Особенности протекания реакций в органической химии. Типы химических реакций в органической химии — Гипермаркет знаний. Классификация химических реакций по механизмам

Разделение химических реакций на органические и неорганические является довольно условным. К типичным органическим реакциям относят те, в которых участвует хотя бы одно органическое соединение, которое в ходе реакции изменяет свою молекулярную структуру. Поэтому реакции, в которых молекула органического соединения выступает в качестве растворителя или лиганда, к типичным органическим реакциям не относятся.

Органические реакции, так же, как и неорганические, могут быть классифицированы по общим признакам на реакции переноса:

– единичного электрона (окислительно-восстановительные);

– электронных пар (реакции комплексообразования);

– протона (кислотно-основные реакции);

– атомных групп без изменения числа связей (реакции замещения и перегруппировки);

– атомных групп с изменением числа связей (реакции присоединения, элиминирования, разложения).

Вместе с тем, многообразие и своеобразие органических реакций приводит к необходимости их классификации и по другим признакам:

– изменению числа частиц в ходе реакции;

– характеру разрыва связей;

– электронной природе реагентов;

– механизму элементарных стадий;

– типу активирования;

– частным признакам;

– молекулярности реакций.

1) По изменению числа частиц в ходе реакции (или по типу превращения субстрата) различают реакции замещения, присоединения, элиминирования (отщепления), разложения и перегруппировки.

В случае реакций замещения один атом (или группа атомов) в молекуле субстрата замещается другим атомом (или группой атомов), в результате чего образуется новое соединение:

СН 3 СН 3 + С1 2  СН 3 СН 2 С1 + НC1

этан хлор хлорэтан хлороводород

СН 3 СН 2 С1 + NaOH (водный р-р)  СН 3 СН 2 ОН + NaC1

хлорэтан гидроксид натрия этанол хлорид натрия

В символе механизма реакции замещения обозначаются латинской буквой S (от англ. «substitution» – замещение).

При протекании реакций присоединения из двух (или нескольких) молекул образуется одно новое вещество. При этом реагент присоединяется по кратной связи (С= С, СС, С= О, СN) молекулы субстрата:

CH 2 = CH 2 + HBr → CH 2 Br СH 3

этилен бромоводород бромэтан

С учетом символики механизма процессов реакции присоединения обозначаются буквой A или сочетанием Ad (от англ. «addition» – присоединение).

В результате реакции элиминирования (отщепления) от субстрата отщепляется молекула (или частица) и образуется новое органическое вещество, содержащее кратную связь:

СН 3 СН 2 ОН СН 2 = СН 2 + Н 2 О

этанол этилен вода

В символе механизма реакции замещения обозначаются буквой E (от англ. «elimination» – элиминирование, отщепление).

Реакции разложения протекают, как правило, с разрывом связей углерод – углерод (СС) и приводят к образованию из одного органическоговещества двух или более веществ более простого строения:

СН 3 СН(ОН) СООН
СН 3 СНО + HCООН

молочная кислота ацетальдегид муравьиная кислота

Перегруппировка – реакция, в ходе которой структура субстрата меняется с образованием продукта, который является изомерным исходному, то есть без изменения молекулярной формулы. Этот тип превращения обозначают латинской буквой R (от английского «rearrangement» – перегруппировка).

Например, 1-хлорпропан перегруппировывается в изомерное соединение 2-хлорпропан в присутствии хлорида алюминия, выступающего в качестве катализатора.

СН 3 СН 2 СН 2 С1  СН 3 СНС1 СН 3

1-хлорпропан 2-хлорпропан

2) По характеру разрыва связей различают гомолитические (радикальные), гетеролитические (ионные) и синхронные реакции.

Ковалентная связь между атомами может быть разорвана таким образом, что электронная пара связи делится между двумя атомами, образующиеся частицы получают по одному электрону и становятся свободными радикалами – говорят, что происходит гомолитическое расщепление. Новая связь при этом образуется за счёт электронов реагента и субстрата.

Радикальные реакции особенно распространены в превращениях алканов (хлорирование, нитрование и др.).

При гетеролитическом способе разрыва связи общая электронная пара передаётся одному из атомов, образовавшиеся частицы становятся ионами, обладают целочисленным электрическим зарядом и подчиняются законам электростатического притяжения и отталкивания.

Гетеролитические реакции по электронной природе реагентов подразделяются на электрофильные (например, присоединение по кратным связям в алкенах или замещение водорода в ароматических соединениях) и нуклеофильные (например, гидролиз галогенпроизводных или взаимодействие спиртов с галогеноводородами).

Каков механизм реакции – радикальный или ионный, можно установить, изучив экспериментальные условия, благоприятствующие течению реакции.

Так, радикальные реакции, сопровождающиеся гомолитическим разрывом связи:

– ускоряются при облучении h, в условиях высоких температур реакции в присутствии веществ, легко разлагающихся с образованием свободных радикалов (например, перекиси);

– замедляются в присутствии веществ, легко реагирующих со свободными радикалами (гидрохинон, дифениламин);

– обычно проходят в неполярных растворителях или газовой фазе;

– часто являются автокаталитическими и характеризуются наличием индукционного периода.

Ионные реакции, сопровождающиеся гетеролитическим разрывом связи:

– ускоряются в присутствии кислот или оснований и не подвержены влиянию света или свободных радикалов;

– не подвержены влиянию акцепторов свободных радикалов;

– на скорость и направление реакции влияет природа растворителя;

– редко идут в газовой фазе.

Синхронные реакции протекают без промежуточного образования ионов и радикалов: разрыв старых и образование новых связей происходят синхронно (одновременно). Примером синхронной реакции является диеновый синтез – реакция Дильса-Альдера.

Обратите внимание, особая стрелка, которую применяют для обозначения гомолитического разрыва ковалентной связи, означает перемещение одного электрона.

3) В зависимости от электронной природы реагентов реакции подразделяют на нуклеофильные, электрофильные и свободнорадикальные.

Свободные радикалы – это электронейтральные частицы, имеющие неспаренные электроны, например: Cl  ,  NO 2 ,
.

В символе механизма реакции радикальные реакции обозначаются нижним индексом R.

Нуклеофильные реагенты – это одно- или многоатомные анионы или электронейтральные молекулы, имеющие центры с повышенным частичным отрицательным зарядом. К ним относятся такие анионы и нейтральные молекулы, как HO – , RO – , Cl – , Br – , RCOO – , CN – , R – , NH 3 , C 2 H 5 OH и т.д.

В символе механизма реакции радикальные реакции обозначаются нижним индексом N.

Электрофильные реагенты – это катионы, простые или сложные молекулы, которые сами по себе или же в присутствии катализатора обладают повышенным сродством к электронной паре или отрицательно заряженным центрам молекул. К ним относятся катионы H + , Cl + , + NO 2 , + SO 3 H, R + и молекулы со свободными орбиталями: AlCl 3 , ZnCl 2 и т.п.

В символе механизма электрофильные реакции обозначаются нижним индексом E.

Нуклеофилы представляют собой доноры электронов, а электрофилы – их акцепторы.

Электрофильные и нуклеофильные реакции можно рассматривать как кислотно-основные; в основе такого подхода лежит теория обобщённых кислот и оснований (кислоты Льюиса – это акцептор электронной пары, основание Льюиса – донор электронной пары).

Однако следует различать понятия электрофильности и кислотности, так же как нуклеофильности и основности, ибо они не идентичны. Например, основность отражает сродство к протону, а нуклеофильность оценивается чаще всего как сродство к атому углерода:

ОН – + Н +  Н 2 О гидроксид-ион как основание

ОН – + СН 3 +  СН 3 ОН гидроксид-ион как нуклеофил

4) В зависимости от механизма элементарных стадий реакции органических соединений могут быть самыми различными: нуклеофильное замещение S N , электрофильное замещение S E , свободнорадикальное замещение S R , парное отщепление, или элиминирование Е, нуклеофильное или электрофильное присоединение Ad E и Ad N и т. д.

5) По типу активирования реакции подразделяют на каталитические, некаталитические и фотохимические.

Каталитическими называют реакции, протекание которых требует присутствия катализатора. Если в качестве катализатора выступает кислота, речь идёт о кислотном катализе. К кислотно-катализируемым относят, например, реакции этерификации с образованием сложных эфиров, дегидратации спиртов с образованием непредельных соединений и т.д.

Если катализатором является основание, то говорят об основном катализе (как показано ниже, это характерно для метанолиза триацилглицеринов).

Некаталитическими являются реакции, которые не требуют присутствия катализатора. Они ускоряются только при повышении температуры, поэтому их иногда называют термическими, хотя этот термин не используется широко. Исходными реагентами в этих реакциях служат высокополярные или заряженные частицы. Это могут быть, например, реакции гидролиза, кислотно-основные взаимодействия.

Фотохимические реакции активируются облучением (фотонами, h); эти реакции не протекают в темноте даже при значительном нагревании. Эффективность процесса облучения измеряется квантовым выходом, который определяется как число прореагировавших молекул реагента на один поглощённый квант света. Некоторые реакции характеризуются квантовым выходом меньше единицы, для других, например для цепных реакций галогенирования алканов, этот выход может достигать 10 6 .

6) По частным признакам классификация реакций чрезвычайно разнообразна: гидратация и дегидратация, гидрирование и дегидрирование, нитрование, сульфирование, галогенирование, ацилирование, алкилирование, карбоксилирование и декарбоксилирование, енолизация, замыкание и размыкание циклов, изомеризация, окислительная деструкция, пиролиз, полимеризация, конденсация и др.

7) Молекулярность органической реакции определяют по числу молекул, в которых происходит реальное изменение ковалентных связей на самой медленной стадии реакции, определяющей её скорость. Различают следующие виды реакций:

– мономолекулярные – в лимитирующей стадии участвует одна молекула;

– бимолекулярные – таких молекул две и т.д.

Молекулярности выше трех, как правило, не бывает. Исключение составляют топохимические (твердофазные) реакции.

Молекулярность отражают в символе механизма реакции, добавляя соответствующую цифру, например: S N 2 – замещение нуклеофильное бимолекулярное, S E 1 – замещение электрофильное мономолекулярное; Е1 – элиминирование мономолекулярное и т.д.

Рассмотрим несколько примеров.

Пример 1 . Атомы водорода в алканах могут быть замещены на атомы галогенов:

СН 4 + С1 2  СН 3 С1 + НC1

Реакция идет по цепному радикальному механизму (атакующая частица – радикал хлора C1 ). Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая реакция; тип активирования – фотохимический или термический; по частным признакам – галогенирование; механизм реакции – S R .

Пример 2 . Атомы водорода в алканах могут быть замещены на нитрогруппу. Эта реакция носит название реакции нитрования и идет по схеме:

RH + HОNО 2  RNО 2 + Н 2 О

Реакция нитрования в алканах также идет по цепному радикальному механизму. Значит по электронной природе реагентов это реакция свободнорадикальная; по изменению числа частиц – реакция замещения; по характеру разрыва связи – гомолитическая; тип активирования – термический; по частным признакам – нитрование; по механизму – S R .

Пример 3 . Алкены легко присоединяют по двойной связи галогеноводород:

CH 3 CH = CH 2 + HBr → CH 3 CHBr СH 3 .

Реакция может идти по механизму электрофильного присоединения, а значит, по электронной природе реагентов – реакция электрофильная (атакующая частица - Н +); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гетеролитическая; по частным признакам – гидрогалогенирование; по механизму – Ad E .

Эта же реакция в присутствии перекисей может идти по радикальному механизму, тогда по электронной природе реагентов – реакция будет радикальной (атакующая частица – Br ); по изменению числа частиц – реакция присоединения; по характеру разрыва связи – гомолитическая; по частным признакам – гидрогалогенирование; по механизму – Ad R .

Пример 4 . Реакция щелочного гидролиза алкилгалогенидов протекает по механизму бимолекулярного нуклеофильного замещения.

СН 3 СН 2 I + NaОН  СН 3 СН 2 ОН + NaI

Значит, по электронной природе реагентов – реакция нуклеофильная (атакующая частица – ОН –); по изменению числа частиц – реакция замещения; по характеру разрыва связи – гетеролитическая, по частным признакам – гидролиз; по механизму – S N 2.

Пример 5 . При взаимодействии алкилгалогенидов со спиртовыми растворами щелочей образуются алкены.

СН 3 СН 2 СН 2 Br
[СН 3 СН 2 С + Н 2 ]  СН 3 СН= СН 2 + H +

Это объясняется тем, что образующийся карбкатион стабилизируется не присоединением иона гидроксила, концентрация которого в спирте незначительна, а отщеплением протона от соседнего атома углерода. Реакция по изменению числа частиц – отщепление; по характеру разрыва связи – гетеролитическая; по частным признакам – дегидрогалогенирование; по механизму – элиминирование Е.

Контрольные вопросы

1. Перечислите признаки, по которым классифицируют органические реакции.

2. Как можно классифицировать следующие реакции:

– сульфирование толуола;

– взаимодействие этанола и серной кислоты с образованием этилена;

– бромирование пропена;

– синтез маргарина из растительного масла.

Чаще всего органи­ческие реакции классифицируют по типу разрыва химических связей в реагирующих частицах. Из их числа можно выделить две большие группы реакций - радикальные и ионные ./>

Радикальные реакции - это процессы, идущие с гемолитическим разрывом ковалентной связи. При гемолитическом разрыве пара электронов, образующая связь, делится таким образом, что каждая из образующихся частиц получает по одному электрону. В результате гемолитического разрыва образуются свободные ра­дикалы:/>

X:Y → X . +.Y

Нейтральный атом или частица с неспаренным электроном называется свободным радикалом.

Ионные реакции - это процессы, идущие с гетеролитическим разрывом ковалентных связей, когда оба электрона связи остают­ся с одной из ранее связанных частиц./>

X:Y → X + + :Y —

В результате гетеролитического разрыва связи получаются за­ряженные частицы: нуклеофильная и электрофильная .

Нуклеофильная частица (нуклеофил) - это частица, имеющая пару электронов на внешнем электронном уровне. За счет пары электронов нуклеофил способен образовывать новую ковалентную связь./>

Электрофильная частица (электрофил) — это частица, имеющая свободную орбиталь на внешнем электронном уровне. Электрофил представляет незаполненные, вакантные орбитали для образования ковалентной связи за счет электронов той части­цы, с которой он взаимодействует./>

Частица с положительным зарядом на атоме углерода назы­вается карбокатионом .

Согласно другой классификации, органические реакции делятся на термические , являющиеся результатом столкновений моле­кул при их тепловом движении, и фотохимические , при которых молекулы, поглощая квант света Av, переходят в более высокие энергетические состояния и далее подвергаются химическим пре­вращениям. Для одних и тех же исходных соединений термиче­ские и фотохимические реакции обычно приводят к различным продуктам. Классическим примером здесь является термическое и фотохимическое хлорирование бензола - в первом случае образуется хлорбензол, во втором случае - гексахлорциклогексан.

Кроме того, в органической химии реакции часто классифици­руются так же, как и в неорганической химии - по структурно­му признаку . В органической химии все структурные изменения рассматриваются относительно атома (или атомов) углерода, уча­ствующих в реакции. Наиболее часто встречаются следующие ти­пы превращений:

1) присоединение R-CH=CH 2 + XY/>→ RCHX-CH 2 Y;

2) замещение R-CH 2 X + Y/>→ R-CH 2 Y + X;

3) отщепление R-CHX-CH 2 Y/>→ R-CH=CH 2 + XY;

(элиминирование)

4) полимеризация n (СН 2 =СН 2) />→ (-CH 2 -СН 2 -)n

В большинстве случаев элиминируемая/> молекула образуется при соединении двух частиц, отщепленных от сосед­них атомов углерода. Такой процесс называется 1,2-элиминированием.

Кроме приведенных четырех типов простейших механизмов, реакций на практике употребляются еще следующие обозначения некоторых классов реакций, приведенные ниже.

Окисление - реакция, при которой под действием окисляю­щего реагента вещество соединяется с кислородом (либо другим электроотрицательным элементом, например, галогеном) или те­ряет водород (в виде воды или молекулярного водорода)./>

Действие окисляющего реагента (окисление) обозначается в схеме реакции символом [О], а действие восстанавливающего реагента (восстановление) - сим­волом [Н].

Гидрирование — реакция, представляющая собой частный случай восстановления. Водород присоединяется к кратной связи или ароматическому ядру в присутствии катализатора. />

Конденсация - реакция, при которой происходит рост цепи. Сначала происходит присоединение, за которым обычно следует элиминирование./>

Пиролиз - реакция, при которой соединение подвергается термическому разложению без доступа воздуха (и обычно при пониженном давлении) с образованием одного или нескольких продуктов. Примером пиролиза может служить термическое разложение каменного угля. Иногда вместо пиролиза употребляется термин "сухая перегонка" (в случае разложения каменного угля используется также термин "карбонизация")./>

Некоторые реакции получают свои названия по продуктам, к которым они приводят. Так, если в молекулу вводится метильная группа, то говорят о метилировании , если ацетил - то об ацетилировании , если хлор - то о хлорировании и т.д.

>> Химия: Типы химических реакций в органической химии

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации). Очевидно, что все многообразие реакций органических соединений невозможно свести в рамки предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам из курса неорганической химии классификациями реакций, протекающих между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом, а другой компонент реакции условно рассматривают как реагент.

Реакции замещения

Реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов, называются реакциями замещения.

В реакции замещения вступают предельные и ароматические соединения, такие, как, например, алканы, циклоалканы или арены.

Приведем примеры таких реакций.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Органическая химия возникла в процессе изучения тех веществ, которые добывались из растительных и животных организмов, состоящих в основной своей массе из органических соединений. Именно это определило чисто историческое название таких соединений (организм – органический). Некоторые технологии органической химии возникли еще в глубокой древности, например, спиртовое и уксуснокислое брожение, использование органических красителей индиго и ализарина, процессы дубления кожи и др. В течение долгого времени химики умели лишь выделять и анализировать органические соединения, но не могли получать их искусственно, в результате чего возникло убеждение, что органические соединения могут быть получены только с помощью живых организмов.

Начиная со второй половины 19 в. методы органического синтеза стали интенсивно развиваться, что позволило постепенно преодолеть устоявшееся заблуждение. Впервые синтез органических соединений в лаборатории удалось осуществить Фридриху Велеру (в период 1824–1828), при гидролизе дициана он получил щавелевую кислоту, выделяемую до этого из растений, а при нагревании циановокислого аммония за счет перестройки молекулы (см . ИЗОМЕРИЯ) получил мочевину – продукт жизнедеятельности живых организмов (рис. 1. Первые синтезы органических соединений).

Сейчас многие из соединений, присутствующих в живых организмах, можно получить в лаборатории, кроме того, химики постоянно получают органические соединения, не встречающиеся в живой природе.

Становление органической химии как самостоятельной науки произошло в середине 19 в., когда благодаря усилиям ученых-химиков, стали формироваться представления о строении органических соединений. Наиболее заметную роль сыграли работы Э.Франкланда (определил понятие валентности), Ф.Кекуле (установил четырехвалентность углерода и строение бензола), А. Купера (предложил используемый и поныне символ валентной черты, соединяющей атомы при изображении структурных формул) ,А.М.Бутлерова (создал теорию химического строения, в основе которой лежит положение, согласно которому свойства соединения определяются не только его составом, но и тем, в каком порядке соединены атомы).

Следующий важный этап в развитии органической химии связан с работами Я.Вант-Гоффа , который изменил сам способ мышления химиков, предложив перейти от плоского изображения структурных формул к пространственному расположению атомов в молекуле, в итоге химики стали рассматривать молекулы как объемные тела.

Представления о природе химической связи в органических соединениях впервые сформулировал Г.Льюис , предположивший, что атомы в молекуле связаны с помощью электронов: пара обобщенных электронов создает простую связь, а две или три пары образуют, соответственно, двойную и тройную связь. Рассматривая распределение электронной плотности в молекулах (например, ее смещение под влиянием электроотрицательных атомов O, Cl и др.) химики смогли объяснить реакционную способность многих соединений, т.е. возможность их участия в тех или иных реакциях.

Учет свойств электрона, определяемых квантовой механикой, привел к развитию квантовой химии, использующей представления о молекулярных орбиталях . Сейчас квантовая химия, показавшая на многих примерах свою предсказательную силу, успешно сотрудничает с экспериментальной органической химией.

Небольшую группу соединений углерода не относят к органическим: угольная кислота и ее соли (карбонаты), цианистоводородная кислота HCN и ее соли (цианиды), карбиды металлов и некоторые другие соединения углерода, которые изучает неорганическая химия.

Главная особенность органической химии – исключительное разнообразие соединений, которое возникло из-за способности атомов углерода соединяться друг с другом в практически неограниченном количестве, образуя молекулы в виде цепочек и циклов. Еще большее разнообразие достигается за счет включения между атомами углерода атомов кислорода, азота и др. Явление изомерии , благодаря которому молекулы, обладающие одинаковым составом, могут иметь различное строение, дополнительно увеличивает многообразие органических соединений. Сейчас известно свыше 10 млн. органических соединений, причем их количество ежегодно увеличивается на 200–300 тысяч.

Классификация органических соединений.

В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода (рис. 1). В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо . Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

Рис. 2. НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО 2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и NH 2 , такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным (рис. 3).

Рис. 4. ПРИМЕРЫ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ с функциональными группами

Все показанные производные углеводородов образуют крупные группы органических соединений: спирты, альдегиды, кислоты, галогенпроизводные и т.д. Поскольку углеводородная часть молекулы имеет очень низкую реакционную способность, химическое поведение таких соединений определяется химическими свойствами функциональных групп –ОН, -СООН, -Cl, -NO 2 и др..

2. Ненасыщенные углеводороды имеют те же варианты строения основной цепи, что и насыщенные, но содержат двойные или тройные связи между атомами углерода (рис. 6). Простейший ненасыщенный углеводород – этилен.

Рис. 6. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи (рис. 8), что позволяет синтезировать на их основе разнообразные органические соединения.

Рис. 8. ПРИСОЕДИНЕНИЕ РЕАГЕНТОВ к ненасыщенным соединениям по кратной связи

Другое важное свойство соединений с двойными связями - их способность полимеризоваться (рис. 9.), двойные связи при этом раскрываются, в результате образуются длинные углеводородные цепи.

Рис. 9. ПОЛИМЕРИЗАЦИЯ ЭТИЛЕНА

Введение в состав ненасыщенных углеводородов упомянутых ранее функциональных групп так же, как и в случае насыщенных углеводородов, приводит к соответствующим производным, которые также образуют крупные группы соответствующих органических соединений – ненасыщенные спирты, альдегиды и т.д. (рис. 10).

Рис. 10. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ с функциональными группами

Для показанных соединений приведены упрощенные названия, точное положение в молекуле кратных связей и функциональных групп указывают в названии соединения, которое составляют по специально разработанным правилам.

Химическое поведение таких соединений определяется как свойствами кратных связей, так и свойствами функциональных групп.

II. КАРБОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат циклические фрагменты, образованные только атомами углерода. Они образуют две крупные группы.

1. Алициклические (т.е. и алифатические и циклические одновременно) углеводороды. В этих соединениях циклические фрагменты могут содержать как простые, так и кратные связи, кроме того, соединения могут содержать несколько циклических фрагментов, к названию этих соединений добавляют приставку «цикло», простейшее алициклическое соединение – циклопропан (рис. 12).

Рис. 12. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов (рис. 14).

Рис. 14. ВАРИАНТЫ СОЕДИНЕНИЯ ЦИКЛОВ в алициклических соединениях: спироциклы, бициклы и каркасы. В названии спиро- и бициклических соединений указывают тот алифатический углеводород, который содержит такое же общее число атомов углерода, например, в показанном на рисунке спироцикле содержится восемь атомов углерода, поэтому его название построено на основе слова «октан». В адамантане атомы расположены так же, как в кристаллической решетке алмаза, что определило его название (греч. adamantos – алмаз)

Многие моно- и бициклические алициклические углеводороды, а также производные адамантана входят в состав нефти, их обобщенное название – нафтены.

По химическим свойствам алициклические углеводороды близки соответствующим алифатическим соединениям, однако, у них появляется дополнительное свойство, связанное с их циклическим строением: небольшие циклы (3–6-членные) способны раскрываться, присоединяя некоторые реагенты (рис. 15).

Рис. 15. РЕАКЦИИ АЛИЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ , протекающие с раскрытием цикла

Введение в состав алициклических углеводородов различных функциональных групп приводит к соответствующим производным – спиртам, кетонам и т.п. (рис. 16).

Рис. 16. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ с функциональными группами

2. Вторую крупную группу карбоциклических соединений образуют ароматические углеводороды бензольного типа, т.е содержащие в своем составе один или несколько бензольных циклов (существуют также ароматические соединения небензольного типа (см . АРОМАТИЧНОСТЬ). При этом они могут также содержать фрагменты насыщенных или ненасыщенных углеводородных цепей (рис. 18).

Рис. 18. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ .

Существуют группа соединений, в которых бензольные кольца как бы спаяны между собой, это так называемые конденсированные ароматические соединения (Рис. 20).

Рис. 20. КОНДЕНСИРОВАННЫЕ АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ

Многие ароматические соединения, в том числе и конденсированные (нафталин и его производные) входят в состав нефти, второй источник этих соединений – каменноугольная смола.

Для бензольных циклов не характерны реакции присоединения, которые проходят с большим трудом и в жестких условиях, наиболее типичны для них реакции замещения атомов водорода (рис.21).

Рис. 21. РЕАКЦИИ ЗАМЕЩЕНИЯ атомов водорода в ароматическом ядре.

Помимо функциональных групп (галогена, нитро- и ацетильной группы), присоединенных к бензольному ядру (рис. 21), можно также ввести иные группы, в результате получаются соответствующе производные ароматических соединений (рис. 22), образующие крупные классы органических соединений – фенолы, ароматические амины и др.

Рис. 22. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ с функциональными группами. Соединения, в которых neгруппа -ОН соединена с атомом углерода в ароматическом ядре, называют фенолами, в отличие от алифатических соединений, где такие соединения называют спиртами.

III. ГЕТЕРОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат в составе цикла (помимо атомов углерода) различные гетероатомы: O, N, S. Циклы могут быть различного размера, содержать как простые, так и кратные связи, а также присоединенные к гетероциклу углеводородные заместители. Существуют варианты, когда гетероцикл «спаян» с бензольным ядром (рис. 24).

Рис. 24. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ . Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле (рис. 26).

Рис. 26. ГЕТЕРОЦИКЛЫ с двумя и более гетероатомами.

Точно так же, как и рассмотренные ранее алифатические, алициклические и ароматические углеводороды, гетероциклы могут содержать в своем составе различные функциональные группы (-ОН, -СООН, -NH 2 и др.), причем гетероатом в цикле в некоторых случаях также можно рассматривать как функциональную группу, поскольку он способен принимать участие в соответствующих превращениях (рис. 27).

Рис. 27. ГЕТЕРОАТОМ N в роли функциональной группы. В названии последнего соединения буква «N» указывает, к какому атому присоединена метильная группа.

Реакции органической химии.

В отличие от реакций неорганической химии, где с высокой скоростью (иногда мгновенно) взаимодействуют ионы, в реакциях органических соединений обычно участвуют молекулы, содержащие ковалентные связи. В результате все взаимодействия протекают гораздо медленнее, чем в случае ионных соединений (иногда десятки часов), часто при повышенной температуре и в присутствии ускоряющих процесс веществ – катализаторов. Многие реакции протекают через промежуточные стадии или в нескольких параллельных направлениях, что приводит к заметному снижению выхода нужного соединения. Поэтому при описании реакций вместо уравнений с числовыми коэффициентами (что традиционно принято в неорганической химии) часто используют схемы реакций без указания стехиометрических соотношений.

Название крупных классов органических реакций часто связывают с химической природой действующего реагента или с типом вводимой в соединение органической группы:

а) галогенирование – введение атома галогена (рис. 8, первая схема реакции),

б) гидрохлорирование, т.е. воздействие HCl (рис. 8, вторая схема реакции)

в) нитрование – введение нитрогруппы NO 2 (рис. 21, второе направление реакции)

г) металлирование – введение атома металла (рис. 27, первая стадия)

а) алкилирование – введение алкильной группы (рис. 27, вторая стадия)

б) ацилирование – введение ацильной группы RC(O)- (рис. 27, вторая стадия)

Иногда название реакции указывает на особенности перестройки молекулы, например, циклизация – образование цикла, дециклизация – раскрытие цикла (рис.15).

Крупный класс образуют реакции конденсации (лат . condensatio – уплотнение, сгущение), при которых происходит формирование новых связей С-С с одновременным образованием легко удаляемых неорганических или органических соединений. Конденсацию, сопровождаемую выделением воды, называют дегидратацией. Конденсационные процессы могут также проходить внутримолекулярно, то есть, в пределах одной молекулы (рис. 28).

Рис. 29. РЕАКЦИИ ЭЛИМИНИРОВАНИЯ

Возможны варианты, когда совместно реализуются несколько типов превращений, что показано далее на примере соединения, в котором при нагревании протекают разнотипные процессы. При термической конденсации слизевой кислоты (рис. 30) проходит внутримолекулярная дегидратация и последующее элиминирование СО 2 .

Рис. 30. ПРЕВРАЩЕНИЕ СЛИЗЕВОЙ КИСЛОТЫ (получаемой из желудевого сиропа) в пирослизевую кислоту, названную так потому, что получают ее нагреванием слизевой. Пирослизевая кислота представляет собой гетероциклическое соединение – фуран с присоединенной функциональной (карбоксильной) группой. В процессе реакции разрываются связи С-О, С-Н и образуются новые связи С-Н и С-С.

Существуют реакции, при которых происходит перестраивание молекулы без изменения состава (см . ИЗОМЕРИЗАЦИЯ).

Методы исследования в органической химии.

Современная органическая химия помимо элементного анализа использует многие физические методы исследования. Сложнейшие смеси веществ разделяют на составляющие компоненты с помощью хроматографии, основанной на перемещении растворов или паров веществ через слой сорбента. Инфракрасная спектроскопия – пропускание инфракрасных (тепловых) лучей через раствор или сквозь тонкий слой вещества – позволяет установить наличие в веществе определенных фрагментов молекулы, например, групп С 6 Н 5 , С=О, NH 2 и др.

Ультрафиолетовая спектроскопия, называемая также электронной, несет информацию об электронном состоянии молекулы, она чувствительна к присутствию в веществе кратных связей и ароматических фрагментов. Анализ кристаллических веществ с помощью лучей рентгеновского диапазона (рентгеноструктурный анализ) дает объемную картину расположения атомов в молекуле, подобную тем, что показаны на приведенных выше анимированных рисунках, иными словами, позволяет как бы увидеть строение молекулы своими глазами.

Спектральный метод – ядерный магнитный резонанс, основанный на резонансном взаимодействии магнитных моментов ядер с внешним магнитным полем, дает возможность различить атомы одного элемента, например, водорода, расположенные в различных фрагментах молекулы (в углеводородном скелете, в гидроксильной, карбоксильной или аминогруппе), а также определить их количественное соотношение. Подобный анализ возможен также для ядер С, N, F и др. Все эти современные физические методы привели к интенсивным исследованиям в органической химии – стало возможным быстро решать те задачи, на которые ранее уходили долгие годы.

Некоторые разделы органической химии выделились в крупные самостоятельные области, например, химия природных веществ, лекарственных препаратов, красителей, химия полимеров. В середине 20 в. химия элементоорганических соединений стала развиваться как самостоятельная дисциплина, которая изучает вещества, содержащие связь С-Э, где символ Э обозначает любой элемент(кроме углерода, водорода, кислорода, азота и галогенов). Велики успехи биохимии, изучающей синтез и превращения органических веществ, происходящие в живых организмах. Развитие всех этих областей основано на общих законах органической химии.

Современный промышленный органический синтез включат в себя широкий набор различных процессов – это, прежде всего, крупнотоннажные производства – переработка нефти, газа и получение моторных топлив, растворителей, теплоносителей, смазочных масел, кроме того, синтез полимеров, синтетических волокон, разнообразных смол для покрытий, клеев и эмалей. К малотоннажным производствам относят получение лекарственных препаратов, витаминов, красителей, пищевых добавок и душистых веществ.

Михаил Левицкий

Существуют разные системы классификации органических реакций, которые основаны на различных признаках. Среди них можно выделить классификации:

  • по конечному результату реакции , то есть изменению в структуре субстрата;
  • по механизму протекания реакции , то есть по типу разрыва связей и типу реагентов.

Взаимодействующие в органической реакции вещества подразделяют на реагент и субстрат . При этом считается, что реагент атакует субстрат.

ОПРЕДЕЛЕНИЕ

Реагент - вещество, действующее на объект - субстрат - и вызывающее в нем изменение химической связи. Реагенты делятся на радикальные, электрофильные и нуклеофильные.

ОПРЕДЕЛЕНИЕ

Субстратом , как правило, считают молекулу, которая предоставляет атом углерода для новой связи.

КЛАССИФИКАЦИЯ РЕАКЦИЙ ПО КОНЕЧНОМУ РЕЗУЛЬТАТУ (ИЗМЕНЕНИЮ В СТРУКТУРЕ СУБСТРАТА)

В органической химии различают четыре вида реакций по конечному результату и изменению в структуре субстрата: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять), и перегруппировки (изомеризации ). Такая классификация аналогична классификации реакций в неорганической химии по числу исходных реагентов и образующихся веществ, с изменением или без изменения состава. Классификация по конечному результату основана на формальных признаках, так как стехиометрическое уравнение, как правило, не отражает механизм реакции. Сравним типы реакций в неорганической и органической химии.

Тип реакции в неорганической химии

Пример

Тип реакции в органической химии

Разновидность

и пример

Реакции

1. Соединение

C l 2 + H 2 = 2 H C l

Присоединение по кратным связям

Гидрирование

Гидрогалогенирование


Галогенирование


Гидратация


2. Разложение

2 H 2 O = 2 H 2 + O 2

Элиминирование

Дегидрирование


Дегидрогалогенирование


Дегалогенирование


Дегидратация


3. Замещение

Z n + 2 H C l = ZnCl2+H2

Замещение


4. Обмен (частный случай - нейтрализация)

H 2 S O 4 + 2 N a O H =N a 2 S O 4 + 2 H2 O

частный случай - этерификация


5.Аллотропизация

графит алмаз

P красн. P бел. Pкрасн.⇔P бел.

S ромб. S пласт. Sромб.⇔Sпласт.

Изомеризация

Изомеризация

алканов



п) без замены их другими.

В зависимости от того, какие атомы отщепляются - соседние C C или изолированные двумя-тремя или более атомами углерода –C –C–C–C –, –C –C–C–C–C –, могут образовываться соединения с кратными связям и или циклические соединения . Отщепление галогеноводородов из алкилгалогенидов либо воды из спиртов происходит по правилу Зайцева.

ОПРЕДЕЛЕНИЕ

Правило Зайцева : атом водорода Н отщепляется от наименее гидрогенизированного атома углерода.

Например, отщепление молекулы бромоводорода происходит от соседних атомов в присутствии щелочи, при этом образуется бромид натрия и вода.

ОПРЕДЕЛЕНИЕ

Перегруппировка - химическая реакция, в результате которой происходит изменение взаимного расположения атомов в молекуле, перемещение кратных связей или изменение их кратности.

Перегруппировка может осуществляться с сохранением атомного состава молекулы (изомеризация) или с его изменением.

ОПРЕДЕЛЕНИЕ

Изомеризация - частный случай реакции перегруппировки, приводящая к превращению химического соединения в изомер путем структурного изменения углеродного скелета.

Перегруппировка тоже может осуществляться по гомолитическому или гетеролитическому механизму. Молекулярные перегруппировки могут классифицироваться по разным признакам, например по насыщенности систем, по природе мигрирующей группы, по стереоспецифичности и др. Многие реакции перегруппировки имеют специфические названия - перегруппировка Кляйзена, перегруппировка Бекмана и др.

Реакции изомеризации широко используются в промышленных процессах, например при переработке нефти для повышения октанового числа бензина. Примером изомеризации является превращение н -октана в изооктан:


КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ ПО ТИПУ РЕАГЕНТА

РАЗРЫВ СВЯЗИ

Разрыв связи в органических соединениях может гомолитическим и гетеролитическим.

ОПРЕДЕЛЕНИЕ

Гомолитический разрыв связи - это такой разрыв, в результате которого каждый атом получает неспаренный электрон и образуются две частицы, имеющие сходное электронное строение - свободные радикалы .

Гомолитический разрыв характерен для неполярных или слабополярных связей, например C–C, Cl–Cl, C–H, и требует большого количества энергии.

Образующиеся радикалы, имеющие неспаренный электрон, обладают высокой реакционной способностью, поэтому химические процессы, протекающие с участием таких частиц, часто носят «цепной» характер, их трудно контролировать, а в результате реакции получается набор продуктов замещения. Так, при хлорировании метана продуктами замещения являются хлорметан C H 3 C l CH3Cl , дихлорметан C H 2 C l 2 CH2Cl2 , хлороформ C H C l 3 CHCl3 и четыреххлористый углерод C C l 4 CCl4 . Реакции с участием свободных радикалов протекают по обменному механизму образования химических связей.

Образующиеся в ходе такого разрыва связи радикалы обуславливают радикальный механизм протекания реакции. Радикальные реакции обычно протекают при повышенных температурах или при излучении (например, свет).

В силу своей высокой реакционной способности свободные радикалы могут оказывать негативное воздействие на организм человека, разрушая клеточные мембраны, воздействуя на ДНК и вызывая преждевременное старение. Эти процессы связаны, в первую очередь, с пероксидным окислением липидов, то есть разрушением структуры полиненасыщенных кислот, образующих жир внутри клеточной мембраны.

ОПРЕДЕЛЕНИЕ

Гетеролитический разрыв связи - это такой разрыв, при котором электронная пара остается у более электроотрицательного атома и образуются две заряженные частицы - ионы: катион (положительный) и анион (отрицательный).

В химических реакциях эти частицы выполняют функции «нуклеофилов » («фил» - от гр. любить ) и «электрофилов », образуя химическую связь с партнером по реакции по донорно-акцепторному механизму. Частицы-нуклеофилы предоставляют электронную пару для образования новой связи. Другими словами,

ОПРЕДЕЛЕНИЕ

Нуклеофил - электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями.

Примерами нуклеофилов являются любые анионы (C l , I , N O 3 Cl−,I−,NO3− и др.), а также соединения, имеющие неподеленную электронную пару (N H 3 , H 2 O NH3,H2O ).

Таким образом, при разрыве связи могут образоваться радикалы или нуклеофилы и электрофилы. Исходя из этого выделяют три механизма протекания органических реакций.

МЕХАНИЗМЫ ПРОТЕКАНИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ

Свободно-радикальный механизм : реакцию начинают свободные радикалы, образующиеся при гомолитическом разрыве связи в молекуле.

Наиболее типичный вариант - образование радикалов хлора или брома при УФ-облучении.

1. Свободно-радикальное замещение


метан бромметан

Инициирование цепи


Рост цепи


Обрыв цепи


2. Свободно-радикальное присоединение

этен полиэтилен

Электрофильный механизм : реакцию начинают частицы-электрофилы, получающие положительный заряд в результате гетеролитического разрыва связи. Все электрофилы - кислоты Льюиса.

Такие частицы активно образуются под действием кислот Льюиса , которые усиливают положительный заряд частицы. Чаще других используются A l C l 3 , F e C l 3 , F e B r 3 , Z n C l 2 AlCl3,FeCl3,FeBr3,ZnCl2 , выполняющие функции катализатора.

Местом атаки частицы-электрофила являются те участки молекулы, которые имеют повышенную электронную плотность, т. е. кратная связь и бензольное кольцо.

Общий вид реакций электрофильного замещения можно выразить уравнением:

1. Электрофильное замещение


бензол бромбензол

2. Электрофильное присоединение

пропен 2-бромпропан

пропин 1,2-дихлорпропен

Присоединение к несимметричным непредельным углеводородам происходит в соответствии с правилом Марковникова.

ОПРЕДЕЛЕНИЕ

Правило Марковникова: присоединение к несимметричным алкенам молекул сложных веществ с условной формулой НХ (где Х - это атом галогена или гидроксильная группа ОН–) атом водорода присоединяется к наиболее гидрогенизированному (содержащему больше всего атомов водорода) атому углерода при двойной связи, а Х - к наименее гидрогенизированному.

Например, присоединение хлороводорода HCl к молекуле пропена C H 3 – C H = C H 2 CH3–CH=CH2 .

Реакция протекает по механизму электрофильного присоединения. За счет электронодонорного влияния C H 3 CH3 -группы электронная плотность в молекуле субстрата смещена к центральному атому углерода (индуктивный эффект), а затем по системе двойных связей - к концевому атому углерода C H 2 CH2 -группы (мезомерный эффект). Таким образом, избыточный отрицательный заряд локализован именно на этом атоме. Поэтому атаку начинает протон водорода H + H+ , являющийся электрофильной частицей. Образуется положительно заряженный карбеновый ион [ C H 3 – C H − C H 3 ] + + , к которому присоединяется анион хлора C l Cl− .

ОПРЕДЕЛЕНИЕ

Исключения из правила Марковникова: реакция присоединения протекает против правила Марковникова, если в реакцию вступают соединения, у которых атом углерода, соседний с атомом углерода двойной связи, оттягивает на себя частично электронную плотность, то есть при наличии заместителей, проявляющих значительный электроноакцепторный эффект (– C C l 3 , – C N , – C O O H (–CCl3,–CN,–COOH и др.).


Нуклеофильный механизм : реакцию начинают частицы-нуклеофилы, имеющие отрицательный заряд, образовавшиеся в результате гетеролитического разрыва связи. Все нуклеофилы - основания Льюиса .

В нуклеофильных реакциях реагент (нуклеофил) имеет на одном из атомов свободную пару электронов и является нейтральной молекулой или анионом (H a l , O H , R O , R S , R C O O , R , C N – , H 2 O , R O H , N H 3 , R N H 2 Hal–,OH–,RO−,RS–,RCOO–,R–,CN–,H2O,ROH,NH3,RNH2 и др.).

Нуклеофил атакует в субстрате атом с наименьшей электронной плотностью (т. е. с частичным или полным положительным зарядом). Первой стадией реакции нуклеофильного замещения является ионизация субстрата с образованием карбкатиона. При этом новая связь образуется за счет электронной пары нуклеофила, а старая претерпевает гетеролитический разрыв с последующим отщеплением катиона. Примером нуклеофильной реакции может служить нуклеофильное замещение (символ S N SN ) у насыщенного атома углерода, например щелочной гидролиз бромпроизводных.

1. Нуклеофильное замещение

2. Нуклеофильное присоединение

этаналь циангидрин

источник http://foxford.ru/wiki/himiya



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: