В правильной треугольной пирамиде sabc. Пирамида. Усеченная пирамида

Пирамида. Усеченная пирамида

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Определение

Пирамида – это многогранник, составленный из многоугольника \(A_1A_2...A_n\) и \(n\) треугольников с общей вершиной \(P\) (не лежащей в плоскости многоугольника) и противолежащими ей сторонами, совпадающими со сторонами многоугольника.
Обозначение: \(PA_1A_2...A_n\) .
Пример: пятиугольная пирамида \(PA_1A_2A_3A_4A_5\) .

Треугольники \(PA_1A_2, \ PA_2A_3\) и т.д. называются боковыми гранями пирамиды, отрезки \(PA_1, PA_2\) и т.д. – боковыми ребрами , многоугольник \(A_1A_2A_3A_4A_5\) – основанием , точка \(P\) – вершиной .

Высота пирамиды – это перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида, в основании которой лежит треугольник, называется тетраэдром .

Пирамида называется правильной , если в ее основании лежит правильный многоугольник и выполнено одно из условий:

\((a)\) боковые ребра пирамиды равны;

\((b)\) высота пирамиды проходит через центр описанной около основания окружности;

\((c)\) боковые ребра наклонены к плоскости основания под одинаковым углом.

\((d)\) боковые грани наклонены к плоскости основания под одинаковым углом.

Правильный тетраэдр – это треугольная пирамида, все грани которой – равные равносторонние треугольники.

Теорема

Условия \((a), (b), (c), (d)\) эквивалентны.

Доказательство

Проведем высоту пирамиды \(PH\) . Пусть \(\alpha\) – плоскость основания пирамиды.


1) Докажем, что из \((a)\) следует \((b)\) . Пусть \(PA_1=PA_2=PA_3=...=PA_n\) .

Т.к. \(PH\perp \alpha\) , то \(PH\) перпендикулярна любой прямой, лежащей в этой плоскости, значит, треугольники – прямоугольные. Значит, эти треугольники равны по общему катету \(PH\) и гипотенузам \(PA_1=PA_2=PA_3=...=PA_n\) . Значит, \(A_1H=A_2H=...=A_nH\) . Значит, точки \(A_1, A_2, ..., A_n\) находятся на одинаковом расстоянии от точки \(H\) , следовательно, лежат на одной окружности с радиусом \(A_1H\) . Эта окружность по определению и есть описанная около многоугольника \(A_1A_2...A_n\) .

2) Докажем, что из \((b)\) следует \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и равны по двум катетам. Значит, равны и их углы, следовательно, \(\angle PA_1H=\angle PA_2H=...=\angle PA_nH\) .

3) Докажем, что из \((c)\) следует \((a)\) .

Аналогично первому пункту треугольники \(PA_1H, PA_2H, PA_3H,..., PA_nH\) прямоугольные и по катету и острому углу. Значит, равны и их гипотенузы, то есть \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Докажем, что из \((b)\) следует \((d)\) .

Т.к. в правильном многоугольнике совпадают центры описанной и вписанной окружности (вообще говоря, эта точка называется центром правильного многоугольника), то \(H\) – центр вписанной окружности. Проведем перпендикуляры из точки \(H\) на стороны основания: \(HK_1, HK_2\) и т.д. Это – радиусы вписанной окружности (по определению). Тогда по ТТП (\(PH\) – перпендикуляр на плоскость, \(HK_1, HK_2\) и т.д. – проекции, перпендикулярные сторонам) наклонные \(PK_1, PK_2\) и т.д. перпендикулярны сторонам \(A_1A_2, A_2A_3\) и т.д. соответственно. Значит, по определению \(\angle PK_1H, \angle PK_2H\) равны углам между боковыми гранями и основанием. Т.к. треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по двум катетам), то и углы \(\angle PK_1H, \angle PK_2H, ...\) равны.

5) Докажем, что из \((d)\) следует \((b)\) .

Аналогично четвертому пункту треугольники \(PK_1H, PK_2H, ...\) равны (как прямоугольные по катету и острому углу), значит, равны отрезки \(HK_1=HK_2=...=HK_n\) . Значит, по определению, \(H\) – центр вписанной в основание окружности. Но т.к. у правильных многоугольников центры вписанной и описанной окружности совпадают, то \(H\) – центр описанной окружности. Чтд.

Следствие

Боковые грани правильной пирамиды – равные равнобедренные треугольники.

Определение

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой .
Апофемы всех боковых граней правильной пирамиды равны между собой и являются также медианами и биссектрисами.

Важные замечания

1. Высота правильной треугольной пирамиды падает в точку пересечения высот (или биссектрис, или медиан) основания (основание – правильный треугольник).

2. Высота правильной четырехугольной пирамиды падает в точку пересечения диагоналей основания (основание – квадрат).

3. Высота правильной шестиугольной пирамиды падает в точку пересечения диагоналей основания (основание – правильный шестиугольник).

4. Высота пирамиды перпендикулярна любой прямой, лежащей в основании.

Определение

Пирамида называется прямоугольной , если одно ее боковое ребро перпендикулярно плоскости основания.


Важные замечания

1. У прямоугольной пирамиды ребро, перпендикулярное основанию, является высотой пирамиды. То есть \(SR\) – высота.

2. Т.к. \(SR\) перпендикулярно любой прямой из основания, то \(\triangle SRM, \triangle SRP\) – прямоугольные треугольники.

3. Треугольники \(\triangle SRN, \triangle SRK\) – тоже прямоугольные.
То есть любой треугольник, образованный этим ребром и диагональю, выходящей из вершины этого ребра, лежащей в основании, будет прямоугольным.

\[{\Large{\text{Объем и площадь поверхности пирамиды}}}\]

Теорема

Объем пирамиды равен трети произведения площади основания на высоту пирамиды: \

Следствия

Пусть \(a\) – сторона основания, \(h\) – высота пирамиды.

1. Объем правильной треугольной пирамиды равен \(V_{\text{прав.треуг.пир.}}=\dfrac{\sqrt3}{12}a^2h\) ,

2. Объем правильной четырехугольной пирамиды равен \(V_{\text{прав.четыр.пир.}}=\dfrac13a^2h\) .

3. Объем правильной шестиугольной пирамиды равен \(V_{\text{прав.шест.пир.}}=\dfrac{\sqrt3}{2}a^2h\) .

4. Объем правильного тетраэдра равен \(V_{\text{прав.тетр.}}=\dfrac{\sqrt3}{12}a^3\) .

Теорема

Площадь боковой поверхности правильной пирамиды равна полупроизведению периметра основания на апофему.

\[{\Large{\text{Усеченная пирамида}}}\]

Определение

Рассмотрим произвольную пирамиду \(PA_1A_2A_3...A_n\) . Проведем через некоторую точку, лежащую на боковом ребре пирамиды, плоскость параллельно основанию пирамиды. Данная плоскость разобьет пирамиду на два многогранника, один из которых – пирамида (\(PB_1B_2...B_n\) ), а другой называется усеченная пирамида (\(A_1A_2...A_nB_1B_2...B_n\) ).


Усеченная пирамида имеет два основания – многоугольники \(A_1A_2...A_n\) и \(B_1B_2...B_n\) , которые подобны друг другу.

Высота усеченной пирамиды – это перпендикуляр, проведенный из какой-нибудь точки верхнего основания к плоскости нижнего основания.

Важные замечания

1. Все боковые грани усеченной пирамиды – трапеции.

2. Отрезок, соединяющий центры оснований правильной усеченной пирамиды (то есть пирамиды, полученной сечением правильной пирамиды), является высотой.

Здесь собраны основные сведения о пирамидах и связанных с ней формулах и понятиях. Все они изучаются с репетитором по математике при подготовке к ЕГЭ.

Рассмотрим плоскость , многоугольник , лежащий в ней и точку S, не лежащую в ней. Соединим S со всеми вершинами многоугольника. Полученный при этом многогранник называется пирамидой. Отрезки называются боковыми ребрами. Многоугольник называется основанием, а точка S — вершиной пирамиды. В зависимости от числа n пирамида называется треугольной (n=3), четырехугольной (n=4), птяиугольной (n=5) и так далее. Альтернативное название треугольной пирамиды – тетраэдр . Высотой пирамиды называется перпендикуляр, опущенный из ее вершины к плоскости основания.

Пирамида называется правильной, если правильный многоугольник, а основание высоты пирамиды (основание перпендикуляра) является его центром.

Комментарий репетитора :
Не путайте понятие «правильная пирамида» и «правильный тетраэдр». У правильной пирамиды боковые ребра совсем не обязательно равны ребрам основания, а в правильном тетраэдре все 6 ребер ребра равные. Это его определение. Легко доказать, что из равенства следует совпадение центра P многоугольника с основанием высоты, поэтому правильный тетраэдр является правильной пирамидой.

Что такое апофема?
Апофемой пирамиды называется высота ее боковой грани. Если пирамида правильная, то все ее апофемы равны. Обратное неверно.

Репетитор по математике о своей терминологии: работа с пирамидами на 80% строится через два вида треугольников:
1) Содержащий апофему SK и высоту SP
2) Содержащий боковое ребро SA и его проекцию PA

Чтобы упростить ссылки на эти треугольники репетитору по математике удобнее называть первый из них апофемным , а второй реберным . К сожалению, этой терминологии вы не встретите ни в одном из учебников, и преподавателю приходится вводить ее в одностороннем порядке.

Формула объема пирамиды :
1) , где – площадь основания пирамиды, а -высота пирамиды
2) , где – радиус вписанного шара, а – площадь полной поверхности пирамиды.
3) , где MN – расстояние любыми двумя скрещивающимися ребрами, а – площадь параллелограмма, образованного серединами четырех оставшихся ребер.

Свойство основания высоты пирамиды:

Точка P (смотри рисунок) совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий:
1) Все апофемы равны
2) Все боковые грани одинаково наклонены к основанию
3) Все апофемы одинаково наклонены к высоте пирамиды
4) Высота пирамиды одинаково наклонена ко всем боковым граням

Комментарий репетитора по математике : обратите внимание, что все пункты объединяет одно общее свойство: так или иначе везде участвуют боковые грани (апофемы — это их элементы). Поэтому репетитор может предложить менее точную, но более удобную для заучивания формулировку: точка P совпадает с центром вписанной окружности основание пирамиды, если имеется любая равная информация о ее боковых гранях. Для доказательства достаточно показать, что все апофемные треугольники равны.

Точка P совпадает с центром описанной около основания пирамиды окружностью, если верно одно их трех условий:
1) Все боковые ребра равны
2) Все боковые ребра одинаково наклонены к основанию
3) Все боковые ребра одинаково наклонены к высоте

Продолжаем рассматривать задачи входящие в ЕГЭ по математике. Мы уже исследовали задачи, где в условии дан и требуется найти расстояние между двумя данными точками либо угол.

Пирамида - это многогранник, основание которого является многоугольником, остальные грани - треугольники, при чём они имеют общую вершину.

Правильная пирамида — это пирамида в основании которой лежит правильный многоугольник, а его вершина проецируется в центр основания.

Правильная четырехугольная пирамида — снованием является квадрат.Вершина пирамиды проектируется в точку пересечения диагоналей основания (квадрата).


ML - апофема
∠MLO - двугранный угол при основании пирамиды
∠MCO - угол между боковым ребром и плоскостью основания пирамиды

В этой статье мы с вами рассмотрим задачи на решение правильной пирамиды. Требуется найти какой-либо элемент, площадь боковой поверхности, объём, высоту. Разумеется, необходимо знать теорему Пифагора, формулу площади боковой поверхности пирамиды, формулу для нахождения объёма пирамиды.

В статье « » представлены формулы, которые необходимы для решения задач по стереометрии. Итак, задачи:

SABCD точка O - центр основания, S вершина, SO = 51, AC = 136. Найдите боковое ребро SC .

В данном случае в основании лежит квадрат. Это означает, что диагонали AC и BD равны, они пересекаются и точкой пересечения делятся пополам. Отметим, что в правильной пирамиде высота опущенная из её вершины проходит через центр основания пирамиды. Таким образом, SO является высотой, а треугольник SOC прямоугольный. Тогда по теореме Пифагора:

Как извлекать корень из большого числа .

Ответ: 85

Решите самостоятельно:

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, AC = 6. Найдите боковое ребро SC .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SC = 5, AC = 6. Найдите длину отрезка SO .

В правильной четырехугольной пирамиде SABCD точка O - центр основания, S вершина, SO = 4, SC = 5. Найдите длину отрезка AC .

SABC R - середина ребра BC , S - вершина. Известно, что AB = 7, а SR = 16. Найдите площадь боковой поверхности.

Площадь боковой поверхности правильной треугольной пирамиды равна половине произведения периметра основания на апофему (апофема это высота боковой грани правильной пирамиды, проведённая из её вершины):

Или можно сказать так: площадь боковой поверхности пирамиды равна сумме площадей трёх боковых граней. Боковыми гранями в правильной треугольной пирамиде являются равные по площади треугольники. В данном случае:

Ответ: 168

Решите самостоятельно:

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а SR = 2. Найдите площадь боковой поверхности.

В правильной треугольной пирамиде SABC R - середина ребра BC , S - вершина. Известно, что AB = 1, а площадь боковой поверхности равна 3. Найдите длину отрезка SR .

В правильной треугольной пирамиде SABC L - середина ребра BC , S - вершина. Известно, что SL = 2, а площадь боковой поверхности равна 3. Найдите длину отрезка AB .

В правильной треугольной пирамиде SABC M . Площадь треугольника ABC равна 25, объем пирамиды равен 100. Найдите длину отрезка MS .

Основание пирамиды - равносторонний треугольник . Поэтому M является центром основания, а MS - высотой правильной пирамиды SABC . Объем пирамиды SABC равен: осмотреть решение

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Площадь треугольника ABC равна 3, MS = 1. Найдите объем пирамиды.

В правильной треугольной пирамиде SABC медианы основания пересекаются в точке M . Объем пирамиды равен 1, MS = 1. Найдите площадь треугольника ABC .

На этом закончим. Как видите, задачи решаются в одно-два действия. В будущем рассмотрим с вами другие задачи из данной части, где даны тела вращения, не пропустите!

Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: