Какой самый тяжелый металл на земле. Самый тяжелый металл в мире 10 самых тяжелых металлов

В настоящее время уже известно 126 химических элементов. Но самыми тяжелыми среди них принято считать Осмий (Os) и Иридий (Ir). Оба эти элемента являются переходными металлами и принадлежат к группе платины. Их порядковые номера в Периодической системе И.П. Менделеева 76 и 77 соответственно. Являясь очень твердыми, оба металла по плотности можно сравнить между собой. Это обусловлено тем, что значения плотности были выведены чисто теоретически (22,562 г/см³ (Ir) и 22,587 г/см³ (Os)). А при подобных вычислениях всегда существует погрешность (± 0,009 г/см³ для обоих расчетов).

История открытия

Открытие этих элементов связано с именем английского ученого С. Теннанта. В 1803г. он изучал свойства платины. И при проведении реакции этого металла на смесь кислот («царскую водку») был выделен нерастворимый осадок, состоявший из примесей. Изучая эту субстанцию, С. Теннант и выделил новые элементы, названные им «иридий» и «осмий».
Название «иридий» («радуга») элемент получил за то, что у его солей встречались разнообразные расцветки. А «осмий» («запах») был так назван благодаря резкому, близкому к озону, запаху оксида осмия OsO4.

Свойства

Как осмий, так и иридий практически не поддаются обработке. Имеют очень высокую температуру плавления. В компактной форме они не вступают в реакции с активными средами, такими как кислоты, щелочи или смеси кислот. Эти свойства наблюдаются у осмия при температурах до 100°C, а у иридия – до 400°C.

Распространение

Наиболее часто добываемая форма этих элементов — осмистый иридий. Этот сплав в основном встречается в местах разработки природной платины и золота. Еще одним местом, где часто находят иридий и осмий, являются железные метеориты. Осмий без иридия в природе практически не встречается. Тогда как иридий находят в сочетаниях с другими металлами. Например, в соединениях с рутением или родием. Однако при этом иридий остается одним из самых нераспространенных химических элементов на нашей планете. Его промышленная добыча в мире не превышает 3 тонн в год.
На данный момент регионы, являющиеся основными источниками добычи иридия и осмия считаются Калифорния, Аляска (США), Сибирь (Россия), Бушвельд (ЮАР), Австралия, Новая Гвинея, Канада.

Фото самых тяжелых металлов



Видео самых тяжелых металлов


Группа химических элементов, имеющих свойства металлов, называется тяжелыми металлами. Характерной их особенностью является большой атомный вес и высокие показатели плотности.

Существует несколько определений данной группы, но в любой трактовке непременным показателем являются:

  • атомный вес (этот показатель должен быть выше 50);
  • плотность (она должна превышать плотность железа - 8 г/см3).

В целом при классификации тяжелых металлов важны показатели:

  • химических свойств;
  • физических свойств;
  • биологическая активность;
  • токсичность.

Не менее актуальным является фактор присутствия в промышленной и хозяйственной сфере.

Самый тяжелый металл

Ученые до сих пор спорят, какой металл является самым тяжелым:

  • осмий (атомная масса - 76);
  • иридий (атомная масса - 77).

Масса обоих металлов разнится буквально на тысячные доли.

Иридий открыт в 1803 году англичанином Теннатом.

Ученый работал с полиметаллической рудой, в которой в разных пропорциях наблюдалось присутствие: серебра, платины и свинца.

К изумлению химика там же оказался иридий. Находка англичанина-химика была уникальной, поскольку иридия в земной коре практически нет. Его находят только в том случае, если в месте поисков когда-либо падал метеорит. Ученые склонны полагать, что малое присутствие иридия в земной коре обусловлено именно его массой. Существует научное мнение о том, что большая часть иридия буквально «просочилась» в центр земной коры в момент зарождения Земли.

Главной особенность иридия являются:

  • устойчивость к любому механическому и химическому воздействию (иридий практически не поддается никакой обработке);
  • колоссальная химическая инертность.

В промышленности изотоп иридия используется палеонтологами на раскопках для определения, какие из них имеют искусственное происхождение.

Осмий был открыт на год позже - в 1804 году. Его также обнаружили в полиметаллической руде. Металл этот также с величайшим трудом подвергается обработке, как химической, так и механической.

На планете Земля осмий встречается, подобно иридию, в местах падений метеоритов.

Однако есть несколько регионов, в которых отмечается крупные месторождения осмия:

  • Казахстан;
  • Америка;
  • ЮАР (здесь месторождение осмия особенно большое).

В промышленности осмий используется в производстве ламп накаливания. Кроме того, его используют там, где требуются тугоплавкие материалы. А из-за повышенной плотности осмия его взяли на вооружения медики - хирургический инструментарий изготавливается именно из него.

Тяжелые металлы в почве

Само определение «тяжелый» часто рассматривается специалистами не в химическом аспекте, а в медицинском. Кроме того, для экологов этот термин является также актуальным при определении степени опасности того или иного объекта для природоохранной деятельности.

Присутствие в почве тяжелых металлов зависит от состава горной породы. Горные породы, в свою очередь, формируются в процессе развития территорий. Химический состав почвы представлен продуктами выветривания пород и зависит от условий многократного преобразования.

В современном мире антропогенная деятельность человека во многом определяет состав почвы. Тяжелые металлы являются фактором загрязнения почв. Их относят к токсикантам, поскольку все они в той или иной мере являются токсичными.

В процессе промышленной деятельности человека к тяжелым металлам часто примешиваются:

Задача ученых-экологов состоит в формировании условий, препятствующих рассеиванию токсикантов в биосфере.

Осмий VS Иридий

Споры о том, какой из двух элементов таблицы Менделеева является более тяжелым, до сих пор не стихают. За это право состязаются два самых тяжелых элемента таблицы - Осмий (76) и Иридий (77). Плотность обоих элементов приблизительно равна 22,6 г/см 3 .

В отличие от явного лидера, среди лёгких металлов - с тяжелыми не всё так просто. Потому рассмотрим оба этих металла.

Иридий

Больше двух столетий прошло с тех пор, как появились первые сведения о платине – белом металле из Южной Америки. Долгое время люди были уверены, что это чистый металл, так же, как золото. Только в самом начале XIX в. Волластон сумел выделить из самородной платины палладий и родий, а в 1804 г. Теннант, изучая черный осадок, оставшийся после растворения самородной платины в царской водке, нашел в нем еще два элемента. Один из них он назвал осмием, а второй – иридием. Соли этого элемента в разных условиях окрашивались в различные цвета. Это свойство и было положено в основу названия: по-гречески слово ιρις, значит «радуга».

Русский химик

В 1841 г. известный русский химик профессор Карл Карлович Клаус занялся исследованием так называемых платиновых остатков, т.е. нерастворимого осадка, остающегося после обработки сырой платины царской водкой. «При самом начале работы, – писал Клаус, – я был удивлен богатством моего остатка, ибо извлек из него, кроме 10% платины, немалое количество иридия, родия, осмия, несколько палладия и смесь различных металлов особенного содержания»...

Клаус сообщил горному начальству о богатстве остатков. Власти заинтересовались открытием казанского ученого, которое сулило значительные выгоды. Из платины в то время чеканили монету, и получение драгоценного металла из остатков казалось очень перспективным. Через год Петербургский монетный двор выделил Клаусу полпуда остатков. Но они оказались бедными платиной, и ученый решил провести на них исследование, «интересное для науки».

«Два года, – писал Клаус, – занимался я постоянно этим трудным, продолжительным и даже вредным для здоровья исследованием» и в 1845 г. опубликовал работу «Химическое исследование остатков уральской платиновой руды и металла рутения». Это было первое систематическое исследование свойств аналогов платины. В нем впервые были описаны и химические свойства иридия.

Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, и объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе «химического исследования остатков уральской платиновой руды и металла рутения».

Какой же он, иридий?

Атомная масса элемента №77 равна 192,2. В таблице Менделеева он находится между осмием и платиной. И в природе он встречается главным образом в виде осмистого иридия – частого спутника самородной платины. Самородного иридия в природе нет.

Иридий – серебристо-белый металл, очень твердый, тяжелый и прочный. По данным фирмы «Интернейшнл Никель и Ко», это самый тяжелый элемент: его плотность 22,65 г/см 3 , а плотность его постоянного спутника – осмия, второго по тяжести 22,61 г/см 3 . Правда, большинство исследователей придерживаются иной точки зрения: они считают, что иридий все-таки немного легче осмия.

Естественное свойство иридия (он же платиноид!) – высокая коррозионная стойкость. На него не действуют кислоты ни при нормальной, ни при повышенной температуре. Даже знаменитой царской водке монолитный иридий «не по зубам». Только расплавленные щелочи и перекись натрия вызывают окисление элемента №77.

Иридий стоек к действию галогенов. Он реагирует с ними с большим трудом и только при повышенной температуре. Хлор образует с иридием четыре хлорида: IrCl, IrCl 2 , IrCl 3 и IrCl 4 . Треххлористый иридий получается легче всего из порошка иридия, помещенного в струю хлора при 600°C. Единственное галоидное соединение, в котором иридий шестивалентен, – это фторид IrF 6 . Тонкоизмельченный иридий окисляется при 1000°C и в струе кислорода, причем в зависимости от условий могут получаться несколько соединений разного состава.

Как и все металлы платиновой группы, иридий образует комплексные соли. Среди них есть и соли с комплексными катионами, например Cl 3 и соли с комплексными анионами, например K 3 · 3H 2 O. Как комплексообразователь иридий похож на своих соседей по таблице Менделеева.

Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина, осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям «Родий», «Осмий» и «Платина».

Иридий получают в виде порошка, который затем прессуют в полуфабрикаты и сплавляют или же порошок переплавляют в электрических печах в атмосфере аргона. Чистый иридий в горячем состоянии можно ковать, однако при обычной температуре он хрупок и не поддается никакой обработке.

Иридий в деле

Из чистого иридия делают тигли для лабораторных целей и мундштуки для выдувания тугоплавкого стекла. Можно, конечно, использовать иридий и в качестве покрытия. Однако здесь встречаются трудности. Обычным электролитическим способом иридий на другой металл наносится с трудом, и покрытие получается довольно рыхлое. Наилучшим электролитом был бы комплексный гексахлорид иридия, однако он неустойчив в водном растворе, и даже в этом случае качество покрытия оставляет желать лучшего.

Разработан метод получения иридиевых покрытий электролитическим путем из расплавленных цианидов калия и натрия при 600°C. В этом случае образуется плотное покрытие толщиной до 0,08 мм.

Менее трудоемко получение иридиевых покрытий методом плакирования. На основной металл укладывают тонкий слой металла-покрытия, а затем этот «бутерброд» идет под горячий пресс. Таким образом получают вольфрамовую и молибденовую проволоку с иридиевым покрытием. Заготовку из молибдена или вольфрама вставляют в иридиевую трубку и проковывают в горячем состоянии, а затем волочат до нужной толщины при 500...600°C. Эту проволоку используют для изготовления управляющих сеток в электронных лампах.

Можно наносить иридиевые покрытия на металлы и керамику химическим способом. Для этого получают раствор комплексной соли иридия, например с фенолом или каким-либо другим органическим веществом. Такой раствор наносят на поверхность изделия, которое затем нагревают до 350...400°C в контролируемой атмосфере, т.е. в атмосфере с регулируемым окислительно-восстановительным потенциалом. Органика в этих условиях улетучивается, или выгорает, а слой иридия остается на изделии.

Но покрытия – не главное применение иридия. Этот металл улучшает механические и физико-химические свойства других металлов. Обычно его используют, чтобы повысить их прочность и твердость. Добавка 10% иридия к относительно мягкой платине повышает ее твердость и предел прочности почти втрое. Если же количество иридия в сплаве увеличить до 30%, твердость сплава возрастет ненамного, но зато предел прочности увеличится еще вдвое – до 99 кг/мм 2 . Поскольку такие сплавы обладают исключительной коррозионной стойкостью, из них делают жаростойкие тигли, выдерживающие сильный нагрев в агрессивных средах. В таких тиглях выращивают, в частности, кристаллы для лазерной техники. Платино-иридиевые сплавы привлекают и ювелиров – украшения из этих сплавов красивы и почти не изнашиваются. Из платино-иридиевого сплава делают также эталоны, иногда – хирургический инструмент.

Спдавы иридия

В будущем сплавы иридия с платиной могут приобрести особое значение в так называемой слаботочной технике как идеальный материал для контактов. Каждый раз, когда происходит замыкание и размыкание обычного медного контакта, возникает искра; в результате поверхность меди довольно быстро окисляется. В контакторах для сильных токов, например для электродвигателей, это явление не очень вредит работе: поверхность контактов время от времени зачищают наждачной бумагой, и контактор вновь готов к работе. Но, когда мы имеем дело со слаботочной аппаратурой, например в технике связи, тонкий слой окиси меди весьма сильно влияет на всю систему, затрудняет прохождение тока через контакт. А именно в этих устройствах частота включений бывает особенно большой – достаточно вспомнить АТС (автоматические телефонные станции). Вот здесь-то и придут на помощь необгорающие платино-иридиевые контакты – они могут работать практически вечно! Жаль только, что эти сплавы очень дороги и пока их недостаточно.

Иридий добавляют не только к платине. Небольшие добавки элемента №77 к вольфраму и молибдену увеличивают прочность этих металлов при высокой температуре. Мизерная добавка иридия к титану (0,1%) резко повышает его и без того значительную стойкость к действию кислот. То же относится и к хрому. Термопары, состоящие из иридия и сплава иридия с родием (40% родия), надежно работают при высокой температуре в окислительной атмосфере. Из сплава иридия с осмием делают напайки для перьев авторучек и компасные иглы.

Резюмируя, можно сказать, что металлический иридий применяют главным образом из-за его постоянства – постоянны размеры изделий из металла, его физические и химические свойства, причем, если можно так выразиться, постоянны на высшем уровне.

Запасы на Земле

Как и другие металлы VIII группы, иридий может быть использован в химической промышленности в качестве катализатора. Иридиево-никелевые катализаторы иногда применяют для получения пропилена из ацетилена и метана. Иридий входил в состав платиновых катализаторов реакции образования окислов азота (в процессе получения азотной кислоты). Один из окислов иридия, IrO 2 , пытались применять в фарфоровой промышленности в качестве черной краски. Но слишком уж дорога эта краска...

Запасы иридия на Земле невелики, его содержание в земной коре исчисляется миллионными долями процента. Невелико и производство этого элемента – не больше тонны в год. Во всем мире!

В связи с этим трудно предположить, что со временем в судьбе иридия наступят разительные перемены – он навсегда останется редким и дорогим металлом. Но там, где его применяют, он служит безотказно, и в этой уникальной надежности залог того, что наука и промышленность будущего без иридия не обойдутся.

Иридиевый сторож

Во многих химических и металлургических производствах, например в доменном, очень важно знать уровень твердых материалов в агрегатах. Обычно для такого контроля используют громоздкие зонды, подвешиваемые на специальных зондовых лебедках. В последние годы зонды стали заменять малогабаритными контейнерами с искусственным радиоактивным изотопом – иридием-192. Ядра 192 Ir испускают гамма-лучи высокой энергии; период полураспада изотопа равен 74,4 суток. Часть гамма-лучей поглощается шихтой, и приемники излучения фиксируют ослабление потока. Последнее пропорционально расстоянию, которое проходят лучи в шихте. Иридий-192 с успехом применяют и для контроля сварных швов; с его помощью па фотопленке четко фиксируются все непроваренные места и инородные включения. Гамма-дефектоскопы с иридием-192 используют также для контроля качества изделий из стали и алюминиевых сплавов.

Эффект Мёссбауэра

В 1958 г. молодой физик из ФРГ Рудольф Мёссбауэр сделал открытие, обратившее на себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерные явления. Через три года после открытия, в 1961 г., Мёссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192.

Сердце бьется активнее

Одно из наиболее интересных применений платино-иридиевых сплавов за последние годы – изготовление из них электрических стимуляторов сердечной деятельности. В сердце больного стенокардией вживляют электроды с платино-иридиевыми зажимами. Электроды соединены с приемником, который тоже находится в теле больного. Генератор же с кольцевой антенной находится снаружи, например в кармане больного. Кольцевая антенна крепится на теле напротив приемника. Когда больной чувствует, что наступает приступ стенокардии, он включает генератор. В кольцевую антенну поступают импульсы, которые передаются в приемник, а от него – на платино-придиевые электроды. Электроды, передавая импульсы на нервы, заставляют сердце биться активнее. Сейчас в СССР многие станции скорой помощи оборудованы подобными генераторами. В случае остановки сердца делают надрез ключичной вены, вводят в нее соединенный с генератором электрод, включают генератор, и через несколько минут сердце вновь начинает работать.

Изотопы – стабильные и нестабильные

В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме иридия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время – самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада – ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого – иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191 соответственно 37,3%.

Полезные хлориридаты

Хлориридатами называют комплексные хлориды четырехвалентного иридия; общая их формула Me 2 . Благодаря хлориридатам можно в принципе уверенно разделять соединения таких похожих элементов, как натрий и калий. Хлориридат натрия растворим в воде, а хлориридат калия – практически нерастворим. Но для такой операции хлориридаты слишком дороги, так как дорог исходный иридий. Это не значит однако, что хлориридаты вообще бесполезны. Способность иридия образовывать эти соединения используют для выделения элемента №77 из смеси платиновых металлов.

Если с точки зрения практики элемент №76 среди прочих платиновых металлов выглядит достаточно заурядно, то с точки зрения классической химии (подчеркиваем, классической неорганической химии, а не химии комплексных соединений) этот элемент весьма знаменателен.

Прежде всего, для него, в отличие от большинства элементов VIII группы, характерна валентность 8+, и он образует с кислородом устойчивую четырехокись OsO 4 . Это своеобразное соединение, и, видимо, не случайно элемент №76 получил название, в основу которого положено одно из характерных свойств его четырехокиси.

Осмий обнаруживают по запаху

Подобное утверждение может показаться парадоксальным: ведь речь идет не о галогене, а о платиновом металле...

История открытия четырех из пяти платиноидов связана с именами двух английских ученых, двух современников. Уильям Волластон в 1803...1804 гг. открыл палладий и родий, а другой англичанин, Смитсон Теннант (1761...1815), в 1804 г. – иридий и осмий. Но если Волластон оба «свои» элемента нашел в той части сырой платины, которая растворялась в царской водке, то Теннанту повезло при работе с нерастворимым остатком: как оказалось, он представлял собой естественный природный сплав иридия с осмием.

Тот же остаток исследовали и три известных французских химика – Колле-Дескоти, Фуркруа и Воклен. Они начали свои исследования даже раньше Теннанта. Как и он, они наблюдали выделение черного дыма при растворении сырой платины. Как и он, они, сплавив нерастворимый остаток с едким кали, сумели получить соединения, которые все-таки удавалось растворить. Фуркруа и Воклен были настолько убеждены, что в нерастворимом остатке сырой платины есть новый элемент, что заранее дали ему имя – птен – от греческого πτηνος – крылатый. Но только Теннанту удалось разделить этот остаток и доказать существование двух новых элементов – иридия и осмия.

Название элемента №76 происходит от греческого слова οσμη, что означает «запах». Неприятный раздражающий запах, похожий одновременно на запахи хлора и чеснока, появлялся, когда растворяли продукт сплавления осмиридия со щелочью. Носителем этого запаха оказался осмиевый ангидрид, или четырехокись осмия OsO 4 . Позже выяснилось, что так же скверно, хотя и значительно слабее, может пахнуть и сам осмий. Тонкоизмельченный, он постепенно окисляется на воздухе, превращаясь в OsO 4 ...

Осмий металлический

Осмий – оловянно-белый металл с серовато-голубым оттенком. Это самый тяжелый из всех металлов (его плотность 22,6 г/см 3) и один из самых твердых. Тем не менее осмиевую губку можно растереть в порошок, поскольку он хрупок. Плавится осмий при температуре около 3000°C, а температура его кипения до сих пор точно не определена. Полагают, что она лежит где-то около 5500°C.

Большая твердость осмия (7,0 по шкале Мооса), пожалуй, то из его физических свойств, которое используют наиболее широко. Осмий вводят в состав твердых сплавов, обладающих наивысшей износостойкостью. У дорогих авторучек напайку на кончик пера делают из сплавов осмия с другими платиновыми металлами или с вольфрамом и кобальтом. Из подобных же сплавов делают небольшие детали точных измерительных приборов, подверженные износу. Небольшие – потому что осмий мало распространен (5·10 –6 % веса земной коры), рассеян и дорог. Этим же объясняется ограниченное применение осмия в промышленности. Он идет лишь туда, где при малых затратах металла можно получить большой эффект. Например, в химическую промышленность, которая пытается использовать осмий как катализатор. В реакциях гидрогенизации органических веществ осмиевые катализаторы даже эффективнее платиновых.

Несколько слов о положении осмия среди прочих платиновых металлов. Внешне он мало от них отличается, но именно у осмия самые высокие температуры плавления и кипения среди всех металлов этой группы, именно он наиболее тяжел. Его же можно считать наименее «благородным» из платиноидов, поскольку кислородом воздуха он окисляется уже при комнатной температуре (в мелкораздробленном состоянии). А еще осмий – самый дорогой из всех платиновых металлов. Если в 1966 г. платина ценилась на мировом рынке в 4,3 раза дороже, чем золото, а иридий – в 5,3, то аналогичный коэффициент для осмия был равен 7,5.

Как и прочие платиновые металлы, осмий проявляет несколько валентностей: 0, 2+, 3+, 4+, 6+ и 8 +. Чаще всего можно встретить соединения четырех- и шестивалентного осмия. Но при взаимодействии с кислородом он проявляет валентность 8+.

Как и прочие платиновые металлы, осмий – хороший комплексообразователь, и химия соединений осмия не менее разнообразна, чем, скажем, химия палладия или рутения.

Ангидрид и другие

Несомненно, самым важным соединением осмия остается его четырехокись OsO 4 , пли осмиевый ангидрид. Как и элементарный осмий, OsO 4 обладает каталитическими свойствами; OsO 4 применяют при синтезе важнейшего современного лекарственного препарата – кортизона. При микроскопических исследованиях животных и растительных тканей четырехокись осмия используют как окрашивающий препарат. OsO 4 очень ядовит, он сильно раздражает кожу, слизистые оболочки и особенно вреден для глаз. Любая работа с этим полезным веществом требует чрезвычайной осторожности.

Внешне чистая четырехокись осмия выглядит достаточно обычно – бледно-желтые кристаллы, растворимые в воде и четыреххлористом углероде. При температуре около 40°C (есть две модификации OsO 4 с близкими точками плавления) они плавятся, а при 130°C четырехокись осмия закипает.

Другой окисел осмия – OsO 2 – нерастворимый в воде черный порошок – практического значения не имеет. Также не нашли пока практического применения и другие известные соединения элемента №76 – его хлориды и фториды, иодиды и оксихлориды, сульфид OsS 2 и теллурид OsTe 2 – черные вещества со структурой пирита, а также многочисленные комплексы и большинство сплавов осмия. Исключение составляют лишь некоторые сплавы элемента №76 с другими платиновыми металлами, вольфрамом и кобальтом. Главный их потребитель – приборостроение.

Как получают осмий

Самородный осмий в природе не найден. Он всегда связан в минералах с другим металлом платиновой группы – иридием. Существует целая группа минералов осмистого иридия. Самый распространенный из них – невьянскит, природный сплав этих двух металлов. Иридия в нем больше, поэтому невьянскит часто называют просто осмистым иридием. Зато другой минерал – сысертскит – называют иридистым осмием – в нем больше осмия... Оба эти минерала – тяжелые, с металлическим блеском, и это не удивительно – таков их состав. И само собой разумеется, все минералы группы осмистого иридия очень редки.

Иногда эти минералы встречаются самостоятельно, чаще же осмистый иридий входит в состав самородной сырой платины. Основные запасы этих минералов сосредоточены в СССР (Сибирь, Урал), США (Аляска, Калифорния), Колумбии, Канаде, странах Южной Африки.

Естественно, что добывают осмий совместно с платиной, но аффинаж осмия существенно отличается от способов выделения других платиновых металлов. Все их, кроме рутения, осаждают из растворов, осмий же получают отгонкой его относительно летучей четырехокиси.

Но прежде чем отгонять OsO 4 , нужно отделить от платины осмистый иридий, а затем разделить иридий и осмий.

Когда платину растворяют в царской водке, минералы группы осмистого иридия остаются в осадке: даже этот из всех растворителей растворитель не может одолеть эти устойчивейшие природные сплавы. Чтобы перевести их в раствор, осадок сплавляют с восьмикратным количеством цинка – этот сплав сравнительно просто превратить в порошок. Порошок спекают с перекисью бария BaO 3 , а затем полученную массу обрабатывают смесью азотной и соляной кислот непосредственно в перегонном аппарате – для отгонки OsO 4 .

Ее улавливают щелочным раствором и получают соль состава Na 2 OsO 4 . Раствор этой соли обрабатывают гипосульфитом, после чего осмий осаждают хлористым аммонием в виде соли Фреми Cl 2 . Осадок промывают, фильтруют, а затем прокаливают в восстановительном пламени. Так получают пока еще недостаточно чистый губчатый осмий.

Затем его очищают, обрабатывая кислотами (HF и HCl), и довосстанавливают в электропечи в струе водорода. После охлаждения получают металл чистотой до 99,9% O 3 .

Такова классическая схема получения осмия – металла, который применяют пока крайне ограниченно, металла очень дорогого, но достаточно полезного.

Чем больше, тем... больше

Природный осмий состоит из семи стабильных изотопов с массовыми числами 184, 186...190 и 192. Любопытная закономерность: чем больше массовое число изотопа осмия, тем больше он распространен. Доля самого легкого изотопа, осмия-184, – 0,018%, а самого тяжелого, осмия-192, – 41%. Из искусственных радиоактивных изотопов элемента №76 самый долгоживущий – осмий-194 с периодом полураспада около 700 дней.

Карбонилы осмия

В последние годы химиков и металлургов все больше интересуют карбонилы – соединения металлов с СО, в которых металлы формально нульвалентны. Карбонил никеля уже довольно широко применяется в металлургии, и это позволяет надеяться, что и другие подобные соединения со временем смогут облегчить получение тех или иных ценных материалов. Для осмия сейчас известны два карбонила. Пентакарбонил Os(CO) 5 – в обычных условиях бесцветная жидкость (температура плавления – 15°C). Получают его при 300°C и 300 атм. из четырехокиси осмия и угарного газа. При обычных температуре и давлении Os(CO) 5 постепенно переходит в другой карбонил состава Os 3 (CO) 12 – желтое кристаллическое вещество, плавящееся при 224°C. Интересно строение этого вещества: три атома осмия образуют равносторонний треугольник с гранями длиной 2,88 Ǻ, а к каждой вершине этого треугольника присоединены по четыре молекулы СО.

Фториды спорные и бесспорные

«Фториды OsF 4 , OsF 6 , OsF 8 образуются из элементов при 250...300°C... OsF 8 – самый летучий из всех фторидов осмия, т. кип. 47,5°»... Эта цитата взята из III тома «Краткой химической энциклопедии», выпущенного в 1964 г. Но в III томе «Основ общей химии» Б.В. Некрасова, вышедшем в 1970 г., существование октафторида осмия OsF 8 отвергается. Цитируем: «В 1913 г. были впервые получены два летучих фторида осмия, описанные как OsF 6 и OsF 8 . Так и считалось до 1958 г., когда выяснилось, что в действительности они отвечают формулам OsF 5 и OsF 6 . Таким образом, 45 лет фигурировавший в научной литературе OsF 8 на самом деле никогда не существовал. Подобные случаи «закрытия» ранее описанных соединений встречаются не так уж редко».

Заметим, что и элементы тоже иногда приходится «закрывать»... Остается добавить, что, помимо упомянутых в «Краткой химической энциклопедии», был получен еще один фторид осмия – нестойкий OsF 7 . Это бледно-желтое вещество при температуре выше –100°C распадается на OsF 6 и элементарный фтор.

По материалам n-t.ru

С незапамятных времен люди активно используют различные металлы. После изучения их свойств, вещества заняли достойное место в таблице знаменитого Д. Менделеева. До сих пор не утихают споры ученых относительно вопроса, какому металлу присвоить звание самого тяжелого и плотного в мире. На чаше весов два элемента менделеевской таблицы – иридий, а также осмий. Чем они интересны, читайте далее.

На протяжении веков люди занимались изучением полезных свойств самых распространенных металлов на планете. Больше всего сведений наука хранит о золоте серебре и меди. Со временем человечество познакомилось с железом, более легкими металлами – оловом и свинцом. В мире Средневековья люди активно пользовались мышьяком, а болезни лечили ртутью.

Благодаря стремительному прогрессу, сегодня самыми тяжелыми и плотными металлами считается не один элемент таблицы, а сразу два. Под номером 76 расположен осмий (Os), а под номером 77 – иридий (Ir), вещества имеют следующие показатели плотности:

  • осмий тяжелый, благодаря плотности 22,62 г/ см³;
  • иридий не намного легче – 22,53 г/ см³.

Плотность относят к физическим свойствам металлов, она представляет собой соотношение массы вещества к его объему. Теоретические расчеты плотности обоих элементов имеют некоторые погрешности, поэтому оба металла сегодня принято считать самыми тяжелыми.

Для наглядности можно сравнить вес обыкновенной пробки с весом пробки из самого тяжелого металла в мире. Чтобы уравновесить чаши весов с пробкой из осмия либо иридия, потребуется более сотни обычных пробок.

История открытия металлов

Оба элемента были открыты на заре XIX века ученым Смитсоном Теннантом. Многие исследователи того времени занимались изучением свойств сырой платины, обрабатывая ее «царской водкой». Только Теннанту удалось обнаружить в полученном осадке два химических вещества:

  • осадочный элемент со стойким запахом хлора ученый назвал осмием;
  • субстанция с меняющейся окраской получила название иридий (радуга).

Оба элемента были представлены единым сплавом, который ученому удалось разделить. Дальнейшим исследованием самородков платины занялся русский химик К. Клаус, тщательно исследовавший свойства осадочных элементов. Сложность определения самого тяжелого металла в мире заключается в невысокой разности их плотности, которая не является величиной постоянной.

Яркие характеристики самых плотных металлов

Добытые экспериментальным путем вещества представляют собой порошок, довольно трудно поддающийся обработке, ковка металлов требует очень высоких температур. Наиболее распространенной формой содружества иридия с осмием является сплав осмистого иридия, который добывают в месторождениях платины, пластах залегания золота.

Наиболее частым местом обнаружения иридия считаются метеориты, богатые железом. Самородного осмия в мире природы не найти, только в содружестве с иридием и другими компонентами платиновой группы. Залежи часто содержат соединения серы с мышьяком.

Особенности самого тяжелого и дорогого металла в мире

Среди элементов периодической таблицы Менделеева самым дорогостоящим считается осмий. Серебристый металл с голубоватым отливом принадлежит к платиновой группе благородных химических соединений. Свой блеск самый плотный, но очень хрупкий металл не теряет под воздействием высоких температурных показателей.

Характеристики

  • Элемент №76 Osmium имеет атомную массу 190,23 а.е.м.;
  • Расплавленное при температуре 3033°C вещество закипит при 5012°C.
  • Самый тяжелый материал обладает плотностью 22,62 г/ см³;
  • Структура кристаллической решетки имеет гексагональную форму.

Несмотря на изумительно холодный блеск серебристого отлива, осмий не годится для производства ювелирных изделий из-за высочайшей токсичности. Для плавки украшения потребовалась бы температура, как на поверхности Солнца, ведь самый плотный в мире металл разрушается при механическом воздействии.

Превращаясь в порошок, осмий взаимодействует с кислородом, реагирует на серу, фосфор, селен, на царскую водку реакция вещества очень медленная. Osmium не обладает магнетизмом, сплавы имеют склонность к окислению, формированию кластерных соединений.

Где применяют

Самый тяжелый и невероятно плотный металл обладает высокой износостойкостью, поэтому добавка его к сплавам значительно повышает их крепость. Применение осмия в основном связано с химической промышленностью. Кроме того, его используют для следующих нужд:

  • изготовления ёмкостей, предназначенных для хранения отходов ядерного синтеза;
  • для нужд ракетостроения, оружейного производства (боеголовки);
  • в часовой промышленности для изготовления механизмов брендовых моделей;
  • для изготовления хирургических имплантатов, деталей кардиостимуляторов.

Интересно, что самый плотный металл считается единственным в мире элементом, неподвластным воздействию агрессии «адской» смеси кислот (азотная и соляная). Алюминий, соединенный с осмием, становится настолько пластичным, что его можно вытягивать без разрыва.

Тайны самого редкого и плотного в мире металла

Принадлежность иридия к платиновой группе наделяет его свойством невосприимчивости к обработке кислотами и их смесями. В мире иридий получают из анодных шламов при медно-никелевом производстве. После обработки шлама царской водкой, выпавший осадок прокаливают, результатом чего становится добыча иридия.

Характеристики

Самый твердый металл серебристо-белого цвета обладает следующей группой свойств:

  • элемент таблицы Менделеева Iridium №77 обладает атомной массой 192,22 а.е.м.;
  • расплавленное при температуре 2466°C вещество закипит при 4428°C;
  • плотность расплавленного иридия – в пределах 19,39 г/см³;
  • плотность элемента при комнатной температуре – 22,7 г/см³;
  • кристаллическая решётка иридия ассоциируется с гранецентрированным кубом.

Тяжелый иридий не меняется под воздействием обычной температуры воздуха. Результатом прокаливания под воздействием нагревания при определенных температурах становится образование многовалентных соединений. Порошок свежего осадка иридиевой черни поддается частичному растворению царской водкой, а также раствором хлора.

Область применения

Хотя Iridium принадлежит к числу драгоценных металлов, для ювелирных изделий его применяют редко. Элемент, плохо поддающийся обработкам, весьма востребован при строительстве дорог, производстве автомобильных деталей. Сплавы с неподверженным окислению самым плотным металлом применяются для следующих целей:

  • изготовления тиглей для проведения лабораторных опытов;
  • производства специальных мундштуков для стеклодувов;
  • покрытия кончиков перьев и стержней шариковых ручек;
  • изготовления долговечных свечей зажигания для автомобилей;

Сплавы с изотопами иридия используют на сварочном производстве, в приборостроении, для выращивания кристаллов в составе лазерной техники. Применение самого тяжелого металла позволило осуществлять лазерную коррекцию зрения, дробление камней в почках и другие медицинские процедуры.

Хотя Iridium лишен токсичности и не опасен для биологических организмов, в природной среде можно встретиться его опасным изотопом – гексафторидом. Вдыхание паров ядовитого вещества ведет к мгновенному удушью и смерти.

Места природного залегания

Залежи самого плотного металла Iridium в мире природы ничтожно малы, их намного меньше, чем запасов платины. Предположительно самое тяжелое вещество сместилось к ядру планеты, поэтому объемы промышленной добычи элемента невелики (около трех тонн в год). Изделия из сплавов с иридием могут прослужить до 200 лет, драгоценности станут более долговечными.

Самородков самого тяжелого металла с неприятным запахом Osmium в природе не найти. В составе минералов можно обнаружить следы осмистого иридия вместе с платиной и палладием, рутением. Залежи осмистого иридия разведаны на территории Сибири (Россия), некоторых штатов Америки (Аляска и Калифорния), в Австралии и Южной Африке.

Если обнаружены залежи платины, удастся выделить осмий с иридием для укрепления и усиления физических либо химических соединений различных изделий.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: