Технологии машинного зрения. Сделано в России. Машинное зрение

Машинное зрение - это научное направление в области искусственного интеллекта, в частности робототехники, и связанные с ним технологии получения изображений объектов реального мира, их обработки и использования полученных данных для решения разного рода прикладных задач без участия (полного или частичного) человека.

Исторические прорывы в машинном зрении

Компоненты системы машинного зрения

  • Одна или несколько цифровых или аналоговых камер (черно-белые или цветные) с подходящей оптикой для получения изображений
  • Программное обеспечение для изготовления изображений для обработки. Для аналоговых камер это оцифровщик изображений
  • Процессор (современный ПК c многоядерным процессором или встроенный процессор, например - ЦСП)
  • Программное обеспечение машинного зрения, которое предоставляет инструменты для разработки отдельных приложений программного обеспечения.
  • Оборудование ввода-вывода или каналы связи для доклада о полученных результатах
  • Умная камера: одно устройство, которое включает в себя все вышеперечисленные пункты.
  • Очень специализированные источники света (светодиоды, люминесцентные и галогенные лампы и т. д.)
  • Специфичные приложения программного обеспечения для обработки изображений и обнаружения соответствующих свойств.
  • Датчик для синхронизации частей обнаружения (часто оптический или магнитный датчик) для захвата и обработки изображений.
  • Приводы определенной формы используемые для сортировки или отбрасывания бракованных деталей.

Машинное зрение сосредотачивается на применении, в основном промышленном, например, автономные роботы и системы визуальной проверки и измерений. Это значит, что технологии датчиков изображения и теории управления связаны с обработкой видеоданных для управления роботом и обработка полученных данных в реальном времени осуществляется программно или аппаратно.

Обработка изображений и анализ изображений в основном сосредоточены на работе с 2D изображениями, т.е. как преобразовать одно изображение в другое. Например, попиксельные операции увеличения контрастности, операции по выделению краёв, устранению шумов или геометрические преобразования, такие как вращение изображения. Данные операции предполагают, что обработка/анализ изображения действуют независимо от содержания самих изображений.

Компьютерное зрение сосредотачивается на обработке трехмерных сцен, спроектированных на одно или несколько изображений. Например, восстановлением структуры или другой информации о 3D сцене по одному или нескольким изображениям. Компьютерное зрение часто зависит от более или менее сложных допущений относительно того, что представлено на изображениях.

Также существует область названная визуализация, которая первоначально была связана с процессом создания изображений, но иногда имела дело с обработкой и анализом. Например, рентгенография работает с анализом видеоданных медицинского применения.

Наконец, распознавание образов является областью, которая использует различные методы для получения информации из видеоданных, в основном, основанные на статистическом подходе. Значительная часть этой области посвящена практическому применению этих методов.

Таким образом, можно сделать вывод, что понятие «машинное зрение» на сегодняшний день включает в себя: компьютерное зрение, распознавание зрительных образов, анализ и обработка изображений и т.д.

Задачи машинного зрения

  • Распознавание
  • Идентификация
  • Обнаружение
  • Распознавание текста
  • Восстановление 3D формы по 2D изображениям
  • Оценка движения
  • Восстановление сцены
  • Восстановление изображений
  • Выделение на изображениях структур определенного вида, сегментация изображений
  • Анализ оптического потока

Распознавание


Классическая задача в компьютерном зрении, обработке изображений и машинном зрении это определение содержат ли видеоданные некоторый характерный объект, особенность или активность.
Эта задача может быть достоверно и легко решена человеком, но до сих пор не решена удовлетворительно в компьютерном зрении в общем случае: случайные объекты в случайных ситуациях.
Один или несколько предварительно заданных или изученных объектов или классов объектов могут быть распознаны (обычно вместе с их двухмерным положением на изображении или трехмерным положением в сцене).

Идентификация


Распознается индивидуальный экземпляр объекта принадлежащего к какому-либо классу.
Примеры: идентификация определённого человеческого лица или отпечатка пальцев или автомобиля.

Обнаружение


Видеоданные проверяются на наличие определенного условия.
Обнаружение, основанное на относительно простых и быстрых вычислениях иногда используется для нахождения небольших участков в анализируемом изображении, которые затем анализируются с помощью приемов, более требовательных к ресурсам, для получения правильной интерпретации.

Распознавание текста


Поиск изображений по содержанию: нахождение всех изображений в большом наборе изображений, которые имеют определенное различными путями содержание.
Оценка положения: определение положения или ориентации определенного объекта относительно камеры.
Оптическое распознавание знаков: распознавание символов на изображениях печатного или рукописного текста (обычно для перевода в текстовый формат, наиболее удобный для редактирования или индексации. Например, ASCII).


Восстановление 3D формы по 2D изображениям осуществляется с помощью стереореконструкции карты глубины, реконструкции поля нормалей и карты глубины по закраске полутонового изображения, реконструкции карты глубины по текстуре и определения формы по перемещению

Пример восстановления 3D формы по 2D изображеню

Оценка движения

Несколько задач, связанных с оценкой движения, в которых последовательность изображений (видеоданные) обрабатываются для нахождения оценки скорости каждой точки изображения или 3D сцены. Примерами таких задач являются: определение трехмерного движения камеры, слежение, то есть следование за перемещениями объекта (например, машин или людей)

Восстановление сцены

Даны два или больше изображения сцены, или видеоданные.
Восстановление сцены имеет задачей воссоздать трехмерную модель сцены.
В простейшем случае, моделью может быть набор точек трехмерного пространства. Более сложные методы воспроизводят полную трехмерную модель.

Восстановление изображений


Задача восстановления изображений это удаление шума (шум датчика, размытость движущегося объекта и т.д.).
Наиболее простым подходом к решению этой задачи являются различные типы фильтров, таких как фильтры нижних или средних частот.
Более высокий уровень удаления шумов достигается в ходе первоначального анализа видеоданных на наличие различных структур, таких как линии или границы, а затем управления процессом фильтрации на основе этих данных.

Восстановление изображений

Анализ оптического потока (нахождения перемещения пикселей между двумя изображениями).
Несколько задач, связанных с оценкой движения, в которых последовательность изображений (видеоданные) обрабатываются для нахождения оценки скорости каждой точки изображения или 3D сцены.
Примерами таких задач являются: определение трехмерного движения камеры, слежение, т.е. следование за перемещениями объекта (например, машин или людей).

Методы обработки изображений

Счетчик пикселей

Подсчитывает количество светлых или темных пикселей.
С помощью счетчика пикселей пользователь может выделить на экране прямоугольную область в интересующем месте, например там, где он ожидает увидеть лица проходящих людей. Камера в ответ немедленно даст сведения о количестве пикселей, представленных сторонами прямоугольника.
Счетчик пикселей дает возможность быстро проверить, соответствует ли смонтированная камера нормативным требованиям или требованиям заказчика относительно пиксельного разрешения, например, для лиц людей, входящих в двери, которые контролируются камерой, или в целях распознавания номерных знаков.

Бинаризация


Преобразует изображение в серых тонах в бинарное (белые и черные пиксели).
Значения каждого пикселя условно кодируются, как «0» и «1». Значение «0» условно называют задним планом или фоном а «1» - передним планом.
Часто при хранении цифровых бинарных изображений применяется битовая карта, где используют один бит информации для представления одного пикселя.
Также, особенно на ранних этапах развития техники, двумя возможными цветами были чёрный и белый, что не является обязательным.

Сегментация

Используется для поиска и (или) подсчета деталей.
Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать.
Сегментация изображений обычно используется для того, чтобы выделить объекты и границы (линии, кривые, и т. д.) на изображениях. Более точно, сегментация изображений - это процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют общие визуальные характеристики.
Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения. Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например, по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.

Чтение штрих-кодов


Штрих-код - графическая информация, наносимая на поверхность, маркировку или упаковку изделий, представляющая возможность считывания её техническими средствами - последовательность чёрных и белых полос либо других геометрических фигур.
В машинном зрении штрих-коды используют для декодирования 1D и 2D кодов, разработанных для считывания или сканирования машинами.

Оптическое распознавание символов

Оптическое распознавание символов: автоматизированное чтение текста, например, серийных номеров.
Распознавание используется для конвертации книг и документов в электронный вид, для автоматизации систем учёта в бизнесе или для публикации текста на веб-странице.
Оптическое распознавание текста позволяет редактировать текст, осуществлять поиск слов или фраз, хранить его в более компактной форме, демонстрировать или распечатывать материал, не теряя качества, анализировать информацию, а также применять к тексту электронный перевод, форматирование или преобразование в речь.

Моя программа, написанная на LabView по работе с изображениями.

Использовано компьютерное зрение для неразрушающего контроля качества сверхпроводящих материалов.

Введение. Решение задач обеспечения комплексной безопасности (как антитеррористической и механической безопасности объектов, так и технологической безопасности инженерных систем), в настоящее время, требует системной организации контроля, текущего состояния объектов. Одними из наиболее перспективных способов контроля текущего состояния объектов являются оптические и оптико-электронные методы, основанные на технологиях обработки видеоизображений оптического источника. К ним относятся: программы по работе с изображениями; новейшие способы обработки изображений; оборудования для получения, анализа и обработки изображений, т.е. комплекс средств и методов относящихся к области компьютерного и машинного зрения. Компьютерное зрение - это общий набор методов, позволяющих компьютерам видеть и распознавать трех- или двухмерные объекты, как инженерного направления, так и нет. Для работы с компьютерным зрение требуются цифровые или аналоговые устройства ввода-вывода, а также вычислительные сети и IP анализаторы локаций, предназначенные для контроля производственного процесса и подготовки информации для принятия оперативных решений в кратчайшие сроки.

Постановка проблемы. На сегодняшний день, главной задачей для проектируемых комплексов машинного зрения остаётся обнаружение, распознавание, идентификация и квалификация объектов потенциального риска, находящихся в случайном месте в зоне оперативной ответственности комплекса. Существующие на данный момент программные продукты, направленные на решение перечисленных задач обладают рядом существенных недостатков, а именно: значительная сложность, связанная с высокой детализацией оптических образов; высокая потребляемая мощность и достаточно узкий спектр возможностей. Расширение задач обнаружения объектов потенциального риска, до области поиска случайных объектов в случайных ситуациях, находящихся в случайном месте, имеющимися программными продуктами не возможно, даже с задействованием суперкомпьютера.

Цель. Разработка универсальной программы обработки изображений оптического источника, с возможностью потокового анализа данных, то есть программа должна быть лёгкой и быстрой для того, чтобы её можно было записать на малогабаритное ЭВМ устройство.

Задачи:

  • разработка математической модели программы;
  • написание программы;
  • опробирование программы в условиях лабораторного эксперимента, с полной подготовкой и проведением эксперимента;
  • исследование возможности применения программы в смежных областях деятельности.

Актуальность программы определяется:

  • высокой стоимостью профессиональных программ обработки визуальной информации.

Анализ актуальности разработки программы.

  • отсутствием на рынке программного обеспечения программ обработки изображений с выводом подробного анализа инженерных составляющих объектов;
  • постоянно растущими требованиями к качеству и скорости получения визуальной информации, резко повышающими востребованность программ обработки изображений;
  • существующей потребность в программах высокой производительности, надежных и простых с точки зрения пользователя;
  • существует потребность программ высокой производительности и простого управления, чего добиться в наше время крайне сложно. Для примера я взял Adobe Photoshop. Данный графический редактор обладает гармоничным сочетанием функциональности и простоты использования для рядового пользователя, но в данной программе невозможно работать со сложными инструментами по обработке изображения (например, анализ изображения путём построения математической зависимости (функции) или же интегральной обработкой изображений);
  • высокой стоимостью профессиональных программ обработки визуальной информации. Если программное обеспечение качественно, то цена на него крайне высока, вплоть до отдельных функции того или иного набора программ. На графике ниже представлена зависимость цены/качества простых аналогов программы.

Для упрощения решения задач данного типа, мною была разработана математическая модель и написана программа для ЭВМ устройства по анализу изображения при помощи простейших преобразований исходных изображений.
Программа работает с преобразованиями типа бинаризации, яркости, контраста изображения и т.д. Принцип действия программы продемонстрирован на примере анализа сверхпроводящих материалов.

При создании композиционных сверхпроводников на основе Nb3Sn варьируется объемное соотношение бронзы и ниобия, размер и количество волокон в нем, равномерность их распределения по сечению бронзовой матрицы, наличие диффузионных барьеров и стабилизирующих материалов. При заданной объемной доле ниобия в проводнике увеличение количества волокон приводит, соответственно, к уменьшению их диаметра. Это ведет к заметному возрастанию поверхности взаимодействия Nb / Cu-Sn, что в значительной степени ускоряет процесс нарастания сверхпроводящей фазы. Такое увеличение количества сверхпроводящей фазы при повышении числа волокон в проводнике обеспечивает возрастание критических характеристик сверхпроводника. В связи с этим необходимо наличие инструмента для контроля объемной доли сверхпроводящей фазы в конечном продукте (композиционном сверхпроводнике).

При создании программы учитывалась важность проведения исследований материалов, из которых создаётся сверхпроводящие кабели, так как при неправильном соотношении ниобия к бронзе возможен взрыв проводов, а, следовательно, людские жертвы, денежные затраты и потеря времени. Данная программа позволяет определить качество проводов на основе химическо физического анализа объекта.

Блок-диаграмма программы


Описание этапов исследования.

1 этап. Пробоподготовка: резка композиционного сверхпроводника на электроэрозионном станке; запрессовка образца в пластмассовую матрицу; полировка образца до зеркального состояния; травление образца для выделения волокон ниобия на бронзовой матрице. Получены образцы запрессованных композиционных сверхпроводниковых образцов;

2 этап. Получение изображений: получение металлографических изображений на сканирующем электронном микроскопе.

3 этап. Обработка изображений: создание инструмента для определения объемной доли сверхпроводящей фазы на металлографическом изображении; набор статистически значимых данных на конкретном типе образцов. Созданы математические модели различных инструментов по обработке изображений; создана программная разработка для оценки объемной доли сверхпроводящий фазы; программа была облегчена путём соединения нескольких математических функций в одну; было получено среднее значение объемной доли волокон ниобия в бронзовой матрице 24.7±0,1 %. Низкий процент отклонения свидетельствует о высокой повторяемости структуры композиционного провода.

Электронномикроскопическое изображения композиционных сверхпроводников

Методы обработки изображений в программе.

  • Идентификация - распознается индивидуальный экземпляр объекта, принадлежащего к какому-либо классу.
  • Бинаризация – процесс перевода цветного (или в градациях серого) изображения в двухцветное черно-белое.
  • Сегментация - это процесс разделения цифрового изображения на несколько сегментов (множество пикселей, также называемых суперпикселями).
  • Эрозия – сложный процесс, при выполнении которого структурный элемент проходит по всем пикселам изображения. Если в некоторой позиции каждый единичный пиксел структурного элемента совпадет с единичным пикселом бинарного изображения, то выполняется логическое сложение центрального пиксела структурного элемента с соответствующим пикселом выходного изображения.
  • Дилатация - свертка изображения или выделенной области изображения с некоторым ядром. Ядро может иметь произвольную форму и размер. При этом в ядре выделяется единственная ведущая позиция, которая совмещается с текущим пикселем при вычислении свертки.

Формулы работы программы

Формула бинаризации (метод Оцу):


Формула эрозии:

Формула дилатации:

Схема дилатации и эрозии

Интерфейс программы

Казалось бы, все компьютеры одинаковые и могут решать любые задачи. Но это не совсем так. Еще в прошлом веке в компьютерной индустрии стало активно развиваться направление промышленных компьютеров, отличающихся от «офисных» собратьев более компактным и прочным механическим конструктивом, широкими возможностями расширения (платы ввода/вывода сигналов) и длительным сроком жизни систем и компонентов, их составляющих. С течением времени произошла более глубокая специализация, выделились линейки промышленных компьютеров для конкретных прикладных областей - так, для эффективного решения проблем машинного зрения появились компьютеры с дополнительными функциями, значительно облегчающими задачи инженерам-разработчикам и повышающими эксплуатационные характеристики системы (рис. 1).

Рис. 1. Классификация компьютеров

Вот лишь неполный список требований для работы в приложениях машинного зрения и видеонаблюдения, которым должно соответствовать оборудование:

  • соответствующие международным стандартам высокопроизводительные интерфейсы для подключения камер GigE/PoE и USB3, слот расширения для установки фреймграббера CameraLink или CoaXpress;
  • широкий выбор процессоров достаточной мощности с графическими сопроцессорами и высоко­производительными наборами микросхем (chipset), способными обрабатывать большие потоки данных;
  • цифровые, легко программируемые линии для подключения датчиков и синхронизации камер и осветителей;
  • установка нескольких, в том числе быстросъемных, накопителей, организация RAID-массивов для высокоскоростной записи видеопотоков и хранения больших объемов данных;
  • промышленные интерфейсы для подключения внешних устройств: RS-232/485, CAN;
  • прочный компактный механический конструктив с минимумом подвижных компонентов, для обеспечения надежной работы и длительного срока службы в сложных условиях эксплуатации.

Очевидно, что в большинстве промышленных, а тем более в офисных компьютерах многие из этих функций избыточны, но в системах машинного зрения они являются определяющими.

Одним из представителей данного направления в компьютерной индустрии стала компания Neousys Technologies (Тайвань), продукция которой с самого начала была предназначена для работы с камерами машинного зрения и видеонаблюдения. Для того чтобы более подробно ознакомиться с особенностями вычислительных платформ для различных приложений, определим основные области применения современных цифровых видеокамер. Итак, можно выделить несколько групп приложений:

  • промышленные системы машинного зрения;
  • системы распознавания;
  • интеллектуальные системы управления движением (ITS);
  • мобильные системы на транспорте.

Теперь рассмотрим требования к вычислительной системе в каждом случае.

Промышленные системы машинного зрения

Промышленные системы машинного зрения, пожалуй, самый разно­образный по количеству и типу задач класс систем. Тем не менее, можно выделить важные особенности:

  • возможность подключения нескольких камер;
  • высокая скорость регистрации, до нескольких сот кадров в секунду;
  • богатый функционал управления настройками камер и подсветки;
  • широкие возможности синхронизации с датчиками;
  • значительные объемы накопителей для архивации данных.

Поскольку в большинстве случаев камера расположена рядом с компьютером, хорошим выбором для ее подключения будет USB3-интерфейс. Он обеспечит и питание камеры, и возможность захвата изображений с высокой скоростью и разрешением (FullHD - более 150 кадр/с).

Рис. 2. Компьютер из линейки РОС-200

С задачами начального уровня вполне справятся компьютеры на базе современного четырехъядерного процессора Atom E3845, оснащенного, помимо всего прочего, достаточно мощным графическим сопроцессором и аппаратным кодеком. В линейке Neousys это ставшая бестселлером серия POC-200 (рис. 2). В распоряжении разработчика два GigE/PoE-интерфейса и три высоко­скоростных USB3. В компактный корпус может быть установлен (а при необходимости легко заменен) SATA HDD/SDD-накопитель стандартного 2,5” формата. Для подключения внешних устройств предусмотрена пара универсальных портов RS-232/485 в дополнение к двум стандартным RS-232. И наконец, несколько быстрых, легко программируемых цифровых линий для подключения кнопок управления, датчиков и выдачи сигналов, например на отбраковку или сигнальную колонну. Все это упаковано в компактном корпусе в четверть листа A4, выдерживающем нагрузки до 5 Grms/500 Гц с рабочим диапазоном температур от –25 °С (по заказу от –45 °С).

Рис. 3. Компьютер Nuvo 5000

Особенность всех компьютеров Neousys - наличие солидного радиатора как составной части корпуса, что стало следствием безвентиляторной (fanless) конструкции машины. Процессор в буквальном смысле приклеен к мощному радиатору. Этот подход хоть и влечет за собой некоторое увеличение массы и габаритов изделия, но является результатом серьезной инженерной проработки для достижения долговечности и механической прочности за счет отсутствия вращающихся компонентов, которые становятся одной из наиболее вероятных причин отказа техники. Нельзя не отметить, что разработчики компьютеров Neousys, помимо чисто инженерных задач, сумели создать изделие с привлекательным промышленным дизайном.

Рис. 4. Компьютеры из серии Nuvo-6000

Neousys Technologies научилась обходиться без вентиляторов не только в системах с младшими процессорами Intel Atom и Celeron, но и с вычислителями верхнего эшелона - i5/i7 шестого поколения Skylake. Сегодня флагман компании, серия компьютеров Nuvo 5000, удостоенный награды специализированного издания Vision Systems Innovators Awards 2016, способен решать самые сложные задачи машинного зрения. Оснащенный мощными процессорами компьютер Nuvo-5000 (рис. 3) сохраняет и развивает выдающиеся способности младших линеек. В увеличившемся, но, тем не менее, оставшимся компактным корпусе можно разместить уже два 2,5” накопителя и организовать их в массив RAID 0/1, оснастив один из накопителей разъемом для горячей замены. Количество портов для подключения камер легко увеличивается до 10. Запатентованная технология MezIO предлагает гибкой механизм расширения возможностей ввода/вывода сигналов управления, индикации и промышленных коммуникационных интерфейсов.

Рис. 5. Отсек расширения для установки двух или шести слотов расширения (серия Nuvo-6000)

В ряде случаев, помимо собственно машинного зрения, компьютеры должны решать задачи классической промышленной автоматики. Ключевым моментом тут становится наличие слотов расширения PCI/PCIe. Для таких приложений лучший вариант - компьютеры серии Nuvo-6000 (рис. 4). Оставаясь по-прежнему надежным компактным безвентиляторным компьютером, машина дополнена отсеком с двумя или шестью слотами расширения (рис. 5). В отсеке установлен вентилятор и система управления для создания комфортных условий работы встраиваемых плат ввода/вывода.

Системы распознавания

Рис. 6. Компьютер Nuvo-5095

Для ответа на вызовы нынешнего дня создаются все более совершенные системы безопасности, в которых ключевым элементом становятся алгоритмы распознавания. Помимо систем безопасности, эти технологии находят применение в коммерческих проектах, например для изучения демографического состава покупателей в торговле, сортировки отходов и других применениях. Современные камеры машинного зрения позволяют получать изображения все большего разрешения и лучшего качества. Разрешение FullHD (2 Мп) распространено в массовом сегменте, 4K (12 Мп) пробует себя в наиболее сложных задачах. Нужно отметить, что объем обрабатываемых данных растет в геометрической прогрессии. Для самых требовательных к вычислительным способностям приложений предлагается адаптированная для установки графических ускорителей nVidia версия компьютера Nuvo-5095 (рис. 6). Но тут уже без вентилятора для nVidia GeForce GTX 950 или GTX 1050, установленного в кассету расширения компьютера, не обойтись. При этом центральный процессор по-прежнему довольствуется пассивным радиатором. В комплексе система с уникальным графическим CUDA-сопроцессором сохранила работоспособность в диапазоне температуры окружающего воздуха от –25 до +60 °С (процессоры i7-6700TE, i5-6500TE, 35ВтTDP).

Интеллектуальные системы управления трафиком ITS

Интеллектуальные системы управления трафиком, в частности устанавливаемые на нагруженном перекрестке, - пожалуй, самые взыскательные к количеству подключаемых камер. Необходимо в одном месте получать и обрабатывать изображения, переданные с нескольких точек обзора. Задачу инсталляторам упрощает промышленный компьютер с б?льшим, чем обычно, количеством портов для подключения камер. Обычно в подобных системах используются камеры с интерфейсом Ethernet/PoE. В линейке Neousys представлена отвечающая таким требованиям модель Nuvo-3616, которая оснащена 16 (!) портами IEEE 802.3at PoE+, четырьмя накопителями с возможностью быстрой замены и организации массивов RAID 0/1/5/10 емкостью до 8 Тбайт.

Мобильные системы на транспорте

Рис. 7. Компьютеры, предназначенные для работы в транспортных средствах: Nuvo-5100VTC и Nuvo-2500 (на ближнем плане)

Современные транспортные средства, особенно коммерческого назначения, будь то грузовик, трактор, комбайн или локомотив, сегодня массово оснащаются компьютеризированными комплексами, призванными повысить безопасность и эффективность их работы. Помимо уже описанных функций, компьютерные платформы, предназначенные для работы на транспорте, должны отвечать еще более жестким требованиям и иметь дополнительные интерфейсы. Специально для таких применений создана версия компьютера Neousys 5100VTC (рис. 7). Она успешно прошла международную сертификацию для применения на железнодорожном транспорте EN 50155. В дополнение к стандартным функциям компьютеров серии Nuvo-5000, она оснащена интерфейсом для контроля цепи зажигания и CAN, что упрощает ее установку в современный автомобиль. Специальная версия Ethernet-разъемов M12 повышает надежность присоединения кабелей от камер в условиях тряски. Дополнительные слоты miniPCI предназначены для установки модулей системы географической локации GPS/GLONASS и сотовой связи 3G/4G с удобным внешним гнездом для SIM-карты.

Для автомобильных систем с более скромными требованиями к вычислительным способностям платформы отлично подойдет компактная версия компьютера с контролем зажигания и CAN-интерфейсом - Nuvo-2500 на базе достаточно мощного четырехъядерного процессора Atom 3845.

В заключение можно отметить, что выбор правильной платформы, содержащей все необходимые компоненты для приложения машинного зрения, в значительной степени определяет ее эксплуатационные характеристики и надежность выполнения алгоритмов обработки изображений. И если для создания математической начинки вполне подойдут офисные компьютеры, то при внедрении систем в эксплуатацию необходимо самым тщательным образом подойти к выбору вычислительной платформы, чтобы инвестиции в разработку программного обеспечения не оказались напрасными.

Машинное зрение. Что это и как им пользоваться? Обработка изображений оптического источника

Машинное зрение - это научное направление в области искусственного интеллекта, в частности робототехники, и связанные с ним технологии получения изображений объектов реального мира, их обработки и использования полученных данных для решения разного рода прикладных задач без участия (полного или частичного) человека.

Исторические прорывы в машинном зрении

Компоненты системы машинного зрения

  • Одна или несколько цифровых или аналоговых камер (черно-белые или цветные) с подходящей оптикой для получения изображений
  • Программное обеспечение для изготовления изображений для обработки. Для аналоговых камер это оцифровщик изображений
  • Процессор (современный ПК c многоядерным процессором или встроенный процессор, например - ЦСП)
  • Программное обеспечение машинного зрения, которое предоставляет инструменты для разработки отдельных приложений программного обеспечения.
  • Оборудование ввода-вывода или каналы связи для доклада о полученных результатах
  • Умная камера: одно устройство, которое включает в себя все вышеперечисленные пункты.
  • Очень специализированные источники света (светодиоды, люминесцентные и галогенные лампы и т. д.)
  • Специфичные приложения программного обеспечения для обработки изображений и обнаружения соответствующих свойств.
  • Датчик для синхронизации частей обнаружения (часто оптический или магнитный датчик) для захвата и обработки изображений.
  • Приводы определенной формы используемые для сортировки или отбрасывания бракованных деталей.
Машинное зрение сосредотачивается на применении, в основном промышленном, например, автономные роботы и системы визуальной проверки и измерений. Это значит, что технологии датчиков изображения и теории управления связаны с обработкой видеоданных для управления роботом и обработка полученных данных в реальном времени осуществляется программно или аппаратно.

Обработка изображений и анализ изображений в основном сосредоточены на работе с 2D изображениями, т.е. как преобразовать одно изображение в другое. Например, попиксельные операции увеличения контрастности, операции по выделению краёв, устранению шумов или геометрические преобразования, такие как вращение изображения. Данные операции предполагают, что обработка/анализ изображения действуют независимо от содержания самих изображений.

Компьютерное зрение сосредотачивается на обработке трехмерных сцен, спроектированных на одно или несколько изображений. Например, восстановлением структуры или другой информации о 3D сцене по одному или нескольким изображениям. Компьютерное зрение часто зависит от более или менее сложных допущений относительно того, что представлено на изображениях.

Также существует область названная визуализация, которая первоначально была связана с процессом создания изображений, но иногда имела дело с обработкой и анализом. Например, рентгенография работает с анализом видеоданных медицинского применения.

Наконец, распознавание образов является областью, которая использует различные методы для получения информации из видеоданных, в основном, основанные на статистическом подходе. Значительная часть этой области посвящена практическому применению этих методов.

Таким образом, можно сделать вывод, что понятие «машинное зрение» на сегодняшний день включает в себя: компьютерное зрение, распознавание зрительных образов, анализ и обработка изображений и т.д.

Задачи машинного зрения

  • Распознавание
  • Идентификация
  • Обнаружение
  • Распознавание текста
  • Восстановление 3D формы по 2D изображениям
  • Оценка движения
  • Восстановление сцены
  • Восстановление изображений
  • Выделение на изображениях структур определенного вида, сегментация изображений
  • Анализ оптического потока

Распознавание


Классическая задача в компьютерном зрении, обработке изображений и машинном зрении это определение содержат ли видеоданные некоторый характерный объект, особенность или активность.

Эта задача может быть достоверно и легко решена человеком, но до сих пор не решена удовлетворительно в компьютерном зрении в общем случае: случайные объекты в случайных ситуациях.

Один или несколько предварительно заданных или изученных объектов или классов объектов могут быть распознаны (обычно вместе с их двухмерным положением на изображении или трехмерным положением в сцене).

Идентификация


Распознается индивидуальный экземпляр объекта принадлежащего к какому-либо классу.
Примеры: идентификация определённого человеческого лица или отпечатка пальцев или автомобиля.

Обнаружение


Видеоданные проверяются на наличие определенного условия.

Обнаружение, основанное на относительно простых и быстрых вычислениях иногда используется для нахождения небольших участков в анализируемом изображении, которые затем анализируются с помощью приемов, более требовательных к ресурсам, для получения правильной интерпретации.

Распознавание текста


Поиск изображений по содержанию: нахождение всех изображений в большом наборе изображений, которые имеют определенное различными путями содержание.

Оценка положения: определение положения или ориентации определенного объекта относительно камеры.

Оптическое распознавание знаков: распознавание символов на изображениях печатного или рукописного текста (обычно для перевода в текстовый формат, наиболее удобный для редактирования или индексации. Например, ASCII).

Восстановление 3D формы по 2D изображениям осуществляется с помощью стереореконструкции карты глубины, реконструкции поля нормалей и карты глубины по закраске полутонового изображения, реконструкции карты глубины по текстуре и определения формы по перемещению

Пример восстановления 3D формы по 2D изображеню

Оценка движения

Несколько задач, связанных с оценкой движения, в которых последовательность изображений (видеоданные) обрабатываются для нахождения оценки скорости каждой точки изображения или 3D сцены. Примерами таких задач являются: определение трехмерного движения камеры, слежение, то есть следование за перемещениями объекта (например, машин или людей)

Восстановление сцены

Даны два или больше изображения сцены, или видеоданные. Восстановление сцены имеет задачей воссоздать трехмерную модель сцены. В простейшем случае, моделью может быть набор точек трехмерного пространства. Более сложные методы воспроизводят полную трехмерную модель.

Восстановление изображений


Задача восстановления изображений это удаление шума (шум датчика, размытость движущегося объекта и т.д.).

Наиболее простым подходом к решению этой задачи являются различные типы фильтров, таких как фильтры нижних или средних частот.

Более высокий уровень удаления шумов достигается в ходе первоначального анализа видеоданных на наличие различных структур, таких как линии или границы, а затем управления процессом фильтрации на основе этих данных.

Восстановление изображений

Анализ оптического потока (нахождения перемещения пикселей между двумя изображениями).
Несколько задач, связанных с оценкой движения, в которых последовательность изображений (видеоданные) обрабатываются для нахождения оценки скорости каждой точки изображения или 3D сцены.

Примерами таких задач являются: определение трехмерного движения камеры, слежение, т.е. следование за перемещениями объекта (например, машин или людей).

Методы обработки изображений

Счетчик пикселей

Подсчитывает количество светлых или темных пикселей.
С помощью счетчика пикселей пользователь может выделить на экране прямоугольную область в интересующем месте, например там, где он ожидает увидеть лица проходящих людей. Камера в ответ немедленно даст сведения о количестве пикселей, представленных сторонами прямоугольника.

Счетчик пикселей дает возможность быстро проверить, соответствует ли смонтированная камера нормативным требованиям или требованиям заказчика относительно пиксельного разрешения, например, для лиц людей, входящих в двери, которые контролируются камерой, или в целях распознавания номерных знаков.

Бинаризация


Преобразует изображение в серых тонах в бинарное (белые и черные пиксели).
Значения каждого пикселя условно кодируются, как «0» и «1». Значение «0» условно называют задним планом или фоном а «1» - передним планом.

Часто при хранении цифровых бинарных изображений применяется битовая карта, где используют один бит информации для представления одного пикселя.

Также, особенно на ранних этапах развития техники, двумя возможными цветами были чёрный и белый, что не является обязательным.

Сегментация

Используется для поиска и (или) подсчета деталей.

Цель сегментации заключается в упрощении и/или изменении представления изображения, чтобы его было проще и легче анализировать.

Сегментация изображений обычно используется для того, чтобы выделить объекты и границы (линии, кривые, и т. д.) на изображениях. Более точно, сегментация изображений - это процесс присвоения таких меток каждому пикселю изображения, что пиксели с одинаковыми метками имеют общие визуальные характеристики.

Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения. Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например, по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.

Чтение штрих-кодов


Штрих-код - графическая информация, наносимая на поверхность, маркировку или упаковку изделий, представляющая возможность считывания её техническими средствами - последовательность чёрных и белых полос либо других геометрических фигур.
В машинном зрении штрих-коды используют для декодирования 1D и 2D кодов, разработанных для считывания или сканирования машинами.

Оптическое распознавание символов

Оптическое распознавание символов: автоматизированное чтение текста, например, серийных номеров.

Распознавание используется для конвертации книг и документов в электронный вид, для автоматизации систем учёта в бизнесе или для публикации текста на веб-странице.

Оптическое распознавание текста позволяет редактировать текст, осуществлять поиск слов или фраз, хранить его в более компактной форме, демонстрировать или распечатывать материал, не теряя качества, анализировать информацию, а также применять к тексту электронный перевод, форматирование или преобразование в речь.

Моя программа, написанная на LabView по работе с изображениями

Использовано компьютерное зрение для неразрушающего контроля качества сверхпроводящих материалов.

Введение. Решение задач обеспечения комплексной безопасности (как антитеррористической и механической безопасности объектов, так и технологической безопасности инженерных систем), в настоящее время, требует системной организации контроля, текущего состояния объектов. Одними из наиболее перспективных способов контроля текущего состояния объектов являются оптические и оптико-электронные методы, основанные на технологиях обработки видеоизображений оптического источника. К ним относятся: программы по работе с изображениями; новейшие способы обработки изображений; оборудования для получения, анализа и обработки изображений, т.е. комплекс средств и методов относящихся к области компьютерного и машинного зрения. Компьютерное зрение - это общий набор методов, позволяющих компьютерам видеть и распознавать трех- или двухмерные объекты, как инженерного направления, так и нет. Для работы с компьютерным зрение требуются цифровые или аналоговые устройства ввода-вывода, а также вычислительные сети и IP анализаторы локаций, предназначенные для контроля производственного процесса и подготовки информации для принятия оперативных решений в кратчайшие сроки.

Постановка проблемы. На сегодняшний день, главной задачей для проектируемых комплексов машинного зрения остаётся обнаружение, распознавание, идентификация и квалификация объектов потенциального риска, находящихся в случайном месте в зоне оперативной ответственности комплекса. Существующие на данный момент программные продукты, направленные на решение перечисленных задач обладают рядом существенных недостатков, а именно: значительная сложность, связанная с высокой детализацией оптических образов; высокая потребляемая мощность и достаточно узкий спектр возможностей. Расширение задач обнаружения объектов потенциального риска, до области поиска случайных объектов в случайных ситуациях, находящихся в случайном месте, имеющимися программными продуктами не возможно, даже с задействованием суперкомпьютера.

Цель. Разработка универсальной программы обработки изображений оптического источника, с возможностью потокового анализа данных, то есть программа должна быть лёгкой и быстрой для того, чтобы её можно было записать на малогабаритное ЭВМ устройство.

Задачи:

  • разработка математической модели программы;
  • написание программы;
  • опробирование программы в условиях лабораторного эксперимента, с полной подготовкой и проведением эксперимента;
  • исследование возможности применения программы в смежных областях деятельности.

Актуальность программы определяется:
  • высокой стоимостью профессиональных программ обработки визуальной информации.

Анализ актуальности разработки программы.
  • отсутствием на рынке программного обеспечения программ обработки изображений с выводом подробного анализа инженерных составляющих объектов;
  • постоянно растущими требованиями к качеству и скорости получения визуальной информации, резко повышающими востребованность программ обработки изображений;
  • существующей потребность в программах высокой производительности, надежных и простых с точки зрения пользователя;
  • существует потребность программ высокой производительности и простого управления, чего добиться в наше время крайне сложно. Для примера я взял Adobe Photoshop. Данный графический редактор обладает гармоничным сочетанием функциональности и простоты использования для рядового пользователя, но в данной программе невозможно работать со сложными инструментами по обработке изображения (например, анализ изображения путём построения математической зависимости (функции) или же интегральной обработкой изображений);
  • высокой стоимостью профессиональных программ обработки визуальной информации. Если программное обеспечение качественно, то цена на него крайне высока, вплоть до отдельных функции того или иного набора программ. На графике ниже представлена зависимость цены/качества простых аналогов программы.

Для упрощения решения задач данного типа, мною была разработана математическая модель и написана программа для ЭВМ устройства по анализу изображения при помощи простейших преобразований исходных изображений.

Программа работает с преобразованиями типа бинаризации, яркости, контраста изображения и т.д. Принцип действия программы продемонстрирован на примере анализа сверхпроводящих материалов.

При создании композиционных сверхпроводников на основе Nb3Sn варьируется объемное соотношение бронзы и ниобия, размер и количество волокон в нем, равномерность их распределения по сечению бронзовой матрицы, наличие диффузионных барьеров и стабилизирующих материалов. При заданной объемной доле ниобия в проводнике увеличение количества волокон приводит, соответственно, к уменьшению их диаметра. Это ведет к заметному возрастанию поверхности взаимодействия Nb / Cu-Sn, что в значительной степени ускоряет процесс нарастания сверхпроводящей фазы. Такое увеличение количества сверхпроводящей фазы при повышении числа волокон в проводнике обеспечивает возрастание критических характеристик сверхпроводника. В связи с этим необходимо наличие инструмента для контроля объемной доли сверхпроводящей фазы в конечном продукте (композиционном сверхпроводнике).

При создании программы учитывалась важность проведения исследований материалов, из которых создаётся сверхпроводящие кабели, так как при неправильном соотношении ниобия к бронзе возможен взрыв проводов, а, следовательно, людские жертвы, денежные затраты и потеря времени. Данная программа позволяет определить качество проводов на основе химическо физического анализа объекта.

Блок-диаграмма программы


Описание этапов исследования.

1 этап. Пробоподготовка: резка композиционного сверхпроводника на электроэрозионном станке; запрессовка образца в пластмассовую матрицу; полировка образца до зеркального состояния; травление образца для выделения волокон ниобия на бронзовой матрице. Получены образцы запрессованных композиционных сверхпроводниковых образцов;

2 этап. Получение изображений: получение металлографических изображений на сканирующем электронном микроскопе.

3 этап. Обработка изображений: создание инструмента для определения объемной доли сверхпроводящей фазы на металлографическом изображении; набор статистически значимых данных на конкретном типе образцов. Созданы математические модели различных инструментов по обработке изображений; создана программная разработка для оценки объемной доли сверхпроводящий фазы; программа была облегчена путём соединения нескольких математических функций в одну; было получено среднее значение объемной доли волокон ниобия в бронзовой матрице 24.7±0,1 %. Низкий процент отклонения свидетельствует о высокой повторяемости структуры композиционного провода.

Электронномикроскопическое изображения композиционных сверхпроводников

Методы обработки изображений в программе.

  • Идентификация - распознается индивидуальный экземпляр объекта, принадлежащего к какому-либо классу.
  • Бинаризация – процесс перевода цветного (или в градациях серого) изображения в двухцветное черно-белое.
  • Сегментация - это процесс разделения цифрового изображения на несколько сегментов (множество пикселей, также называемых суперпикселями).
  • Эрозия – сложный процесс, при выполнении которого структурный элемент проходит по всем пикселам изображения. Если в некоторой позиции каждый единичный пиксел структурного элемента совпадет с единичным пикселом бинарного изображения, то выполняется логическое сложение центрального пиксела структурного элемента с соответствующим пикселом выходного изображения.
  • Дилатация - свертка изображения или выделенной области изображения с некоторым ядром. Ядро может иметь произвольную форму и размер. При этом в ядре выделяется единственная ведущая позиция, которая совмещается с текущим пикселем при вычислении свертки.

Формулы работы программы

Формула бинаризации (метод Оцу):

Формула эрозии:

Формула дилатации:

Схема дилатации и эрозии

Формулы сегментации порогами цвета:

Определение модуля градиента яркости для каждого пикселя изображения:

Вычисление порога:

Использованное оборудование

Интерфейс программы

Здесь используется замечательный пример обнаружения веб-камерой лица человека и определения его положения в пространстве. Человек буквально может посмотреть на изображение с другой стороны. Давайте разберемся, каким образом это происходит.

Для начала нам надо понять, как машина различает объекты и фон. К примеру, для нахождения веб-камерой каких-то геометрических фигур надо, что бы камера отличала следующие атрибуты объекта:

  1. Форму объекта (круг, квадрат, треугольник…);
  2. Цвет определяемого объекта;
  3. Размер объекта и положение его относительно других объектов.

Для нахождения формы объекта используется эффект размытия контуров заданной формы. Это делается для того, чтобы устройство точно могло определить, где закончился контур нашего объекта и начался фон. Более подробно, со всевозможными объяснениями и примерами, можно узнать из лекции Александра Бакулина о робототехнике:

Что связано с цветом объекта, думаю, всем понятно, и особо сложных вопросов возникать не должно. Все просто: устройству надо определить по цвету объекта его положение, а также отсечь фон и другие объекты. Глубина цвета, как и возможные погрешности, зависит от качества записи устройства, освещения, вашего алгоритма определения и ряда менее значимых нюансов.

Говоря о положении определяемого объекта в зоне видимости, мы переходим к главному принципу работы, который демонстрируется на видео выше. Устройство находит объект, фиксирует его положение в реальном времени и, следуя алгоритму, выполняет нужные нам действия. Одной из ключевых позиций является размер нашего объекта. Мы приближаем объект, изменяя его координаты по осям, и видим изображение уже под другим углом. В случае с человеческим лицом, а не простой геометрической фигурой, есть ряд нюансов:

Форма лица у всех людей разная, хотя есть определенные типы этой формы.

Цвет кожи человека, личные особенности, такие как прическа, украшения, и тому подобное.

Лицо человека, хоть и симметрично, имеет различия, если смотреть под разными углами.

Поэтому, в отличие от простых фигур, для определения лица требуется использовать немного другой подход.

Оптимальный вариант – это xml файлы, содержащие необходимые нам сведения по всем пунктам, которые были описаны выше. Это множество изображений лиц разных размеров и форм, сделанных заранее под разными углами. В сети уже есть готовые xml файлы, которые можно использовать в работе.

Работать с такой технологией легко и просто. Открывается множество интересных решений для работы с изображением, которые можно использовать как в повседневной жизни, так и в больших проектах.

Обзор рынка технологий компьютерного зрения

овременный мир компьютерных систем сложно представить без технологий машинного, или компьютерного, зрения. В статье «Зачем компьютеру зрение?» (КомпьютерПресс № 5’2002) была рассмотрена история становления этой технологии и дан обзор ряда ее приложений. Безусловно, в статье описана лишь малая часть приложений из широкого спектра применяемых систем машинного зрения, и в следующих номерах мы еще вернемся к рассмотрению этой весьма интересной и стремительно развивающейся области знаний. Да, именно стремительно развивающейся. Ведь этой технологии всего около 50 лет, что по меркам многих точных наук не выходит за рамки периода становления. Наращивая свой научный и практический потенциал параллельно с совершенствованием вычислительной и регистрирующей техники, компьютерное зрение постепенно завоевывает все новые технологические рубежи. Высокопроизводительные вычислительные машины последнего поколения (к ним относятся и современные персональные компьютеры) уже позволяют решать многие задачи обработки потоков цифровой видеоинформации и принятия решения в режиме реального времени. И сегодня, порой незаметно для большинства из нас, компьютерное зрение достаточно прочно закрепляется во многих областях жизнедеятельности человека, помогая ему, а подчас заменяя его, избавляя от монотонного, рутинного или, нередко, связанного с риском для жизни труда.

Ни для кого не секрет, что компьютерное зрение как технология получило наиболее широкое, полное и всестороннее развитие на Западе, особенно в США, в Южной Корее и в Японии. Связано это прежде всего с мощной финансовой поддержкой этого направления со стороны правительства и инвесторов, прогнозирующих за ним большое будущее. Причем правительство в основном поддерживает развитие технологии в общеобразовательных центрах, а инвесторы обеспечивают поддержку частным высокоперспективным компаниям. Наиболее яркими примерами таких хорошо финансируемых научных центров могут служить Лаборатория Искусственного Интеллекта Массачусетсского Технологического Института (MIT Artificial Intelligence Laboratory), UC Berkeley Computer Vision Group, Vision and Autonomous Systems Center Университета Корнеги-Меллона, Stanford Vision Laboratory и ряд других. Примерами поддерживаемых частных компаний могут служить такие компании, как Visionics, Eyematic и др. Всего на Интернет-сайте, объединяющем разработчиков в области машинного зрения, - Computer Vision Home Page (http://www.2.cs.cmu.edu/afs/cs/project/cil/ftp/html/txtvision.html) - зарегистрировано около 200 групп и научных лабораторий, работающих над данной проблематикой. Следует отметить, что этим не исчерпывается круг организаций, занимающихся компьютерным зрением, так как существует большое количество коммерческих фирм, специализирующихся в области машинного зрения и обработки изображений. Информацию о них можно найти на специализированных тематических Интернет-сайтах, посвященных отдельным направлениям данной технологии. Иными словами, разработчики различных технологий внутри самой технологии компьютерного зрения как бы объединяются в клубы по интересам. Например, интересующиеся достижениями в области распознавания жестов могут найти достаточно подробную информацию об исследованиях, исследовательских группах, коммерческих приложениях, патентах на соответствующем специализированном Интернет-сайте - Gesture Recognition Home Page (http://www.cybernet.com/~ccohen/gesture.html). Там же можно скачать некоторые демонстрационные приложения и ознакомиться с последними научными публикациями. Если же читатель предпочитает заняться технологиями, связанными с распознаванием лиц, то ему прямая дорога в виртуальный клуб на другом Интернет-сайте - Face Detection and Recognition Home Page (http://home.t-online.de/home/Robert.Frischholz/face.htm).

Следует отметить, что все перечисленное выше приводит к быстрому росту и совершенствованию технологий компьютерного зрения. В настоящее время зарубежные научно-исследовательские и коммерческие центры привлекают большое количество ученых и высококвалифицированных программистов, проводят распараллеленные исследования в различных областях машинного зрения, добиваясь достаточно весомых результатов.

Россия, как полноправный член мирового экономического сообщества, не осталась в стороне от этого процесса. Вот уже несколько лет на российском технологическом рынке также наблюдается тенденция повышения интереса к проблемам компьютерного зрения, причем как со стороны руководителей ряда IT-компаний и компаний, работающих на рынке безопасности, так и со стороны потребителей (пользователей) и студентов, желающих специализироваться в этой области. Реакцией на этот интерес стало появление лабораторий, групп и коммерческих структур, ставящих перед собой задачу разработки различного рода технологий и приложений для решения проблем машинного зрения. И если еще десятилетие назад мы были в роли догоняющих, то на сегодняшний день многие компании - лидеры в области передовых технологий стремятся на российский рынок с целью приобретения соответствующих технологий компьютерного зрения или размещения заказов на передовые исследования и разработки в этой области.

Этой теме и посвящена настоящая статья, целью которой является не только продемонстрировать наличие интереса к данной тематике со стороны российских и зарубежных товаропроизводителей, но и рассказать о ряде российских фирм, разрабатывающих программное обеспечение для различных систем обработки и анализа изображений.

Кто есть кто на российском рынке компьютерного зрения

сследование российского рынка разработчиков технологии машинного зрения показывает, что количество фирм, занимающихся компьютерным зрением, относительно невелико. Рассмотрим наиболее заметные из этих компаний и приведем краткое описание некоторых интересных технологий компьютерного зрения, которые поставляются ими на отечественный и мировой рынки.

Компания SPIRIT

К наиболее известным в мире фотограмметрическим системам относятся такие аппаратно-программные комплексы, как Leica и Intergraph, поставляемые вместе с мощными рабочими станциями. Это весьма дорогостоящие системы, и позволить их себе могут немногие компании. С развитием вычислительной техники все популярнее становятся менее дорогостоящие системы, позволяющие проводить обработку изображений на персональных компьютерах. Российские цифровые фотограмметрические системы «Талка» (http://www.talka-tdv.ru/), Photomod (фирма «Ракурс» (http://www.racurs.ru/)), Z-Space (ГосНИИАС), ЦФС ЦНИИГАиК (Роскартография) или «Фотоплан» (29-й институт Министерства обороны), не уступая, а порой превосходя в качестве обработки цифрового видеосигнала зарубежные аналоги, будучи при этом в десятки раз дешевле аналогичных зарубежных разработок. Рассмотрение характеристик и возможностей таких систем - предмет отдельной статьи.

Еще одно направление в области машинного зрения - построение систем распознавания символов. В данной статье мы лишь косвенно упомянули об этой области, в которой технологии компьютерного зрения можно считать сложившимися. В частности, мы рассмотрели лишь узкоспециализированные задачи, решаемые компаниями в рамках коммерческих проектов. Если же вести речь о сложившихся коммерческих продуктах и технологиях систем распознавания символов, то нельзя не упомянуть о крупнейших российских и мировых поставщиках данной технологии - компании ABBYY с серией программ FineReader и компании Cognitive Technologies с серией программ CuneiForm. Обзору технологий, поставляемых данными компаниями, посвящена не одна статья на страницах КомпьютерПресс. Информацию о достижениях этих компаний можно найти и в этом номере журнала. Поэтому, отдавая должное этим компаниям и их технологиям, мы лишь вскользь упоминаем о них в рамках данной статьи.

Подводя итог, можно с уверенностью заявить, что российские технологии компьютерного зрения не уступают, а во многом и превосходят зарубежные аналоги. Зачастую компаниям, развивающим эти технологии, не хватает всемирно известного имени. Поэтому и инвестиции в них, как правило, делают неохотно. Однако не вызывает сомнений, что высокий уровень технологий и высокая квалификация российских специалистов уже в недалеком будущем приведут к доминированию на мировом рынке именно российских технологий компьютерного зрения.

КомпьютерПресс 7"2002



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: