Нервная ткань: строение и функции. Особенности нервных тканей. Виды нервных тканей. Особенности строение и классификация нервных клеток

Мы часто нервничаем, постоянно фильтруем поступающую информацию, реагируем на окружающий мир и пытаемся прислушаться к собственному телу, и во всем этом нам помогают удивительные клетки. Они являются результатом длительной эволюции, итогом работы природы на протяжении всего развития организмов на Земле.

Мы не можем сказать, что наша система восприятия, анализа и ответа идеальна. Но мы очень далеко ушли от животных. Понять, как работает такая сложная система, очень важно не только специалистам - биологам и медикам. Этим может заинтересоваться и человек другой профессии.

Информация в этой статье доступна каждому и может принести пользу не только как знание, ведь понимание своего организма - ключ к пониманию самого себя.

За что она отвечает

Нервная ткань человека отличается уникальным структурным и функциональным разнообразием нейронов и спецификой их взаимодействий. Ведь наш мозг - очень сложно устроенная система. А чтобы управлять нашим поведением, эмоциями и мышлением, нужна очень сложная сеть.

Нервная ткань, строение и функции которой определены совокупностью нейронов - клеток с отростками - и обуславливают нормальную жизнедеятельность организма, во-первых, обеспечивает согласованную деятельность всех систем органов. Во-вторых, она связывает организм с внешней средой и обеспечивает приспособительные реакции на ее изменение. В-третьих, контролирует обмен веществ при изменяющихся условиях. Все виды нервных тканей являются материальной составляющей психики: сигнальные системы - речь и мышление, особенностей поведения в социуме. Некоторые ученые высказывали гипотезу, что человек сильно развил свой разум, за что ему пришлось "пожертвовать" многими животными способностями. Например, мы не обладаем острым зрением и слухом, какими могут похвастаться животные.

Нервная ткань, строение и функции которой имеют в основе электрическую и химическую передачу, имеет четко локализованные эффекты. В отличие от гуморальной, эта система действует моментально.

Множество маленьких передатчиков

Клетки нервной ткани - нейроны - являются структурно-функциональными единицами нервной системы. Клетку нейрона характеризует непростое строение и повышенная функциональная специализация. Структура нейрона состоит из эукариотического тела (сомы), диаметр которой 3-100 мкм и отростков. Сома нейрона содержит ядро и ядрышко с аппаратом биосинтеза, который образует ферменты и вещества, присущие специализированным функциям нейронов. Это тельца Ниссля - плотно примыкающие друг к другу сплющенные цистерны шероховатой эндоплазматической сети, а также развитый аппарат Гольджи.

Функции нервной клетки могут непрерывно осуществляться, благодаря обилию в тельце «энергостанций», вырабатывающих АТФ, - хондрасом. Цитоскелет, представленный нейрофиламентами и микротрубочками, играет опорную роль. В процессе утраты мембранных структур синтезируется пигмент липофусцин, количество которого нарастает с увеличением возраста нейрона. В стволовых нейронах образуется пигмент мелатонин. Ядрышко состоит из белка и РНК, ядро из ДНК. Онтогенез ядрышка и базофилов определяют первичные поведенческие реакции людей, так как они зависят от активности и частоты контактов. Нервная ткань подразумевает основную структурную единицу - нейрон, хотя существуют еще другие виды вспомогательных тканей.

Особенности строения нервных клеток

Двухмембранное ядро нейронов имеет поры, через которые проникают и выводятся отработанные вещества. Благодаря генетическому аппарату происходит дифференцировка, обуславливающая конфигурацию и частоту взаимодействий. Еще одна функция ядра заключается в регуляции синтеза белка. Созревшие нервные клетки не могут делиться митозом, и генетически обусловленные активные продукты синтеза каждого нейрона должны обеспечить функционирование и гомеостаз в течение всего жизненного цикла. Замена поврежденных и утраченных частей может происходить лишь внутриклеточно. Но наблюдаются и исключения. В эпителии некоторые ганглии животных способны к делению.

Клетки нервной ткани визуально отличаются разнообразием размеров и форм. Нейронам присущи неправильные очертания из-за отростков, зачастую многочисленных и разросшихся. Это - живые проводники электрических сигналов, посредством которых составлены рефлекторные дуги. Нервная ткань, строение и функции которой зависят от высокодифференцированных клеток, роль которых заключается в восприятии сенсорной информации, кодировании ее посредством электрических импульсов и передаче остальным дифференцированным клеткам, способна обеспечить ответную реакцию. Она практически мгновенна. Но некоторые вещества, в том числе и алкоголь, сильно замедляют ее.

Про аксоны

Все виды нервной ткани функционируют с непосредственным участием отростков-дендритов и аксонов. Аксон переводится с греческого как «ось». Это удлиненный отросток, проводящий возбуждение от тела к отросткам других нейронов. Кончики аксона сильно разветвлены, каждый способен взаимодействовать с 5000 нейронов и образовывать до 10 тысяч контактов.

Локус сомы, от которого ответвляется аксон, называется аксонным холмиком. Его с аксоном объединяет то, что в них отсутствуют шероховатая эндоплазматическая сеть, РНК и ферментативный комплекс.

Немного о дендритах

Это название клеток обозначает «дерево». Словно ветви, от сомы отрастают коротенькие и сильно ветвящиеся отростки. Они принимают сигналы и служат локусами, где возникают синапсы. Дендриты с помощью боковых отростков - шипиков - увеличивают площадь поверхности и, соответственно, контакты. Дендриты без покровов, аксоны же окружены миелиновыми оболочками. Миелин имеет липидную природу, и его действие сходно с изоляционными свойствами пластикового или резинового покрытия электрических проводов. Точка генерации возбуждения - холмик аксона - возникает в месте отхождения аксона от сомы в триггерной зоне.

Белое вещество восходящих и нисходящих путей в спинном и головном мозге образуют аксоны, посредством которых проводятся нервные импульсы, осуществляя проводниковую функцию - передачу нервного импульса. Электрические сигналы передаются различным отделам головного и спинного мозга, осуществляя связь между ними. Исполнительные органы при этом могут соединяться с рецепторами. Серым веществом образована кора головного мозга. В позвоночном канале располагаются центры врожденных рефлексов (чихания, кашля) и вегетативные центры рефлекторной деятельности желудка, мочеиспускания, дефекации. Вставочные нейроны, тела и дендриты двигательных выполняют рефлекторную функцию, осуществляя двигательные реакции.

Особенности нервой ткани обусловлены числом отростков. Нейроны бывают униполярными, псевдоуниполярными, биполярными. Нервная ткань человека не содержит униполярных с одним В мультиполярных - обилие дендритных стволов. Такая разветвленность нисколько не сказывается на скорости проведения сигнала.

Разные клетки - различные задачи

Функции нервной клетки осуществляют разные группы нейронов. По специализации в рефлекторной дуге различают афферентные или чувствительные нейроны, проводящие импульсы от органов и кожных покровов в головной мозг.

Вставочные нейроны, или ассоциативные, - это группа переключающих или связывающих нейронов, которые анализируют и принимают решение, осуществляя функции нервной клетки.

Эфферентные нейроны, или чувствительные, проводят информацию об ощущениях - импульсы от кожных покровов и внутренних органов в мозг.

Эфферентные нейроны, эффекторные, или двигательные, проводят импульсы - «команды» от головного и спинного мозга ко всем рабочим органам.

Особенности нервных тканей в том, что нейроны выполняют сложную и ювелирную работу в организме, поэтому будничная примитивная работа - обеспечение питанием, удаление продуктов распада, защитная функция достается вспомогательным клеткам нейроглии или опорными шванновским.

Процесс образования нервных клеток

В клетках нервной трубки и ганглиозной пластинки происходит дифференциация, определяющая особенности нервных тканей в двух направлениях: крупные становятся нейробластами и нейроцитами. Мелкие клетки (спонгиобласты) не увеличиваются и становятся глиоцитами. Нервная ткань, виды тканей которой составлены нейронами, состоит из основных и вспомогательных. Вспомогательные клетки ("глиоциты") имеют особую структуру и функции.

Центральная представлена следующими типами глиоцитов: эпендимоцитами, астроцитами, олигодендроцитами; периферическая — глиоцитами ганглиев, концевыми глиоцитами и нейролеммоцитами - шванновскими клетками. Эпендимоциты выстилают полости желудочков мозга и спинномозговой канал и секретируют цереброспинальную жидкость. Виды нервных тканей - астроциты звездчатой формы образуют ткани серого и белого вещества. Свойства нервной ткани - астроцитов и их глиозная мембрана способствует созданию гематоэнцефалической преграды: между жидкой соединительной и нервной тканями проходит структурно-функциональная граница.

Эволюция ткани

Основным свойством живого организма является раздражительность или чувствительность. Тип нервной ткани обоснован филогенетическим положением животного и отличается широкой вариативностью, усложняясь в процессе эволюции. Всем организмам требуются определенные параметры внутренней координации и регуляции, надлежащее взаимодействие между стимулом для гомеостаза и физиологического состояния. Нервная ткань животных, особенно многоклеточных, строение и функции которой претерпели ароморфозы, способствует выживанию в борьбе за существование. У примитивных гидроидных представлена звездчатыми, нервными клетками, разбросанными по всему организму и связанными тончайшими отростками, переплетающимися между собой. Такой тип нервной ткани называется диффузной.

Нервная система плоских и круглых червей стволовая, лестничного типа (ортогон) состоит из парных мозговых ганглиев - скоплений нервных клеток и отходящих от них продольных стволов (коннективы), соединенных между собой поперечными тяжами-комиссурами. У кольчецов от окологлоточного ганглия, соединенного тяжами, отходит брюшная нервная цепочка, в каждом сегменте которой - два сближенных нервных узла, соединенных нервными волокнами. У некоторых мягкотелых концентрируются нервные ганглии с образованием головного мозга. Инстинкты и ориентация в пространстве у членистоногих определяются цефализацией ганглиев парного головного мозга, окологлоточным нервным кольцом и брюшной нервной цепочкой.

У хордовых нервная ткань, виды тканей которой сильно выражены, сложно устроена, но такое строение эволюционно обосновано. Разные слои возникают и располагаются на спинной стороне тела в виде нервной трубки, полость - невроцель. У позвоночных дифференцируется в головной и спинной мозг. При формировании головного мозга на переднем конце трубки образуются вздутия. Если у низших многоклеточных нервная система играет чисто связующую роль, то у высокоорганизованных животных осуществляется хранение информации, ее извлечение при необходимости, а также обеспечивает переработку и интеграцию.

У млекопитающих эти мозговые вздутия дают начало основным отделам головного мозга. А вся остальная трубка образует спинной мозг. Нервная ткань, строение и функции которой у высших млекопитающих свои, претерпела значительные изменения. Это прогрессивное развитие коры головного мозга и всех отделов обуславливающих сложную адаптацию к условиям внешней среды, и регуляция гомеостаза.

Центр и периферия

Отделы нервной системы классифицируют по функциональному и анатомическому строению. Анатомическое строение схоже с топонимикой, где выделяют центральную нервную систему и периферическую. В центральную нервную систему входит головной и спинной мозг, а периферическая представлена нервами, узлами и окончаниями. Нервы представлены скоплениями отростков вне центральной нервной системы, покрыты общей миелиновой оболочкой, проводят электрические сигналы. Дендриты чувствительных нейронов образуют чувствительные нервы, аксоны - двигательные нервы.

Совокупность длинных и коротких отростков образует смешанные нервы. Скапливаясь и концентрируясь, тела нейронов составляют узлы, выходящие за пределы центральной нервной системы. Нервные окончания делят на рецепторные и эффекторные. Дендриты посредством концевых разветвлений преобразуют раздражения в электрические сигналы. А эфферентные окончания аксонов - в рабочих органах, волокнах мышц, железах. Классификация по функциональности подразумевает деление нервной системы на соматическую и автономную.

Что-то мы контролируем, а что-то нам неподвластно

Свойства нервной ткани объясняют тот факт, что подчиняется воле человека, иннервируя работу опорной системы. Двигательные центры находятся в коре головного мозга. Автономная, которую называют еще и вегетативной, не зависит от воли человека. Исходя из собственных запросов, невозможно ускорить или замедлить сердцебиение или моторику кишечника. Так как местоположение вегетативных центров - гипоталамус, с помощью автономной нервной системы осуществляется контроль за работой сердца и сосудов, эндокринного аппарата, полостных органов.

Нервная ткань, фото которой вы можете видеть выше, образует симпатический и парасимпатический отделы которые позволяют выступать им в роли антагонистов, оказывая взаимопротивоположный эффект. Возбуждение в одном органе вызывает процессы торможения в другом. К примеру, симпатические нейроны вызывают сильное и частое сокращение камер сердца, сужение сосудов, скачки артериального давления, так как выделяется норадреналин. Парасимпатика, высвобождая ацетилхолин, способствует ослаблению ритмов сердца, увеличению просвета артерий, понижению давления. Уравновешивание этих групп медиаторов нормализует сердечный ритм.

Симпатическая нервная система действует во время интенсивного напряжения при испуге или стрессе. Сигналы возникают в районе грудных и поясничных позвонков. Парасимпатическая система включается при отдыхе и переваривании пищи, в процессе сна. Тела нейронов - в стволе и крестце.

Более подробно изучив особенности клеток Пуркинье, которые имеют грушевидную форму со множеством ветвящихся дендритов, можно увидеть, как осуществляется передача импульса, и раскрыть механизм последовательных этапов процесса.

Морфологически нервная система представлена двумя типами клеток: нейронами (рис. 28) и нейроглией.

Рис. 28. 1 - ядро; 2 - дендриты; и - тело; 4 - аксонный холмик; 5 - лемоцит (клетка Шванна); б - перехваты узла; 7 - нервное окончание; 8 - скачкообразный переход ПД

Функцию ЦНС, заключается в обработке информации, выполняют преимущественно нейроны, количество которых составляет около 10". В ЦНС выделяют три типа нейронов, роняться как морфологически, так и функционально:

1) афферентные;

2) вставные;

3) эфферентные.

Вместе с тем нейроны составляют меньшую (около 10 %) часть клеточного пула ЦНС, а 90 % всех клеток составляет нейроглия.

Функции нейроглии

Нейроглия - это неоднородные клетки, заполняющие пространство между нейронами и кровеносными капиллярами. Они различаются как по форме, так и по функции.

Рис. 29. Взаимоотношения нейроглиальных элементов с другими структурами мозга: 1 - нейрон; 2 - астроцит; 3 - олигодендроцит; 4 - кровеносный капилляр; 5 - клетка епендими; 6 - синапс; 7-перехват узла; 8 - миелиновая оболочка

Различают несколько типов глиальных клеток:

а) астроциты;

б) олигодендроциты;

в) микроглиальные;

г) епендимные клетки.

Каждая из них выполняет свою функциональную задачу в обеспечении функции основных структур ЦНС - нейронов. Общая функция этих клеток - создание опоры для нейронов, их защита и "помощь" в выполнении специфических функций (рис. 29).

Астроциты , которые составляют около 60 % клеток нейроглии, выполняют разнообразные функции по созданию благоприятных условий для функционирования нейронов. Особенно важную роль они играют в период высокой активности последних.

Астроциты участвуют в:

1) создании гематоэнцефалического барьера (ГЭБ), что ограничивает свободное проникновение различных веществ из крови;

2) резорбции некоторых медиаторов ЦНС (например глутамата, ГАМК), их обмене и даже обеспечивают обратное возвращение готовых медиаторов в нейрон, активно функционирует; а также некоторых ионов (например Ю) из межклеточной жидкости в период активного функционирования прилегающих нейронов.

В астроцитах синтезируется ряд факторов, относящихся к регуляторам роста. Факторы роста астроцитов участвуют в регуляции роста и развития нейронов. Эта их функция особенно ярко проявляется во время становления ЦНС: во внутриутробный и ранний постнатальный период развития.

Олигодендроциты образуют миелиновую оболочку нейронов (составляют около 25-30 % всех глиальных клеток). На периферии эту функцию выполняют лемоцити. Кроме того, они могут поглощать микроорганизмы, то есть вместе с астроцитами участвуют в иммунных механизмах мозга.

Микроглиальные клетки как часть ретикулоэндотелиальной системы организма участвуют в фагоцитозе (составляют около 10 % всех глиальных клеток).

Эпендимные клетки выстилают желудочки головного мозга, участвуя в процессах секреции спинномозговой жидкости.

Морфофункциональная характеристика нейронов

Нейроны - своеобразные клетки, которые имеют кроме тела (сомы) один или несколько отростков, называемых дендритами и аксонами. С помощью дендритов нервный импульс поступает к телу нейрона, а при помощи аксонов - отходит от нейрона. Уникальность нейронов заключается в том, что вскоре после рождения человека они утрачивают способность к физиологической регенерации путем распределения. Самовосстановление их происходит лишь на уровне субклеточных структур, отдельных молекул.

Размер тела нейрона (от 5 до 100 мкм) определяет и диаметр их аксонов: в малых нейронах - около 1 мкм, а в крупных-до 6 мкм. Это сказывается на скорости распространения ими нервного импульса. Начальную часть аксона, что функционально отличается, называют аксонним холмиком.

Сома нейрона покрыта типичной плазматичною мембраной. На ней представлены все виды белков, обеспечивающих трансмембранное транспортировку и поддержание концентрационных градиентов. Для сомы нейрона характерно, что практически вся его мембрана постсинаптична. Дело в том, что передача нервных импульсов между нейронами осуществляется с помощью синапсов. А их у каждого нейрона так много и располагаются они на теле так тесно, что практически между ними нет свободного участка мембраны (рис. 30). Расстояние между отдельными синапсами примерно одинакова, поэтому количество их на теле нейрона в первую очередь определяют по размерам сомы: на малых клетках их до 5000, а на больших-к

Рис. 30.

1 - аксосоматичний синапс; 2 - аксодендритний синапс; 3 - аксодендритний синапс шипиковой формы; 4 - аксодендритний синапс дивергентного типа; А - аксон; П -дендрит

200 000. Однако существуют функциональные различия и в количестве синапсов на теле клетки: у чувствительных нейронов синапсов меньше, а у вставочных и эффекторных - больше.

Мембранный потенциал не во всех нейронах находится на одинаковом уровне. В крупных нейронах он выше, чем в малых, и колеблется от -90 до -40 мВ. Функциональную характеристику крупных нейронов благодаря их размерам на сегодня изучены лучше и описано ниже на их примере.

Мембрана особой участки нейрона - аксонного холмика, от которого отходит аксон, несколько отличается от других отделов сомы нейрона. Во-первых, она свободна от синапсов. Во-вторых, имеет своеобразный набор ионных каналов. Можно выделить пять типов таких каналов:

1) быстрые потенциалозависимые Na+-каналы;

2) Са+-каналы;

3) медленные потенциалозависимые К+-каналы;

4) быстрые потенциалозависимые ИС-каналы;

5) кальциезависимые ИС-каналы.

Особенность аксонного холмика заключается в том, что в него мембранный потенциал ниже (около -60 мВ), чем на других участках тела нейрона.

Синапсы ЦНС

Нервные клетки за счет своих отростков функционируют в тесном взаимодействии друг с другом, образуя своеобразную сеть. Это взаимодействие осуществляется с помощью синапсов. В результате каждый нейрон контактирует прямо или (чаще) косвенно с сотнями, тысячами других.

Для некоторых систем мозга, например, ответственных за процессы обучения, памяти, способность к организации и реорганизации связей между нейронами сохраняется на всю жизнь. В других отделах ЦНС формируются постоянные ведущие пути от одного нейрона к другому, и их становление завершается к определенному этапу развития человека. В мозгу, что растет, аксоны находят путь к клеткам, в которых они должны посылать сигнал, идя по определенному химическому следу. Достигая места назначения, аксон разветвляется, и каждая из его веточек заканчивается терминалиями.

в Зависимости от места расположения различают синапсы аксодендритные, аксосоматичные, аксоаксональные и дендросоматичные (см. рис. 30). Функционируют синапсы ЦНС так же, как и нервно-мышечные. Но в то же время между ними существуют и некоторые различия, обусловленные тем, что они значительно более разнообразны как по составу медиаторов, так и за реакцией постсинаптической мембраны на них.

Синапсы ЦНС, особенно их постсинаптична мембрана, - это место приложения не только медиаторов, но и многих других биологически активных соединений, ядов, лекарственных веществ.

Модуляция синапсов. Характерно, что отдельные образования синапсов - это не навсегда застывшие структуры. На протяжении жизни человека они могут трансформироваться, подвергаясь модулювальному влияния. Этому способствует выделение некоторых медиаторов. Кроме того, в случае постоянного (частого) прохождение нервных импульсов через структуры синапсов могут меняться в направлении увеличения размеры синаптической бляшки и количество медиатора в ней, площадь пре - и постсинаптической мембраны. Кроме того, на постсинаптической мембране может меняться плотность рецепторов. Как следствие функция синапса модифицируется, что обеспечивает улучшение и ускорение передачи нервного импульса. Эти изменения сопровождают процесс обучения, формирования памяти. их считают основой создания нервных цепей для обеспечения рефлекторных ответов. Можно заметить, что наличие синапсов в ЦНС упорядочивает ее функцию.

В ЦНС основные синапсы (98 %) локализуются на дендритах и лишь 2 % - на соме. В среднем каждый аксон образует около 2000 синаптических окончаний.

Механизм функционирования химических синапсов в ЦНС

Выделение медиатора происходит под воздействием поступления ПД, что вызывает деполяризацию пресинаптической мембраны, вследствие чего в синаптическую щель выливается содержимое нескольких сотен пузырьков. Медиатор, дифундуючи синаптической жидкостью, через синаптическую щель достигает постсинаптической мембраны, где соединяется с соответствующим рецептором. Как следствие открываются хемозбудительные каналы и повышается проницаемость мембраны для ионов № Это обусловливает деполяризацию мембраны - возникновение местного потенциала. Такой по

Рис. 31. а. б - деполяризация не достигает критического уровня; в - результат суммации

потенциал модерниза ции называют возбуждающим постсинаптичним потенциалом (ЗПСП; рис. 31).

Генерация ПД происходит в результате суммации возбуждающего постсинаптического потенциала. Этому способствуют его отличительные характеристики: сравнительно большая продолжительность существования во времени (нарастание деполяризации - 1-2 мс, падение-10-12 мс) и способность распространяться на прилегающие участки мембраны. То есть в целом указанные выше механизмы общие для нервно-мышечных и центральных синапсов. Поэтому переход локального постсинаптического потенциала в ПД происходит в самой постсинаптической мембране вследствие процессов суммации.

Вследствие суммации (рис. 32) возбуждающий постсинаптичний потенциал может переходить в ПД. Различают суммации временную и пространственную.

Временная суммация основывается на: длительности состояния деполяризации возбуждающего постсинаптического потенциала; частой импульсации одного синапса.

Рис. 32. Временная (а) пространственная (б) суммация возбуждения в нервных центрах:

1 - раздражитель, который поступает одним нервом; 2 - раздражитель, поступающий вторым нервом

Когда до пресинаптической мембраны с коротким промежутком поступают несколько ПД, то возбуждающий постсинаптичний потенциал, который возникает после каждого из них, наслаивается на предыдущий, увеличивая амплитуду, и при достижении критического уровня переходит в ПД. Такое явление случается из-за того, что обычно нервным волокном поступают не одиночные ПД, а их группы ("пачки").

Пространственная суммация обусловлена одновременным поступлением к нейрону импульсов по размещенным рядом сына псах. Возбуждающий постсинаптичний потенциал, возникающий под каждым синапсом, распространяется с декрементом (постепенным снижением амплитуды). Однако вследствие довольно тесного расположения близлежащих синапсов возбудительные постсинаптические потенциалы могут суммироваться по амплитуде. Вследствие этого деполяризация может достичь критического уровня и вызвать ПД. Как правило, этот процесс легче всего развивается в области аксонного холмика. Обусловлено это тем, что вследствие более низкого исходного уровня мембранного потенциала именно здесь ближе к критическому уровню деполяризации.

Синоптическая задержка.

Вследствие того, что для передачи возбуждения через синапс нужен выход и взаимодействие медиатора с постсинаптичною мембраной, суммирование, скорость передачи возбуждения в нем замедляется. Синаптическая задержка в ЦНС составляет около 0,2-0,5 мс.

Тормозные синапсы

В норме функция ЦНС осуществляется благодаря тому, что кроме указанных выше синапсов, передающих возбуждение, существует огромное количество тормозных синапсов (рис. 33).

Различают два вида торможения:

o пресинаптичне

o постсинаптичне.

В этих названиях отражено локализацию тормозного синапса относительно возбуждающего. Различаются указанные виды торможения не только по месту расположения синапса, но и по физиологическим механизмом. Пресинаптичне торможения основывается на уменьшении или прекращении высвобождения медиатора из пресинаптического нервного окончания возбуждающего синапса, постсинаптичне - на снижении возбудимости мембраны сомы и дендритов нейронов.

Пресинаптичне торможение избирательно исключает отдельные входы в нервной клетки, тогда как постсинаптичне окончательно снижает возбудимость нейрона. Пресинаптичне торможения продолжительнее, чем постси

Рис. 33.

1 - аферент возбуждающего нейрона;

2 - аферент, что возбуждает тормозной нейрон;

3 - пресинаптичне возбуждения;

4 - постсинаптичне торможения;

5 - возбуждающий нейрон;

6 - тормозной нейрон

наптичне. Несмотря на то что именно торможение не распространяется, блокируя проведение возбуждения, ограничивает его распространение, оно, прерывая бесконечную циркуляцию по ЦНС, упорядочивает ее функции.

Постсинаптичне торможения.

Основной вид торможения в ЦНС - постсинаптичне. Давайте разберем его механизмы на примере типового тормозного синапса - аксосоматичной. На теле нейрона тормозные синапсы, как правило, расположены между возбуждающими синапсами и аксонним бугорком. Основные медиаторы, которые вызывают этот вид торможения - аминокислоты ГАМК и глицин. Каждый стимул, поступивший к тормозного синапса, вызывает не деполяризацию, а наоборот, гиперполяризацией постсинаптической мембраны, называют тормозным постсинаптичним потенциалом (вания лисп). По своим временным ходом он является зеркальным отражением возбуждающего постсинаптического потенциала с временем нарастания 1-2 мс и убыванию - 10-12 мс (рис. 34). Гиперполяризация основывается на повышении проницаемости мембраны для К+.

Конкретный механизм торможения зависит от времени поступления возбуждающего постсинаптического потенциала от расположенного рядом возбуждающего синапса. При этом также происходит временная и пространственная суммация. Если возбуждающий постсинаптичний потенциал накладывается на начальную фазу тормозного, то амплитуда первого снижается, поскольку поступления в клетку №+ компенсируется одновременным выходом К+. А если возбуждающий постсинаптичний потенциал возникает в поздней стадии тормозного постсинаптического потенциала, он просто смещается на величину гиперполяризаии мембраны. И в том, и в другом случае галь

Рис. 34.

а - развитие гиперполяризации на постсинаптической мембране тормозного синапса; б - механизм постсинаптического торможения; 4 - действие раздражителя

мівного постсинаптического потенциала блокирует возникновение ПД, а следовательно, и передачу нервного импульса через этот нейрон.

Постсинаптичне торможение широко представлено в нервной системе. Оно есть в нервных центрах, в мотонейронах спинного мозга, в симпатических ганглиях.

Медиаторы ЦНС

В ЦНС функцию медиаторов выполняет большое (около 30) количество биологически активных веществ. Принадлежность синапсов к возбудимого или тормозного определяют спецификой медиаторов, а также разновидностью рецепторов, встроенных в постсинаптичну мембрану. Поскольку к одному и тому же медиатору, как правило, существует несколько рецепторов, при их взаимодействии могут возникать диаметрально противоположные эффекты - возбуждающий или тормозной постсинаптические потенциалы. Разногласия между рецепторами можно обнаружить не только за отличием эффекта, но и с помощью применения химически активных веществ, которые могут блокировать передачу нервного импульса через синапс (результат связывания с рецептором) или потенцировать эффект медиатора. Эти вещества могут быть как эндогенного (образуются в самой ЦНС или других органах и поступают в ЦНС через кровь и лимфу), так и экзогенного происхождения.

Медиаторами нейронов ЦНС считают большое количество биологически активных веществ. В зависимости от химической структуры их можно разделить на четыре группы:

1. Амины (АХ, НА, А, дофамин, серотонин).

2. Аминокислоты (глицин, глутамин, аспарагиновая, ГАМК и некоторые другие).

3. Пуриновые нуклеотиды (АТФ).

4. Нейропептиды (гипоталамические либерины и статины, опиоидные пептиды, вазопрессин, вещество Р, холецистокинин, гастрин и др.).

Раньше считали, что во всех окончаниях одного нейрона выделяется один медиатор (принцип Дейла). Однако в последние годы, особенно после открытия нейропептидов (ничтожной величины белковых молекул), оказалось, что во многих нейронах может содержаться два или более медиаторов.

По эффекту медиаторы можно разделить на два типа: ионотропные и метаботропные. Ионотропные медиаторы после взаимодействия с рецепторами постсинаптической мембраны изменяют проницаемость ионных каналов. В отличие от них метаботропные медиаторы постсинаптичний влияние оказывают через активацию специфических ферментов мембраны. Вследствие этого в самой мембране, а чаще всего в цитозоле клетки активируются вторичные посредники (месенжери). Метаболические изменения, происходящие в клетке или мембране, продолжительнее и глубже, чем во время действия ионотропных медиаторов. Они могут затрагивать даже геном клетки, участвуя в формировании памяти.

Метаботропну активность имеют большинство нейропептидов и некоторые другие медиаторы, например амины. Выделяясь вместе с "основным", метаботропний медиатор модулирует (усиливает или ослабляет) его эффект или регулирует его выход.

Электрические явления мозга

в настоящее время широко применяют методы исследования функций ЦНС благодаря отводу биотоков. Для этого применяют два основных подхода: вживлению электродов и снятия электрических потенциалов с поверхности мозга. Первый метод не имеет принципиальных отличий от методик исследования других возбудимых тканей. При отведении потенциалов с поверхности мозга регистрируют активность клеток коры. Причем биотоки коры полушарий большого мозга можно зарегистрировать непосредственно с кожи головы.

Электроэнцефалография. Снятия биотоков с кожи головы называют электроэнцефалографией , а кривую - электроэнцефалограммой (ЭЭГ)- Первым их исследователем был Г. Бергер. Для исследования применяют биполярные отведения (оба электрода отводные) и монополярные (только один электрод активный, а второй, индифферентный размещают на дольке (мочке) уши). Электрическое сопротивление полушарий большого мозга, расположенные между кожей и корой, накладывает свой отпечаток, поэтому волны ЭЭГ немного отличаются от таких ЕКоГ: меньше и амплитуда, и частота зубцов, что обусловлено также удаленностью электродов от поверхности мозга.

Разновидности ритмов ЭЭГ. в Зависимости от активности головного мозга регистрируют различные типы ЭЭГ. их принято характеризовать в зависимости от амплитуды и частоты (рис. 35). У человека, который не спит и находится в состоянии покоя, с закрытыми глазами, в большинстве отделов коры регистрируется регулярный ритм с частотой 8-13 Гц, так называемый а-ритм. В состоянии активной деятельности он сменяется на более частые (более 13 имп.1с) колебания небольшой амплитуды - $-ритм. При этом в различных отделах ЦНС ритм будет разный, то есть произойдет десинхронизация ЭЭГ. Во время перехода КО сну и самого сна появляются медленные волны: -ритм (7-4 Гц) и Х-ритм (3,5-0,5 Гц) и высокой амплитуды. Однако указанную закономерность наблюдается не во всех отделах коры полушарий большого мозга.

Рис. 35. ЭЭГ затылочной -г) и моторной (д-е) участков коры полушарий большого мозга человека при различных состояний и во время мышечной работы (по А.Бы. Сологуб): а - за распахнутых глаз (видно преимущественно р-волны); б - за закрытых глаз в состоянии покоя (видно а-волны); в - в состоянии дремоты; г - во время засыпания; г - во время глубокого сна; п - частая асинхронная активность во время выполнения непривычной или тяжелой работы (явление десинхронизации); е, является - различные формы синхронизации: е - медленные потенциалы в темпе выполнения циклических движений; есть - появление а-ритма во время выполнения усвоенного движения

Происхождение волн ЭЭГ-достаточно сложный процесс алгебраической суммации микропроцессов, протекающие на уровне многочисленных нейронов, различных синапсов в конкретном отделе коры головного мозга. Самая эффективная суммация при синхронном возбуждении многих клеток, что проявляется ограничением сенсорного (от лат. - ощущение) притока импульсов. Поступления афферентных возбуждений при расплющивания глаз предопределяет десинхронизацией. Основной водитель ритма коры - структуры таламуса, через которые в нее поступает аферентна сигнализация, т. е. можно условно считать, что таламичные отделы - пейсмекери корковой активности.

По ЭЭГ можно оценивать функциональное состояние коры, ее отдельных участков. Различные повреждения, заболевания сопровождаются характерными изменениями ЭЭГ.

Функции нейрона

фоновой (без стимуляции) и вызванной (после стимула) активностью.

Спинномозговые нервы

Спинномозговых нервов у человека 31 пара: 8 - шейных, 12 - грудных, 5 - поясничных, 5 - крестцовых и 1 пара – копчиковых. Формируются они слиянием двух корешков: заднего - чувствительного и переднего - двигательного. Оба корешка соединяются в единый ствол, выходящий из позвоночного канала через межпозвоночное отверстие. В области отверстия лежит спинальный ганглий, который содержит тела чувствительных нейронов. Короткие отростки поступают в задние рога, длинные заканчиваются рецепторами, расположенными в коже, подкожной клетчатке, мышцах, сухожилиях, связках, суставах. Передние корешки содержат двигательные волокна от мотонейронов передних рогов.

Нервные сплетения

Существуют шейное, плечевое, поясничное и крестцовое сплетения, образованные ветвями спинномозговых нервов.

Шейное сплетение образовано передними ветвями 4 верхних шейных нервов, лежит на глубоких мышцах шеи, ветви делятся на двигательные, смешанные и чувствительные. Двигательные ветви иннервируют глубокие мышцы шеи, мышцы шеи, расположенные ниже подъязычной кости, трапецевидные и грудино-ключично-сосцевидные мышцы.

Смешанной ветвью является диафрагмальный нерв. Двигательные волокна его иннервируют диафрагму, чувствительные – плевру и перикард. Чувствительные ветви иннервируют кожу затылка, уха, шеи, кожу под ключицей и над дельтовидной мышцей.



Плечевое сплетение образовано передними ветвями 4 нижних шейных нервов и передней ветвью первого грудного нерва. Иннервирует мышцы груди, плечевого пояса и спины. Подключичный отдел плечевого сплетения образует 3 пучка – медиальный, латеральный и задний. Нервы, выходящие из этих пучков, иннервируют мышцы и кожу верхней конечности.

Передние ветви грудных нервов (1-11) сплетений не образуют, идут как межреберные нервы. Чувствительные волокна иннервируют кожу груди и живота, двигательные – межреберные мышцы, некоторые мышцы груди и живота.

Поясничное сплетение образовано передними ветвями 12 грудного, 1-4 ветвями поясничных нервов. Ветви поясничного сплетения иннервируют мышцы живота, поясницы, мышцы передней поверхности бедра, мышцы медиальной группы бедра. Чувствительные волокна иннервируют кожу ниже паховой связки, промежности, кожу бедра.

Крестцовое сплетение образовано ветвями 4 и 5 поясничных нервов. Двигательные ветви иннервируют мышцы промежности, ягодицы, промежности; чувствительные – кожу промежности и наружных половых органов. Длинные ветви крестцового сплетения образуют седалищный нерв – самый крупный нерв тела, иннервирующий мышцы нижней конечности.

3. Классификация нервных волокон.

По функциональным свойствам (строению, диаметру волокна, электровозбудимости, скорости развития потенциала действия, длительности различных фаз потенциала действия, по скорости проведения возбуждения) Эрлангер и Гассер разделили нервные волокна на волокна групп А, В и С. Группа А неоднородна, волокна типа А в свою очередь делятся на подтипы: А-альфа, А-бета, А-гамма, А-дельта.

Волокна типа А покрыты миелиновой оболочкой. Наиболее толстые из них А-альфа имеют диаметр 12-22мкм и высокую скорость проведения возбуждения - 70-120 м/с. Эти волокна проводят возбуждение от моторных нервных центров спинного мозга к скелетным мышцам (двигательные волокна) и от проприорецепторов мышц к соответствующим нервным центрам.



Три другие группы волокон типа А (бета, гамма, дельта) имеют меньший диаметр от 8 до 1 мкм и меньшую скорость проведения возбуждения от 5 до 70 м/с. Волокна этих групп относятся преимущественно к чувствительным, проводящим возбуждение от различных рецепторов (тактильных, температурных, некоторых болевых рецепторов внутренних органов) в ЦНС. Исключение составляют лишь гамма-волокна, значительная часть которых проводит возбуждение от клеток спинного мозга к интрафузальным мышечным волокнам.

К волокнам типа В относятся миелинизированные преганглионарные волокна вегетативной нервной системы. Их диаметр - 1- мкм, а скорость проведения возбуждения - 3-18 м/с.

К волокнам типа С относятся безмиелиновые нервные волокна малого диаметра - 0,5-2,0 мкм. Скорость проведения возбуждения в этих волокнах не более 3 м/с (0,5-3,0 м/с) . Большинство волокон типа С - это постганглионарные волокна симпатического отдела вегетативной нервной системы, а также нервные волокна, которые проводят возбуждение от болевых рецепторов, некоторых терморецепторов и рецепторов давления.

4. Законы проведения возбуждения по нервам.

Нервное волокно обладает следующими физиологическими свойствами: возбудимостью, проводимостью, лабильностью.

Проведение возбуждения по нервным волокнам осуществляется по определенным законам.

Закон двустороннего проведения возбуждения по нервному волокну. Нервы обладают двусторонней проводимостью, т.е. возбуждение может распространяться в любом направлении от возбужденного участка (места его возникновения), т. е., центростремительно и центробежно. Это можно доказать, если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение. Возбуждение зафиксируют электроды по обе стороны от места раздражения. Естественным направлением распространения возбуждения является: в афферентных проводниках - от рецептора к клетке, в эфферентных - от клетки к рабочему органу.

Закон анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность, т.е. передача возбуждения возможна только по структурно и функционально не измененному, неповрежденному нерву (законы анатомической и физиологической целостности). Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е., к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается.

Закон изолированного проведения возбуждения по нервному волокну. В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва. Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным и невозбужденным участками нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна. Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуре и функциям эффекторы (клетки; ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервноговолокна на другое, то нормальное функционирование органов было бы невозможно.

Возбуждение (потенциал действия) распространяется по нервному волокну без затухания.

Периферический нерв практически неутомляем.

Механизм проведения возбуждения по нерву.

Возбуждение (потенциал действия - ПД) распространяется в аксонах, телах нервных клеток, а также иногда в дендритах без снижения амплитуды и без снижения скорости (бездекрементно). Механизм распространения возбуждения у различных нервных волокон неодинаков. При распространении возбуждения по безмиелиновому нервному волокну механизм проведения включает два компонента: раздражающее действие катэлектротона, порождаемое локальным ПД, на соседний участок электровозбудимой мембраны и возникновение ПД в этом участке мембраны. Локальная деполяризация мембраны нарушает электрическую стабильность мембраны, различная величина поляризации мембраны в смежных ее участках порождает электродвижущую силу и местный электрический ток, силовые линии которого замыкаются через ионные каналы. Активация ионного канала повышает натриевую проводимость, после электротонического достижения критического уровня деполяризации (КУД) в новом участке мембраны генерируется ПД. В свою очередь этот потенциал действия вызывает местные токи, а они в новом участке мембраны генерируют потенциал действия. На всем протяжении нервного волокна происходит процесс новой генерации потенциала действия мембраны волокна. Данный тип передачи возбуждения называется непрерывным.

Скорость распространения возбуждения пропорциональна толщине волокна и обратно пропорциональна сопротивлению среды. Проведение возбуждения зависит от соотношения амплитуды ПД и величины порогового потенциала. Этот показатель называется гарантийный фактор (ГФ) и равен 5 - 7, т.е. ПД должен быть выше порогового потенциала в 5- 7 раз. Если ГФ = 1 проведение ненадёжно, если ГФ < 1 проведения нет. Протяженность возбуждённого участка нерва L является произведение времени (длительности) ПД и скорости распространения ПД. Например, в гигантском аксоне кальмара L= 1 мс ´ 25 мм/мс = 25 мм.

Наличие у миелиновых волокон оболочки, обладающей высоким электрическим сопротивлением, а также участков волокна, лишенных оболочки - перехватов Ранвье создают условия для качественно нового типа проведения возбуждения по миелиновым нервным волокнам. В миелинизированном волокне токи проводятся только в зонах, не покрытых миелином, - перехватах Ранвье, в этих участках и генерируется очередной ПД. Перехваты длиной 1 мкм расположены через 1000 - 2000 мкм, характеризуются высокой плотностью ионных каналов, высокой электропроводностью и низким сопротивлением. Распространение ПД в миэлинизированных нервных волокнах осуществляется сальтаторно - скачкообразно от перехвата к перехвату, т.е. возбуждение (ПД) как бы «перепрыгивает» через участки нервного волокна, покрытые миелином, от одного перехвата к другому. Скорость такого способа проведения возбуждения значительно выше, и он более экономичен по сравнению с непрерывным проведением возбуждения, поскольку в состояние активности вовлекается не вся мембрана, а только ее небольшие участки в области перехватов, благодаря чему уменьшается нагрузка на ионный насос.

Схема распространения возбуждения в безмиелиновых и миелиновых нервных волокнах.

5. Парабиоз.

Нервные волокна обладают лабильностью - способностью воспроизводить определенное количество циклов возбуждения в единицу времени в соответствии с ритмом действующих раздражителей. Мерой лабильности является максимальное количество циклов возбуждения, которое способно воспроизвести нервное волокно в единицу времени без трансформации ритма раздражения. Лабильность определяется длительностью пика потенциала действия, т. е. фазой абсолютной рефрактерности. Так как длительность абсолютной рефрактерности у спайкового потенциала нервного волокна самая короткая, то лабильность его самая высокая. Нервное волокно способно воспроизвести до 1000 импульсов в секунду.

Явление парабиоза открыто русским физиологом Н.Е.Введенским в 1901 г. при изучении возбудимости нервно-мышечного препарата. Состояние парабиоза могут вызвать различные воздействия – сверхчастые, сверхсильные стимулы, яды, лекарства и другие воздействия как в норме, так и при патологии. Н. Е. Введенский обнаружил, что если участок нерва подвергнуть альтерации (т. е. воздействию повреждающего агента), то лабильность такого участка резко снижается. Восстановление исходного состояния нервного волокна после каждого потенциала действия в поврежденном участке происходит медленно. При действии на этот участок частых раздражителей он не в состоянии воспроизвести заданный ритм раздражения, и поэтому проведение импульсов блокируется. Такое состояние пониженной лабильности и было названо Н. Е. Введенским парабиозом.Состояние парабиоза возбудимой ткани возникает под влиянием сильных раздражителей и характеризуется фазными нарушениями проводимости и возбудимости. Выделяют 3 фазы: первичную, фазу наибольшей активности (оптимум) и фазу сниженной активности (пессимум). Третья фаза объединяет 3 последовательно сменяющие друг друга стадии: уравнительную (провизорная, трансформирующая – по Н.Е.Введенскому), парадоксальную и тормозную.

Первая фаза (примум) характеризуется снижением возбудимости и повышением лабильности. Во вторую фазу (оптимум) возбудимость достигает максимума, лабильность начинает снижаться. В третью фазу (пессимум) возбудимость и лабильность снижаются параллельно и развивается 3 стадии парабиоза. Первая стадия - уравнительная по И.П.Павлову - характеризуется выравниванием ответов на сильные, частые и умеренные раздражения. В уравнительную фазу происходит уравнивание величины ответной реакции на частые и редкие раздражители. В нормальных условиях функционирования нервного волокна величина ответной реакции иннервируемых им мышечных волокон подчиняется закону силы: на редкие раздражители ответная реакция меньше, а на частые раздражители-больше. При действии парабиотического агента и при редком ритме раздражении (например, 25 Гц) все импульсы возбуждения проводятся через парабиотический участок, так как возбудимость после предыдущего импульса успевает восстановиться. При высоком ритме раздражении (100 Гц) последующие импульсы могут поступать в тот момент, когда нервное волокно еще находится в состоянии относительной рефрактерности, вызванной предыдущим потенциалом действия. Поэтому часть импульсов не проводится. Если проводится только каждое четвертое возбуждение (т.е. 25 импульсов из 100) , то амплитуда ответной реакции становится такой же, как на редкие раздражители (25 Гц)-происходит уравнивание ответной реакции.

Вторая стадия характеризуется извращенным реагированием – сильные раздражения вызывают меньший ответ, чем умеренные. В эту - парадоксальную фазу происходит дальнейшее снижение лабильности. При этом на редкие и частые раздражители ответная реакция возникает, но на частые раздражители она значительно меньше, т. к. частые раздражители еще больше снижают лабильность, удлиняя фазу абсолютной рефрактерности. Следовательно, наблюдается парадокс - на редкие раздражители ответная реакция больше, чем на частые.

В тормозную фазу лабильность снижается до такой степени, что и редкие, и частые раздражители не вызывают ответной реакции. При этом мембрана нервного волокна деполяризована и не переходит в стадию реполяризации, т. е. не восстанавливается ее исходное состояние. Ни сильные, ни умеренные раздражения не вызывают видимой реакции, в ткани развивается торможение. Парабиоз - явление обратимое. Если парабиотическое вещество действует недолго, то после прекращения его действия нерв выходит из состояния парабиоза через те же фазы, но в обратной последовательности. Однако, при действии сильных раздражителей за тормозной стадией может наступить полная потеря возбудимости и проводимости, а в дальнейшем – гибель ткани.

Работы Н.Е.Введенского по парабиозу сыграли важную роль в развитии нейрофизиологии и клинической медицины, показав единство процессов возбуждения, торможения и покоя, изменили господствовавший в физиологии закон силовых отношений, согласно которому реакция тем больше, чем сильнее действующий раздражитель.

Явление парабиоза лежит в основе медикаментозного локального обезболивания. Влияние анестезирующих веществ вязано с понижением лабильности и нарушением механизма проведения возбуждения по нервным волокнам.

Рецептивная субстанция.

В холинергических синапсах - это холинорецептор. В нём различается узнающий центр, специфически взаимодействующий исключительно с ацетилхолином. С рецептором сопряжён ионный канал, имеющий воротный механизм и ионселективный фильтр, обеспечивающий проходимость только для определённых ионов.

Инактивационная система .

Для восстановления возбудимости постсинаптической мембраны после очередного импульса необходима инактивация медиатора. В противном случае, при длительном действии медиатора происходит снижение чувствительности рецепторов к этому медиатору (десенситизация рецепторов). Инактивационная система в синапсе представлена:

1. Ферментом, разрушающим медиатор, например, ацетилхолинэстеразой, разрушающей ацетилхолин. Фермент находится на базальной мембране синаптической щели и разрушение его химическим путём (эзерином, простигмином) прекращает передачу возбуждения в синапсе.

2. Системой обратного связывания медиатора с пресинаптической мембраной.

7. Постсинаптические потенциалы (ПСП ) - местные потенциалы, не сопровождающиеся рефрактерностью и не подчиняющиеся закону "всё или ничего" и вызывающие на постсинаптической клетке сдвиг потенциала.

Общая характеристика нервных клеток

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы является нейрон, глиальная клетка и питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа. Нейроны обладаютфоновой (без стимуляции) и вызванной (после стимула) активностью.

Фоновая активность может быть:

Единичной - генерация единичных потенциалов действия (ПД) через разные промежутки времени.

Пачковой - генерация серий по 2-10 ПД через 2-5 мс с более продолжительными промежутками времени между пачками.

Групповой - серии содержат десятки ПД.

Вызванная активность возникает:

В момент включения стимула "ON" - нейрон.

В момент выключения " OF" - нейрон.

На включение и на выключение " ON - OF" - нейроны.

Нейроны могут градуально изменять потенциал покоя под влиянием стимула.

Нейроны (нейроциты, собственно нервные клетки) - клетки раз­личных размеров (которые варьируют от самых мелких в организме, у нейронов с диаметром тела 4-5 мкм - до наиболее крупных с диамет­ром тела около 140 мкм). К рождению нейроны утрачивают способность к делению, поэтому в течение постнатальной жизни их количество не увеличивается, а, напротив, в силу естественной убыли клеток, посте­пенно снижается. Нейрон состоит из клеточного тела (перикариона) и отростков, обеспечивающих проведение нервных импульсов - дендритов, прино­сящих импульсы к телу нейрона, и аксона (нейрита), несущего импуль­сы от тела нейрона.

Тело нейрона (перикарион) включает ядро и окружающую его цитоплазму (за исключением входящей в состав отростков). Перика­рион содержит синтетический аппарат нейрона, а его плазмолемма осу­ществляет реценторные функции, так как на ней находятся многочис­ленные нервные окончания (синапсы), несущие возбуждающие и тор­мозные сигналы от других нейронов. Ядро нейрона - обычно одно, крупное, округлое, светлое, с мел­кодисперсным хроматином (преобладанием эухроматина), одним, иногда 2-3 крупными ядрышками. Эти особенности отражают высокую актив­ность процессов транскрипции в ядре нейрона.

Цитоплазма нейрона богата органеллами и окружена плазмолеммой, которая обладает способностью к проведению нервного импульса вследствие локального тока Nа+ в цитоплазму и К+ из нее через потенциал-зависимые мембранные ион­ные каналы. Плазмолемма содержит Nа+-К+ насосы, которые поддержи­вают необходимые градиенты ионов.

Дендриты проводят импульсы к телу нейрона, получая сигналы от других нейронов через многочисленные межнейронные контакты (аксо-дендршпические синапсы), расположенные на них в области особых цитоплазматических выпячиваний - дендритных шипиков. Во мно­гих шипиках имеется особый шипиковый аппарат, состоящий из 3-4 уплощенных цистерн, разделенных участками плотного вещества. Шипики представляют собой лабильные структуры, которые разрушаются и образуются вновь; их число резко падает при старении, а также при снижении функциональной активности нейронов. В большинстве случаев дендриты многочисленны, имеют относи­тельно небольшую длину и сильно ветвятся вблизи тела нейрона. Круп­ные стволовые дендриты содержат все виды органелл, по мере сниже­ния их диаметра в них исчезают элементы комплекса Гольджи, а цис­терны грЭПС сохраняются. Нейротрубочки и нейрофиламеиты много­численны и располагаются параллельными пучками; они обеспечивают дендритный транспорт, который осуществляется из тела клетки вдоль дендритов со скоростью около 3 мм/ч.

Аксон (нейрит) - длинный (у человека от 1 мм до 1.5 м) отрос­ток, по которому нервные импульсы передаются на другие нейроны или клетки рабочих органов (мышц, желез). В крупных нейронах аксон может содержать до 99% объема цитоплазмы. Аксон отходит от утол­щенного участка тела нейрона, не содержащего хроматофильной суб­станции, - аксонного холмика, в котором генерируются нервные им­пульсы; почти на всем протяжении он покрыт глиальной оболочкой. Центральная часть цитоплазмы аксона (аксоплазмы) содержит пучки нейрофиламентов, ориентированных вдоль его длины, ближе к перифе­рии располагаются пучки микротрубочек, цистерны ЭПС, элементы комплекса Гольджи, митохондрии, мембранные пузырьки, сложная сеть микрофиламентов. Тельца Ниссля в аксоне отсутствуют. В конечном участке аксон нередко распадается на тонкие веточки (телодендрии). Аксон заканчивается специализированными терминалами (нервными окончаниями) на других нейронах или клетках рабочих органов.

КЛАССИФИКАЦИЯ НЕЙРОНОВ

Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа: униполярные, биполярные и мультиполярные.

1. Униполярные нейроны имеют один отросток. По мнению боль­шинства исследователей, в нервной системе человека и других млеко­питающих они не встречаются. Некоторые авторы к таким клеткам все же относят омакринные нейроны сетчатки глаза и межклубочковые ней­роны обонятельной луковицы.

2. Биполярные нейроны имеют два отростка - аксон и дендрит. обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клет­ки сетчатки глаза, спирального и вестибулярного ганглиев.

Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в ви­де единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.

3. Мультиполярные нейроны имеют три или большее число от­ростков: аксон и несколько дендритов. Они наиболее распространены в нервной системе человека. Описано до 80 вариантов этих клеток: ве­ретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным ак­соном) и клетки Гольджи II типа (с коротким аксоном).

Нервная ткань. Периферический нерв.

Эволюционно наиболее молодая ткань организма человека

Участвует в построении органов нервной системы

Вместе с эндокринной системой обеспечивает нейрогуморальную регуляцию деятельности тканей и органов, коррелирует и интегрирует их функции в пределах организма. А также адаптирует их к изменяющимся условиям среды.

Нерв ткань воспринимает раздражения, приходит в состояние возбуждения , формирует и проводит нервные импульсы.

Находится в провизорном состоянии. Не достигла дефинитивного (не сформировалась окончательно) развития и как таковая не существует , так как процесс ее образования шел одновременно с формированием органов нервной системы.

Провизор

ность нервной ткани подтверждается апоптозами, т.е запрограммирована гибелью большого количества клеток. Ежегодно мы теряем до 10 млн клеток нервной ткани.

1) Нервные клетки (нейроциты/нейроны)

2) Вспомогательные клетки (нейроглия)

Процесс развития нервной ткани в эмбриональном периоде связан с преобразованием нервной закладки. Она выделяется в составе дорсальной эктодермы и обособляется из нее в виде нервной пластинки .

Нервная пластинка прогибается по средней линии, образуя нервный желобок. Его края смыкаются , образуя нервную трубку.

Часть клеток нервной пластинки не входят в состав нерв трубки и располагаются по бокам от нее,образуя нервный гребень.

Вначале нерв трубка состоит из одного слоя цилиндрических клеток, затем становится многослойной.

Выделяют три слоя:

1) Внутренний / эпендимный - клетки имеют длинный отросток , клетки пронизывают толщу нервной трубки, на периферии образуют разграничительную мембрану

2) Мантийный слой - тоже клеточный, два вида клеток

- нейробласты (из них формируются нервные клетки)

- спонгеобласты (из них - клетки астроцитной нейроглии и алигодендроглии)

На основе этой зоны формируется серое веществоспинного и головного мозга.

Отростки клеток мантийной зоны уходят в краевую вуаль.

3) Наружный (краевая вуаль)

Не имеет клеточного строения. На ее основе формируется белое вещество спинного и головного мозга.

Клетки ганглеозной пластинки частвуют в образовпнии нервных клеток вегетативных и спинальных ганглиев мозгового вещества надпочечников и пигментных клеток.

Характеристика нервных клеток

Нервные клетки являются структурно-функциональной единицей нервной ткани. Они обеспечивают ее способность воспринимать раздражение, возбуждаться, формировать и проводить нервные импульсы. Исходя из выполняемой функции, нервные клетки имеют специфическое строение.


В нейроне различают:

1) Тело клетки (перикареон)

2) Два вида отростков: аксон и дендрит

1) В состав перикореона входит клеточная оболочка, ядро и цитоплазма с органеллами и элементами цитоскелета.

Клеточная оболочка обеспечивает клетке защитные ф ункции. Хорошо проницаема для различных ионов, обладает высокой возбудимостью , быстро проводит волну деполяризации (нервные импульсы)

Ядро клетки - крупное, лежит эксцентрично (в центре), светлое, с обилием пылевидного хроматина. В ядре круглое ядрышко, что придает сходства ядру с совиным глазом. Ядро практически всегда одно.

В нервных клетках ганглией предстательной железы мужчин и стенки матки женщин обнаруживается до 15 ядер.

В цитоплазме присутствуют все общеклеточные органеллы, особенно хорошо развиты белоксинтезирующие органеллы.

В цитоплазме имеются локальные скопления гранулярной ЭПС с высоким содержанием рибосом и РНК. Эти участки окрашиваются в толлуидиновый синий цвет (по Нисселю) и имеют вид гранул (тигроид). Наличие тигроидов в клетке - показатель высокой степени его зрелости или дифференцировки и показатель высокой ф ункциональной активности.

Комплекс гольджи чаще располагается в том месте цитоплазмы, где от клетки отходит аксон. В его цитоплазме нет тигроида. Участок с к. Гольджи - аксонный холмик . Наличие к. Гольджи - актвный транспорт белков из тела клетки в аксон .

Митохондрии образуют крупные скопения в местах контакта соседних нервных кл еток.

Метаболизм нервных клеток носит аэробный характер, поэтому особенно чувствительны к гипоксии.

Лизосомы обеспечивают процесс внутриклеточной регенерации , лизируют состарившиеся клеточные органеллы .

Клеточный центр лежит между ядром и дендритами . Нервные клетки не делятся . Основной механизм регенерации - внутриклеточная регенерация .

Цитоскелет представлен нейротрубочкам и и нейрофибриллами , образуют густую сеть перикореони и поддерживают форму клетки. В аксоне лежат продольно, направляют транспортные потоки между телом и отростками нервной клетки.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: