. Полученную в этом случае силу называют равнодействующей. Она сообщает телу то же ускорение, что и одновременно действующие на тело силы. Это так называемый принцип суперпозиции сил.

Как утверждает классическая физика, в известном нам мире постоянно происходит взаимодействие тел, частиц между собой. Даже если мы наблюдаем объекты, находящиеся в покое, это не означает, что ничего не происходит. Именно благодаря удерживающим силам между молекулами, атомами и элементарными частицами вы можете видеть предмет в виде доступной нам и понятной материи физического мира.

Взаимодействие тел в природе и жизни

Как мы знаем из собственного опыта, когда падаешь на что-то, бьёшься, с чем-то сталкиваешься, это оказывается неприятно и больно. Толкаете машину или в вас врезается зазевавшийся прохожий. Тем или иным образом вы вступаете во взаимодействие с окружающим миром. В физике данное явление получило определение "взаимодействие тел". Рассмотрим подробно, на какие виды подразделяет их современная классическая наука.

Виды взаимодействия тел

В природе существует четыре вида взаимодействия тел. Первое, всем известное, это гравитационное взаимодействие тел. Масса тел является определяющей в том, насколько сильна гравитация.

Она должна быть достаточно огромных масштабов, для того чтобы мы её смогли заметить. В противном случае наблюдение и регистрация данного вида взаимодействия достаточно затруднительны. Космос является тем местом, где силы гравитации вполне возможно наблюдать на примере космических тел с огромной массой.

Взаимозависимость между гравитацией и массой тела

Непосредственно энергия взаимодействия тел прямо пропорциональна массе и обратно пропорционально квадрату расстояния между ними. Это согласно определению современной науки.

Притяжение вас и всех предметов на нашей планете обусловлено тем, что существует сила взаимодействия двух тел, обладающих массой. Поэтому подкинутый вверх предмет притягивается назад к поверхности Земли. Планета достаточно массивна, поэтому сила действия ощутима. Гравитация вызывает взаимодействие тел. Масса тел даёт возможность её проявления и регистрации.

Природа гравитации не ясна

Природа этого явления на сегодня вызывает множество споров и предположений, кроме фактического наблюдения и видимой взаимосвязи между массой и притяжением, не выявлена сила, вызывающая гравитацию. Хотя на сегодня проходит ряд экспериментов, связанных с обнаружением гравитационных волн в космическом пространстве. Более точное предположение в своё время высказал Альберт Эйнштейн.

Он сформулировал гипотезу, что гравитационная сила является порождением искривления ткани пространства-времени расположенными в нем телами.

Впоследствии, при вытеснении пространства материей, оно стремится восстановить свой объем. Эйнштейн предположил, что существует обратно пропорциональная зависимость между силой и плотностью материи.

Примером наглядной демонстрации этой зависимости могут служить чёрные дыры, имеющие немыслимую плотность материи и гравитацию, способную притянуть не только космические тела, но и свет.

Именно благодаря влиянию природы гравитации сила взаимодействия тел обеспечивает существование планет, звёзд и прочих космических объектов. Кроме этого, вращение одних объектов вокруг других присутствует по этой же причине.

Электромагнитные силы и прогресс

Электромагнитное взаимодействие тел несколько напоминает гравитационное, но намного сильнее. Взаимодействие положительно и отрицательно заряженных частиц является причиной его существования. Собственно, это и вызывает возникновение электромагнитного поля.

Оно генерируется телом (телами) либо поглощается или вызывает взаимодействие заряженных тел. Этот процесс играет очень важную роль в биологической деятельности живой клетки и перераспределении веществ в ней.

Помимо этого, наглядным примером электромагнитного проявления сил является обычный электрический ток, магнитное поле планеты. Человечество достаточно обширно применяет эту силу для передачи данных. Это мобильная связь, телевидение, GPRS и многое другое.

В механике это проявляется в виде упругости, трения. Наглядный эксперимент, демонстрирующий наличие данной силы, всем известен из школьного курса физики. Это натирание шёлковой тканью эбонитовой полочки. Возникшие на поверхности частицы с отрицательным зарядом обеспечивают притяжение лёгких предметов. Повседневный пример - это расчёска и волосы. После нескольких движений пластмассой по волосам возникает притяжение между ними.

Стоит упомянуть о компасе и магнитном поле Земли. Стрелка намагничена и имеет концы с положительно и отрицательно заряженными частицами, как следствие, реагирует на магнитное поле планеты. Поворачивается своим "положительным" концом по направлению отрицательных частиц и наоборот.

Малы размеры, но огромна сила

Что касается сильного взаимодействия, то его специфика несколько напоминает электромагнитный вид сил. Причиной тому служит наличие положительных и отрицательно заряженных элементов. Подобно электромагнитной силе, наличие разноимённых зарядов приводит к взаимодействию тел. Масса тел и расстояние между ними очень малы. Это область субатомного мира, где подобные объекты именуются частицами.

Эти силы действуют в области атомного ядра и обеспечивают связь между протонами, электронами, барионами и прочими элементарными частицами. На фоне их размеров, по сравнению с большими объектами, взаимодействие заряженных тел значительно сильнее, чем при электромагнитном типе сил.

Слабые силы и радиоактивность

Слабый вид взаимодействия связан непосредственно с распадом неустойчивых частиц и сопровождается высвобождением разного вида излучения в виде альфа-, бета- и гамма-частиц. Как правило, вещества и материалы с подобными характеристиками называют радиоактивными.

Этот вид сил называется слабым вследствие того, что слабее электромагнитного и сильного типа взаимодействия. Однако он мощнее, чем гравитационное взаимодействие. Дистанции в данном процессе между частицами весьма малы, порядка 2·10 −18 метров.

Факт обнаружения силы и определения её в ряд фундаментальных произошёл достаточно недавно.

С открытием в 1896 году Анри Беккерель явления радиоактивности веществ, в частности солей урана, было положено начало изучения этого вида взаимодействия сил.

Четыре силы создали Вселенную

Вся Вселенная существует благодаря четырём фундаментальным силам, открытым современной наукой. Они породили космос, галактики, планеты, звезды и различные процессы в том виде, в каком мы это наблюдаем. На данном этапе считается полным определение фундаментальных сил в природе, но, возможно, со временем мы узнаем о наличии новых сил, и знание природы мироздания станет на шаг ближе к нам.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: