Где живут бактерии со жгутиками. Реснички и жгутики: сжатая характеристика, строение и роль в клетках. Из чего состоят жгутики

Как прокариотические, так и эукариотические могут содержат структуры, известные как реснички и жгутики. Эти выросты на поверхности клеток помогают в их .

Особенности и функции

Реснички и жгутики являются выростами из некоторых клеток необходимые для клеточной локомоции (передвижения). Они также помогают перемещать вещества вокруг клеток и направлять их к нужным участкам.

Реснички и жгутики образуются из специализированных групп микротрубочек, называемых базальными телами.

Если выросты короткие и многочисленные, их называют ресничками. Если они длиннее и менее многочисленны (обычно только один или два), они называются жгутиками.

Строение

Обычно реснички и жгутики имеют сердцевину, состоящую из микротрубочек, соединенных с , расположенных по схеме 9+2. Кольцо из девяти микротрубочек имеет в своем центре две особые микротрубочки, которые сгибают реснички или жгутики. Этот тип организации встречается в устройстве большинства ресничек и жгутиков .

Где встречаются?

Как реснички, так и жгутики встречаются во многих типах клеток. Например, у спермы многих животных, водорослей и даже папоротников есть жгутики. Реснички можно найти в клетках таких тканей, как дыхательные пути и женский репродуктивный тракт.

Для передвижения в водной среде некоторые микроорганизмы используют жгутиковидный орган – «жгутик». Этот орган, встроенный в мембрану клетки, позволяет микроорганизму по желанию передвигаться в выбранном им направлении с определённой скоростью.

Мужские половые клетки также используют жгутик для передвижения.

Определенной время учёные знали о жгутиках. Однако, знания об их структурных особенностях, которые появились лишь за последнее десятилетие или около того, явились для них огромным сюрпризом. Было установлено, что жгутик двигается посредством очень сложного «органического двигателя», а не простого вибрирующего механизма, как считалось раньше.

Этот двигатель сформирован по тем же механическим принципам, что и электрический двигатель. В нём есть две главные части: движущаяся часть («ротор») и станционарная часть («статор»).

Бактериальный жгутик отличается от всех органических систем, которые совершают механические движения. Клетка не использует имеющуюся в наличии энергию, сохраняемую в молекулах АТФ. Вместо этого, она имеет специальный энергетический ресурс: микроорганизм использует энергию потока ионов сквозь их внешние мембраны. Внутренняя структура двигателя чрезвычайно сложна. В создании жгутика принимают участие около 240 различных белков. Каждый из них занимает определённое место. Учёные установили, что эти белки проводят сигналы, включающие и выключающие двигатель, формируют соединения, облегчающие движения на атомном уровне, и активизируют другие белки, которые присоединяют жгутик к клеточной мембраны. Моделей, разработанных для резюмирования работы системы, вполне достаточно для описания сложной структуры системы. (1)

Сложной структуры бактериального жгутика самой по себе уже достаточно, чтобы опровергнуть теорию эволюции, поскольку жгутик имеет неснижаемо сложную структуру. Даже если одна единственная молекула этой невероятно сложной структуры исчезнет или повредится, жгутик не будет ни работать, ни представлять пользу для микроорганизма. Жгутик должен идеально работать с самого первого момента его существования. Этот факт ещё раз подчёркивает абсурдность утверждения теории эволюции о «ступенчатом развитии».

Даже у тех созданий, которых эволюционисты считают «простейшими», существует потрясающая структура. Бактериальный жгутик является одним из бесчисленных примеров. Этот микроорганизм передвигается в воде, двигая этим органом на своей оболочке. Когда были изучены внутренняя система этого хорошоизвестного органа, учёные всего мира были удивлены, обнаружив, что микроорганизм имеет чрезвычайно сложный по своему строению электрический двигатель. Этот электрический двигатель, который включает около пятидесяти разнообразных молекулярных субедениц, имеет достаточно замысловатую структуру, что изображено ниже.

Бактериальный жгутик является очевидным доказательством того, что даже предположительно «примитивные» создания имеют необычное строение. По мере того, как человечество всё более постигает детали, становится очевидным, что те организмы, которые учёные 19-го столетия, включая Дарвина, считали простейшими, на самом деле так же сложны, как и другие. Другими словами, с приходом понимания о совершенстве создания, очевидным становится бессмысленность попыток найти сотворению альтернативное объяснение.

Микороорганизм плавает в вязкой жидкой среде, вращая спиралевидными пропеллерами, называемыми жгутиками .

Бактериальный жгутик является наномашиной, состоящей из 25 разнообразных белков, в количестве от нескольких штук до десятков тысяч. Он состоит из собрания этого большого количества белков, каждый из которых в разных частях выполняет определённую функцию, такую как ротация двигателя, изоляция, приводной вал, очерёдность переключения регулятора, универсальная связка, спиралевидный пропеллер, и ротативный усилитель для самосборки.

Жгутиковые протеины синтезируются внутри тела клетки и транспортируются по длинному, узкому центральному каналу в жгутике к его периферическому (внешнему) окончанию, где они с помощью жгутикового наконечника в качестве установочного двигателя, эффективно и самостоятельно могут создавать сложные структуры наноразмером. Вращательный двигатель, диаметр которого всего от 30 до 40 нм, производит вращение жгутика с частотой около 300 Гц и мощностью в 10-16 Вт, с эффективностью преобразования энергии близкой к 100%.

Структурные дизайны и функциональные механизмы, обнаруженные в сложном механизме бактериального жгутика, могут обеспечить человечество множеством новаторских технологий, которые станут основой для будущей нанотехнологии, для которой мы сможем найти много полезных способов применения.(2)

Развитие микробиологии принесло в последние десятилетия множество открытий. И одно из них - это особенности движения жгутиковых бактерий. Устройство двигателей этих древнейших организмов оказалось очень сложным и по принципу своей работы очень отличающимся от жгутиков наших ближайших эукариотических родственников простейших. Вокруг двигателя жгутиковой бактерии разгорелись самые жаркие споры между креационистами и эволюционистами. О бактериях, их жгутиковых моторах и о многом другом - данная статья.

Общая биология

Для начала вспомним, что это за организмы и какое место они занимают в системе органического мира на нашей планете. Домен Bacteria объединяет огромное количество одноклеточных прокариотических (без оформленного ядра) организмов.

Эти живые клетки появились на арене жизни почти 4 миллиарда лет назад и были первыми поселенцами планеты. Они могут быть самой разной формы (кокки, палочки, вибрионы, спирохеты), но большинство из них - жгутиковые.

Где живут бактерии? Везде. На планете их обитает более 5×10 30 . В 1 грамме почвы их насчитывается порядка 40 миллионов, в нашем организме обитает до 39 триллионов. Их можно встретить на дне Марианской впадины, в горячих «черных курильщиках» на дне океанов, во льдах Антарктиды, а на ваших руках в данный момент находится до 10 миллионов бактерий.

Значение неоспоримо

Несмотря на микроскопические размеры (0,5-5 мкм) их общая биомасса на Земле больше, чем биомасса животных и растений, вместе взятых. Их роль в круговороте веществ незаменима, а их свойства консументов (разрушителей органики) не позволяют планете покрыться горами трупов.

Ну и не стоит забывать о патогенах: возбудителями чумы, оспы, сифилиса, туберкулеза и множества других инфекционных заболеваний тоже являются бактерии.

Бактерии нашли применение и в хозяйственной деятельности человека. Начиная от пищевой промышленности (кисломолочные продукты, сыры, квашеные овощи, алкогольные напитки), «зеленой» экономике (биотопливо и биогаз) до методов клеточной инженерии и производства лекарственных препаратов (вакцины, сыворотки, гормоны, витамины).

Общая морфология

Как уже говорилось, у этих одноклеточных представителей жизни нет ядра, их наследственный материал (молекулы ДНК в виде кольца) расположены в определенном участке цитоплазмы (нуклеоид). Клетка их имеет плазматическую мембрану и плотную капсулу, образованную пептидогликаном муреином. Из клеточных органелл у бактерий есть митохондрии, могут быть хлоропласты и другие структуры с различными функциями.

Большинство бактерий - жгутиковые. Плотная капсула на поверхности клетки не позволяет им передвигаться при помощи изменения самой клетки, как это делают амебы. Их жгутики - это плотные белковые образования различной длины и диаметром около 20 нм. Одни бактерии имеют единственный жгутик (монотрихи), у других их два (амфитрихи). Иногда жгутики расположены пучками (лофотрихи) или же покрывают всю поверхность клетки (перитрихи).

Многие из них живут в виде одиночных клеток, но некоторые образуют скопления (пары, цепочки, филаменты, гифы).

Особенности движения

Жгутиковые бактерии могут двигаться по-разному. Одни движутся только вперед, а направление меняют путем кувыркания. Некоторые способны к подергиваниям, другие передвигаются путем скольжения.

Жгутики бактерий выполняют функции не только клеточного «весла», но могут быть и «абордажным» орудием.

Совсем до недавнего времени считали, что жгутик бактерии виляет как хвост у змеи. Последние исследования показали, что жгутик бактерий устроен куда сложнее. Он работает как турбина. Присоединенный к приводу, он вращается в одном направлении. Привод, или жгутиковый мотор бактерии, - это сложная молекулярная структура, которая работает как мышца. С тем отличием, что мышца после совершения сжатия должна расслабляться, а мотор бактерии работает постоянно.

Наномеханизм работы жгутика

Не углубляясь в биохимию движения, отметим, что в создании привода жгутика учувствует до 240 белков, которые делятся на 50 молекулярных составляющих с определенной функцией в системе.

В этой двигательной системе бактерии есть ротор, который движется, и статор, который обеспечивает это движение. Есть приводной вал, втулка, сцепление, тормоза и ускорители

Этот миниатюрный двигатель позволяет бактерии совершать перемещения на расстояния в 35 раз большие, чем ее собственный размер всего лишь за 1 секунду. При этом на работу самого жгутика, совершающего 60 тысяч оборотов в минуту, организм тратит всего 0,1 % всей энергии, которую расходует клетка.

Удивительно еще и то, что все запчасти своего двигательного механизма бактерия может заменять и ремонтировать «на ходу». Просто представьте, что вы летите в самолете. А техники меняют лопасти работающего мотора.

Жгутиковая бактерия против Дарвина

Двигатель, способный работать со скоростью до 60 000 оборотов в минуту, самочинящийся и использующий в виде топлива всего лишь углеводы (сахара), имеющий устройство сродни электрическому двигателю - могло ли такое устройство возникнуть в процессе эволюции?

Именно этот вопрос задал себе в 1988 году доктор биологических наук Майкл Бихи. Он ввел в биологию понятие несократимой системы - системы, в которой все ее части одновременно необходимы для обеспечения ее работы, а удаление хоть одной части приводит к полному нарушению ее функционирования.

С позиции эволюции Дарвина, все структурные изменения в организме происходят постепенно и отбираются естественным отбором только успешные.

Выводы М. Бихи, изложенные в книге «Черный ящик Дарвина» (1996): двигатель жгутиковой бактерии - неделимая система из более чем 40 частей, и отсутствие хоть одной приведет к полной нефункциональности системы, а значит, эта система не могла произойти путем естественного отбора.

Бальзам для креационистов

Теория сотворения в изложении ученого и профессора биологии, декана факультета биологических наук в Лихайском университете Бетлехема (США) М. Бихи сразу привлекла внимание служителей церкви и сторонников теории божественного происхождения жизни.

В 2005 году в США даже состоялся судебный процесс, где Бихи выступал свидетелем со стороны сторонников теории «разумного дизайна», на котором рассматривался вопрос введения в школах Дувра изучения креационизма на курсе «О пандах и людях». Процесс был проигран, преподавание такого предмета признали противоречащим действующей конституции.

Но споры креационистов и эволюционистов продолжаются и сегодня.

Оглавление темы "Анатомия бактериальной клетки. Физиология бактерий.":
1. Анатомия бактериальной клетки. Поверхностные структуры бактерии. Капсула бактерий. Организация капсул. Окраска капсул бактерий. Состав капсул. Антигенные свойства капсул.

3. Микроворсинки бактерий. Фимбрии бактерий. F-пили (секс-пили) бактерии. Клеточная оболочка бактерий. Гликокаликс.
4. Клеточная стенка бактерий. Функции клеточной стенки. Строение клеточной стенки бактерии. Пептидогликан. Муреиновый мешок. Структура пептидогликана (муреина)
5. Грамотрицательные бактерии. Клеточная стенка грамотрицательных бактерий. Строение клеточной стенки грамотрицательных бактерий.
6. Грамположительные бактерии. Клеточная стенка грамположительных бактерий. Строение клеточной стенки грамположительных бактерий. Аутолизины бактерий. Сферопласты. Протопласты.
7. Цитоплазматическая мембрана (ЦПМ) бактерии. Состав цитоплазматической мембраны бактерий. Транспортные системы. Мезосомы. Периплазматическое пространство.
8. Цитоплазма бактерий. Бактериальный геном. Бактериальные рибосомы. Запасные гранулы бактерии.
9. Физиология бактерий. Питание бактерий. Тип питания бактерии. Голозои. Голофиты. Вода. Значимость воды для бактерий.
10. Усваиваемые бактериальной клеткой соединения. Пути поступления веществ в бактериальную клетку. Пассивный перенос. Диффузия.

По характеру движения подвижные бактерии разделяют на плавающие и скользящие (ползающие ). Орган движения плавающих бактерий - жгутики ; подвижность скользящих бактерий обеспечивают волнообразные сокращения тела.

Расположение жгутиков - характерный признак, имеющий таксономическое значение. Варианты расположения жгутиков приведены на рис. 4-1. У некоторых бактерий жгутики расположены по всей поверхности клеточной стенки (например, у бактерий рода Proteus), такие бактерии известны как перитрихи [от греч. peri-, вокруг, + trichos, волос]. Некоторые бактерии снабжены только одним толстым жгутиком (например, представители рода Vibrio), они известны как монотрихи . Политрихи - бактерии, имеющие одиночный по виду жгутик, образованный пучком из 2-50 жгутиков. Полярные жгутики прикреплены к одному или обоим концам бактерии. Монополярно-политрихиальное расположение жгутиков имеют лофотрихи [от греч. lophos, пучок, + trichos, волос], к ним, например, относят представителей рода Pseudomonas. Биполярно-политрихиальное жгутикование имеют амфитрихи [от греч. amphi-, двусторонний, + trichos, волос] (например, бактерии рода Spirillum).

Рис. 4-1. Варианты расположения жгутиков (вверху) и движений бактерий (внизу) .

Жгутик - спирально изогнутая полая нить, образованная субъединицами флагеллина. У разных бактерий толщина жгутиков варьирует от 12 до 18 нм, что составляет не более 1/10 диаметра жгутиков водорослей и простейших. Жгутики также различают по длине и диаметру витка. Место прикрепления жгутика к бактериальной клетке имеет сложное строение и состоит из базальной структуры и так называемого «крюка» (рис. 4-2). У грамположительных бактерий в состав базальной структуры входит одна пара, а у грамотрицательных бактерий - две пары колец. Кольца играют роль «приводного диска» и «подшипника». Вся конструкция выполняет функцию хемомеханического преобразователя (флагеллиновый мотор). У спирохет за движение ответственна особая органел-ла - осевая нить, состоящая из двух рядов бактериальных жгутиков, расположенных продольно внутри клетки.

Бактериальные жгутики совершают поступательные и вращательные движения, проталкивая бактерии через среду подобно корабельному винту. Они также могут изменять направление вращения и тянуть клетку подобно пропеллеру. Скорость обратного движения в четыре раза меньше скорости поступательного движения. Некоторые перитрихи могут перемещаться по поверхности агара, то есть плавающие бактерии способны к передвижению по поверхности твёрдых сред. В частности, Proteus vulgaris распространяется по поверхности агара, образуя тонкий налёт (напоминающий таковой при выдохе на холодное стекло), а неподвижные штаммы протея лишены такой способности. Это явление получило название «феномен роения », а наблюдение за ним легло в основу некоторых понятий бактериальной серодиагностики. Так, жгутиковые Аг называют Н-Аг [от нем. Hauch, выдох, налёт], а Аг клеточной поверхности - О-Аг [от нем. фпе Hauch, без налёта1.


Рис. 4-2. Схема строения бактериального жгутика . БС - базальная структура, ВМ - внешняя мембрана, ЦПМ - цитоплазматическая мембрана, Р - ротор, О - ось, КО - кольцо жгутикового мотора, КР - крюк, С - цилиндрики-соединители, Н - нить жгутика, Ш - шапочка.

Способность бактерий к целенаправленному движению генетически обусловлена. Например, у Escherichia coli в регуляцию этого процесса вовлечено 3% генома (приблизительно 50 генов). Эти гены кодируют белки, образующие локомоторный аппарат, а также белки и ферменты, участвующие в преобразовании сигналов. Для жгутикового аппарата характерна периодическая изменчивость. Во многом этот процесс носит адаптивный характер и наиболее выражен у патогенных микроорганизмов. В частности, некоторые бактерии выработали систему вариабельности антигенных характеристик жгутиков, позволяющую им на какое-то время избегать направленных эффектов защитных иммунных механизмов.

Лабораторная диагностика подвижности бактерий

Подвижность бактерий определяют микроскопией препаратов в «раздавленной » или «висячей » капле. Способность к движению можно определять также после внесения культуры бактерий уколом в столбик полужидкого агара (подвижные виды растут по всей толще среды, неподвижные - по уколу) или посевом бактерий в водный конденсат скошенного столбика агара (подвижные виды переплывают из конденсата на поверхность среды и колонизируют её), либо определяют способность бактерий давать «феномен роения ».

Клетки могут перемещаться при помощи специализированных органоидов, к которым относятся реснички и жгутики. Реснички клеток всегда многочисленны (у простейших их количество исчисляется сотнями и тысячами), а длина составляет 10-15мкм. Жгутиков же чаще всего 1-8, длина их - 20-50мкм.

Строение и функции органоидов движения

Строение ресничек и жгутиков, как у растительных, так и животных клеток сходно. Под электронным микроскопом обнаружено, что реснички и жгутики это немембранные органоиды, состоящие из микротрубочек. Две из них располагаются в центре, а вокруг них по периферии лежат еще 9 пар микротрубочек. Вся эта структура покрыта цитоплазматической мембраной, являющейся продолжением клеточной мембраны.

Жгутики и реснички обеспечивают не только передвижение клеток в пространстве, но и перемещение различных веществ на поверхности клеток, а также попадание пищевых частиц в клетку. У основания ресничек и жгутиков находятся базальные тельца, которые тоже состоят из микротрубочек.

Предполагают, что базальные тельца являются центром формирования микротрубочек жгутиков и ресничек. Базальные тельца, в свою очередь, нередко происходят из клеточного центра.

Большое количество одноклеточных организмов и некоторые клетки многоклеточных не имеют специальных органоидов движения и передвигаются при помощи псевдоподий (ложноножек), которое получило название амебоидного. В основе его лежит движение молекул особых белков, называемых сократимыми.

Особенности движения простейших

Одноклеточные организмы также способны передвигаться (инфузория туфелька, эвглена зеленая, амеба обыкновенная). Для перемещения в толще воды каждая особь наделена специфическими органоидами. У простейших такими органоидами являются реснички, жгутики, ложноножки.

Эвглена зелёная

Эвглена зелёная - представитель простейших из класса жгутиковых. Тело эвглены веретенообразной формы, удлиненное с заостренным концом. Органоиды движения эвглены зеленой представлены жгутиком, который находится на тупом конце. Жгутики - это тонкие выросты тела, число которых варьирует от одного до десятков.

Механизм движения при помощи жгутика отличается у разных видов. В основном это вращение в виде конуса, вершина которого обращена к телу. Перемещение наиболее эффективно при достижении углом вершины конуса 45°. Скорость колеблется в пределах от 10 до 40 оборотов за секунду. Часто наблюдается помимо вращательного движения жгутика, также его волнообразные покачивания.

Такой характер движения свойствен для одножгутиковых видов. У многожгутиковых нередко жгутики располагаются в одной плоскости и не формируют конуса вращения.

Микроскопическое строение жгутиков довольно сложное. Они окружены тонкой оболочкой, которая является продолжением наружного слоя эктоплазмы - пелликулы. Внутреннее пространство жгутика заполнено цитоплазмой и продольно расположенными нитями - фибриллами.

Периферически расположенные фибриллы отвечают за осуществление движения, а центральные выполняют опорную функцию.

Инфузория туфелька

Передвигается инфузория туфелька за счет ресничек, осуществляя ими волнообразные движения. Направляется вперед тупым концом.

Реснички двигаются в одной плоскости и делают прямой удар после полного выпрямления, а возвратный - в выгнутом положении. Удары идут последовательно один за другим с небольшой задержкой. Во время плаванья, инфузория осуществляет вращательные движения вокруг продольной оси.


Перемещается туфелька со скоростью до 2,5мм/c. Направленность меняется за счёт перегибов тела. Если на пути будет преграда, то после столкновения инфузория начинает двигаться в противоположную сторону.

Все реснички инфузорииимеют сходное строение с жгутиками эвглены зеленой. Ресничка у основания образует базальное зерно, которое играет важную роль в механизме движения организма.

У некоторых инфузорий реснички соединяются между собой и таким образом позволяют развить большую скорость.

Инфузории относятся к высокоорганизованным простейшим и свою двигательную активность они осуществляют с помощью сокращений. Форма тела простейшего может меняться, а после возвращаться в прежнее состояние. Быстрые сократительные движения возможны благодаря наличию особых волокон - мионем.

Амеба обыкновенная

Амеба - простейшее довольно крупных размеров (до 0,5мм). Форма тела полиподиальная, обусловлена наличием множественных псевдоподий - это выросты с внутренней циркуляцией цитоплазмы.

У амебы обыкновенной псевдоподии еще называют ложноножками. Направляя ложноножки в разные стороны, амёба развивает скорость в 0,2 мм/минуту.

К органоидам движения простейших не относятся цитоплазма, ядро, вакуоли, рибосомы, лизосомы, ЭПР, Аппарат Гольджи.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: