Определение lim. Предел функции – определения, теоремы и свойства. Понятие предела по Коши

(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0
2) для любой последовательности { x n } , сходящейся к x 0 :
, элементы которой принадлежат окрестности ,
последовательность { f(x n )} сходится к a :
.

Здесь x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.


.

Второе определение предела функции (по Коши)

Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δ ε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δ ε - окрестности точки x 0 :
,
значения функции f(x) принадлежат ε - окрестности точки a :
.

Точки x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любой окрестности U(a) точки a существует такая проколотая окрестность точки x 0 , что для всех x , принадлежащих проколотой окрестности точки x 0 :
,
значения функции f(x) принадлежат окрестности U(a) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение - ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки ».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f(x) определена на некоторой проколотой окрестности точки x 0 . Точки a и x 0 могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне .
Число a не является пределом функции f(x) в точке x 0 : ,
если существует такая последовательность { x n } , сходящаяся к x 0 :
,
элементы которой принадлежат окрестности ,
что последовательность { f(x n )} не сходится к a :
.
.

По Коши .
Число a не является пределом функции f(x) в точке x 0 :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ - окрестности точки x 0 :
,
что значение функции f(x) не принадлежит ε - окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Функция f(x) = sin(1/x) не имеет предела при x → 0.

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n - натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Теорема доказана.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

Сегодня рассмотрим подборку новых задач на нахождение предела в точке. Начнем с простых примеров на подстановку значения, чаще всего рассматривают в 11 классе школьной программы по математике.
Далее остановимся и проанализируем пределы с неопределенностями, методы раскрытия неопределенностей, применением первой и второй важных границ и их последствий.
Приведенные примеры полностью не охватят всей темы, но на многие вопросы внесут ясность.

Найти предел функции в точке:

Пример 46. Предел функции в точке определяем подстановкой

Так как знаменатель дроби не превращается в ноль то такую задача под силу решить каждому выпускнику школы.

Пример 47. Имеем долю полиномов, кроме того знаменатель не содержит особенности (не равен нулю).
Еще одна задача, фактически за 11 класс.

Пример 48. Методом подстановки определяем предел функции
Из условия следует, что граница функции равна двум, если переменная стремится к бесконечности.

Пример 49. Прямая подстановка x=2 показывает, что граница в точке имеет особенность {0/0} . Это означает, что и числитель и знаменатель скрыто содержат (x-2) .
Выполняем разложение полиномов на простые множители, а потом сокращаем дробь на указанный множитель (x-2) .
Предел дроби, которая останется, находим методом подстановки.

Пример 50. Предел функции в точке имеет особенность типа {0/0} .
Избавляемся разницы корней методом умножения на сумму корней (сопряженное выражение), полином раскладываем.
Далее, упростив функцию, находим значение предела в единице.

Пример 51. Рассмотрим задачу на сложные пределы.
До сих пор от иррациональности избавлялись методом умножения на сопряженное выражение.
Здесь же, в знаменателе, имеем корень кубический, поэтому нужно использовать формулу разности кубов.
Все остальные преобразования повторяются от условия к условию.
Полином раскладываем на простые множители,
далее сокращаем на множитель, который вносит особенность (0)
и подстановкой x=-3 находим предел функции в точке

Пример 52. Особенность вида {0/0} раскрываем с помощью первого замечательного предела и его последствий.
Сначала разницу синусов распишем согласно тригонометрической формуле
sin(7x)-sin(3x)=2sin(2x)cos(5x).
Далее числитель и знаменатель дроби дополняем выражениями, которые необходимы для выделения важных пределов.
Переходим к произведению пределов и оцениваем вложение каждого множителя.


Здесь использовали первый замечательный предел:

и следствия из него


где a и b – произвольные числа.

Пример 53. Чтобы раскрыть неопределенность при переменной стремящейся к нулю, используем второй замечательный предел.
Чтобы выделить экспоненту, приводим показатель к 2-му замечательному пределу, а все остальное, что останется в предельном переходе, даст степень експоненты.


Здесь использовали следствие из второго замечатеьного предела:

Вычислить предел функции в точке:

Пример 54. Нужно найти предел функции в точке. Простая подстановка значения показывает, что имеем деление нулей.
Для ее раскрытия разложим на простые множители полиномы и выполним сокращение на множитель, который вносит особенность (х+2) .
Однако числитель дальше содержит (x+2) , а это значит, что при x=-2 граница равна нулю.

Пример 55. Имеем дробную функцию - в числителе разница корней, в знаменателе - поленом.
Прямая подстановка дает особенность вида {0/0} .
Переменная стремится к минус единице, а это значит, что следует искать и избавляться особенности вида (x+1) .
Для этого избавляемся иррациональности умножением на сумму корней, а квадратичную функцию раскладываем на простые множители.
После всех сокращений методом подстановки определяем предел функции в точке

Пример 56. С виду подлимитной функции можно ошибочно заключить, что нужно применить первый предел, но вычисления показали, что все гораздо проще.
Сначала распишем сумму синусов в знаменателе sin(2x)+sin(6x)=2sin(4x)*cos(2x).
Далее расписываем tg(2x) , и синус двойного угла sin(4x)=2sin(2x)cos (2x).
Синусы упрощаем и методом подстановки вычисляем предел дроби

Пример 57. Задача на умение использовать вторую замечательный предел:
суть заключается в том, что следует выделить ту часть, которая дает экспоненту.
Остальное, что останется в показателе в предельном переходе даст степень экспоненты.


На этом разбор задач на пределы функций и последовательностей не заканчивается.
В настоящее время подготовлено более 150 готовых ответов к пределам функций, поэтому изучайте и делитесь ссылками на материалы с однокласниками.

Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Рассмотрим функцию %%f(x)%%, определенную, по крайней мере, в некоторой проколотой окрестности %%\stackrel{\circ}{\text{U}}(a)%% точки %%a \in \overline{\mathbb{R}}%% расширенной числовой прямой.

Понятие предела по Коши

Число %%A \in \mathbb{R}%% называют пределом функции %%f(x)%% в точке %%a \in \mathbb{R}%% (или при %%x%%, стремящемся к %%a \in \mathbb{R}%%), если, каково бы ни было положительное число %%\varepsilon%%, найдется положительное число %%\delta%%, такое, что для всех точек проколотой %%\delta%%-окрестности точки %%a%% значения функции принадлежат %%\varepsilon%%-окрестности точки %%A%%, или

$$ A = \lim\limits_{x \to a}{f(x)} \Leftrightarrow \forall\varepsilon > 0 ~\exists \delta > 0 \big(x \in \stackrel{\circ}{\text{U}}_\delta(a) \Rightarrow f(x) \in \text{U}_\varepsilon (A) \big) $$

Это определение называется определением на языке %%\varepsilon%% и %%\delta%%, предложено французским математиком Огюстеном Коши и используется с начала XIX века по настоящее время, поскольку обладает необходимой математической строгостью и точностью.

Комбинируя различные окрестности точки %%a%% вида %%\stackrel{\circ}{\text{U}}_\delta(a), \text{U}_\delta (\infty), \text{U}_\delta (-\infty), \text{U}_\delta (+\infty), \text{U}_\delta^+ (a), \text{U}_\delta^- (a)%% с окрестностями %%\text{U}_\varepsilon (A), \text{U}_\varepsilon (\infty), \text{U}_\varepsilon (+\infty), \text{U}_\varepsilon (-\infty)%%, получим 24 определения предела по Коши.

Геометрический смысл

Геометрический смысл предела функции

Выясним, в чем заключается геометрический смысл предела функции в точке. Построим график функции %%y = f(x)%% и отметим на нем точки %%x = a%% и %%y = A%%.

Предел функции %%y = f(x)%% в точке %%x \to a%% существует и равен A, если для любой %%\varepsilon%%-окрестности точки %%A%% можно указать такую %%\delta%%-окрестность точки %%a%%, что для любого %%x%% из этой %%\delta%%-окрестности значение %%f(x)%% будет находиться в %%\varepsilon%%-окрестности точки %%A%%.

Отметим, что по определению предела функции по Коши для существования предела при %%x \to a%% не важно, какое значение принимает функция в самой точке %%a%%. Можно привести примеры, когда функция не определена при %%x = a%% или принимает значение, отличное от %%A%%. Тем не менее предел может быть равен %%A%%.

Определение предела по Гейне

Элемент %%A \in \overline{\mathbb{R}}%% называется пределом функции %%f(x)%% при %% x \to a, a \in \overline{\mathbb{R}}%%, если для любой последовательности %%\{x_n\} \to a%% из области определения, последовательность соответствующих значений %%\big\{f(x_n)\big\}%% стремится к %%A%%.

Определение предела по Гейне удобно использовать, когда возникают сомнения в существовании предела функции в данной точке. Если можно построить хотя бы одну последовательность %%\{x_n\}%% с пределом в точке %%a%% такую, что последовательность %%\big\{f(x_n)\big\}%% не имеет предела, то можно сделать вывод о том, что функция %%f(x)%% не имеет предела в этой точке. Если для двух различных последовательностей %%\{x"_n\}%% и %%\{x""_n\}%%, имеющих одинаковый предел %%a%%, последовательности %%\big\{f(x"_n)\big\}%% и %%\big\{f(x""_n)\big\}%% имеют различные пределы, то в этом случае также не существует предел функции %%f(x)%%.

Пример

Пусть %%f(x) = \sin(1/x)%%. Проверим, существует ли предел данной функции в точке %%a = 0%%.

Выберем сначала сходящуюся к этой точке последовательность $$ \{x_n\} = \left\{\frac{(-1)^n}{n\pi}\right\}. $$

Ясно, что %%x_n \ne 0~\forall~n \in \mathbb{N}%% и %%\lim {x_n} = 0%%. Тогда %%f(x_n) = \sin{\left((-1)^n n\pi\right)} \equiv 0%% и %%\lim\big\{f(x_n)\big\} = 0%%.

Затем возьмем сходящуюся к той же точке последовательность $$ x"_n = \left\{ \frac{2}{(4n + 1)\pi} \right\}, $$

для которой %%\lim{x"_n} = +0%%, %%f(x"_n) = \sin{\big((4n + 1)\pi/2\big)} \equiv 1%% и %%\lim\big\{f(x"_n)\big\} = 1%%. Аналогично для последовательности $$ x""_n = \left\{-\frac{2}{(4n + 1)\pi} \right\}, $$

также сходящейся к точке %%x = 0%%, %%\lim\big\{f(x""_n)\big\} = -1%%.

Все три последовательности дали разные результаты, что противоречит условию определения по Гейне, т.е. данная функция не имеет предела в точке %%x = 0%%.

Теорема

Определение предела по Коши и по Гейне эквивалентны.

Постоянное число а называется пределом последовательности {x n }, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

|x n - a| < ε. (6.1)

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a- ε < x n < a + ε, (6.2)

которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a- ε, a+ ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предел функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→ a, если, задав произвольное как угодно малое положительное число ε , можно найти такое δ >0 (зависящее от ε ), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 <
x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.

Это определение называют определением предел функции по Коши, или “на языке ε - δ “.

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

. (6.3)

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ , 0*∞ , - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2. (6.7)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

(6.8)

(6.9)

Теорема 3.

(6.10)

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→ a и при этом xa-0. Числа и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

. (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

,

и непрерывной слева в точке x o, если предел

.

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 » 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n N имеет место неравенство |x n -1| < ε.

Возьмем любое e > 0. Так как ; x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n< e . Отсюда n>1/ e и, следовательно, за N можно принять целую часть от 1/ e , N = E(1/ e ). Мы тем самым доказали, что предел .

Пример 3 .2 . Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

.

Пример 3.3 . . Найти .

Решение. .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3 .4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞ . Преобразуем формулу общего члена:

.

Пример 3 .5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3 .6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin p n = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Виджет для вычисления пределов on-line

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел. А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Правила ввода функций: sqrt(x)- квадратный корень, cbrt(x) - кубический корень, exp(x) - экспонента, ln(x) - натуральный логарифм, sin(x) - синус, cos(x) - косинус, tan(x) - тангенс, cot(x) - котангенс, arcsin(x) - арксинус, arccos(x) - арккосинус, arctan(x) - арктангенс. Знаки: * умножения, / деления, ^ возведение в степень, вместо бесконечности Infinity. Пример: функция вводится так sqrt(tan(x/2)).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: