Обогащение вольфрамовых руд. Способы переработки вольфрамовых концентратов Технологические показатели схемы обогащения вольфрамовых руд

Минералы и руды вольфрама

Из минералов вольфрама практическое значение имеют минералы группы вольфрамита и шеелит.

Вольфрамит (xFeWO4·yMnWO4) представляет собой изоморфную смесь вольфраматов железа и марганца. Если в минерале содержится более 80% железа, то минерал называют ферберитом. Если в минерале более 80% марганца, то минерал называют гюбернитом.

Шеелит CaWO4 представляет собой практически чистый вольфрамат кальция.

Вольфрамовые руды содержат незначительное количество вольфрама. Минимальное содержание WO3, при котором целесообразна их переработка. составляет 0,14-0,15% для крупных месторождений и 0,4-0,5% для мелких месторождений. В рудах вольфраму сопутствует олово в виде касситерита, а также минералы молибдена, висмута, мышьяка и меди. Основной пустой породой является кремнезём.

Вольфрамовые руды подвергаются обогащению. Вольфрамитовые руды обогащают гравитационным методом, а шеелитовые - флотацией.

Схемы обогащения вольфрамовых руд разнообразны и сложны. В них сочетаются гравитационное обогащение с магнитной сепарацией, флотогравитацией и флотацией. Комбинируя различные методы обогащения, из руд получают концентраты, содержащие до 55-72% WO3. Извлечение вольфрама из руды в концентрат составляет 82-90%.

Сoстав вольфрамовых концентратов колеблется в следующих пределах,%: WO3-40-72; MnO-0,008-18; SiO2-5-10; Mo-0.008-0,25; S-0,5-4; Sn-0,03-1,5; As-0,01-0,05; P-0,01-0,11; Cu-0,1-0,22.

Технологические схемы переработки вольфрамовых концентратов подразделяются на две группы: щелочные и кислотные.

Способы переработки вольфрамовых концентратов

Независимо от способа переработки вольфрамитовых и шеелитовых концентратов первой стадией их переработки является вскрытие, представляющее собой превращение минералов вольфрама в легкорастворимые химические соединения.

Вольфрамитовые концентраты вскрывают спеканием или сплавлением с содой при температуре 800-900оС, в основе которого лежат химические реакции:

4FeWO4 + 4Na2CO3 + O2 = 4Na2WO4 + 2Fe2O3 +4CO2 (1)

6MnWO4 + 6Na2CO3 + O2 = 6Na2WO4 + 2Mn3O4 +6CO2 (2)

При спекании шеелитовых концентратов при температуре 800-900оС протекают следующие реакции:

CaWO4 + Na2CO3 = Na2WO4+ CaCO3 (3)

CaWO4 + Na2CO3 = Na2WO4+ CaO + CO2 (4)

C целью снижения расхода соды и предотвращения образования свободного оксида кальция в шихту добавляют кремнезём для связывания оксида кальция в труднорастворимый силикат:

2CaWO4 + 2Na2CO3 + SiO2 = 2Na2WO4+ Ca2SiO4 + CO2 (5)

Спекание шеелитового концентрата, содой и кремнезёмом проводят в барабанных печах при температуре 850-900оС.

Полученный спёк (сплав) выщелачивают водой. При выщелачивании в раствор переходят вольфрамат натрия Na2WO4 и растворимые примеси (Na2SiO3, Na2HPO4, Na2AsO4, Na2MoO4, Na2SO4) и избыточная сода. Выщелачивание ведут при температуре 80-90оС в стальных реакторах с механическим перемешиванием, работающих в периодическом режиме, или в барабанных вращающихся печах непрерывного действия. Извлечение вольфрама в раствор составляет 98-99%. Раствор после выщелачивания содержит 150-200 г/л WO3. Раствор подвергают фильтрации, и после отделения твёрдого остатка направляют на очистку от кремния, мышьяка, фосфора и молибдена.

Очистка от кремния основана на гидролитическом разложении Na2SiO3 при кипячении раствора, нейтрализованного при рН = 8-9. Нейтрализацию избыточной соды в растворе осуществляют соляной кислотой. В результате гидролиза образуется малорастворимая кремневая кислота:

Na2SiO3 + 2H2O = 2NaOH + H2SiO3 (6)

Для очистки от фосфора и мышьяка используют метод осаждения фосфат- и арсенат ионов в виде малорастворимых аммонийно-магниевых солей:

Na2HPO4 + MgCl2+ NH4OH = Mg(NH4)PO4 + 2NaCl + H2O (7)

Na2HAsO4 + MgCl2+ NH4OH = Mg(NH4)AsO4 + 2NaCl + H2O (8)

Очистка от молибдена основана на разложении сульфосоли молибдена которая образуется при добавлении к раствору вольфрамата натрия сернистого натрия:

Na2MoO4 + 4NaHS = Na2MoS4 + 4NaOH (9)

При последующем подкислении раствора до рН = 2,5-3,0 сульфосоль разрушается с выделением малорастворимого трисульфида молибдена:

Na2MoS4 + 2HCl = MoS3 + 2NaCl + H2S (10)

Из очищенного раствора вольфрамата натрия с помощью СaCl2 сначала осаждают вольфрамат кальция:

Na2WO4 + СaCl2 = CaWO4 + 2NaCl. (11)

Реакцию проводят в кипящем растворе, содержащем 0,3-0.5% щёлочи

при перемешивании механической мешалкой. Отмытый осадок вольфрамата кальция в виде пульпы или пасты подвергается разложению соляной кислотой:

CaWO4 + 2HCl = H2WO4 + CaCl2 (12)

При разложении поддерживают высокую кислотность пульпы порядка 90-120 г/л HCl, что обеспечивает отделение от осадка вольфрамовой кислоты примесей фосфора, мышьяка и отчасти молибдена, которые растворимы в соляной кислоте.

Вольфрамовую кислоту из очищенного раствора вольфрамата натрия можно получить также непосредственным осаждением соляной кислотой При подкислении раствора соляной кислотой H2WO4 выпадает в осадок в следствие гидролиза вольфрамата натрия:

Na2WO4 + 2H2О = 2NaOH + H2WO4 (11)

Образующаяся в результате реакции гидролиза щёлочь реагирует с соляной кислотой:

2NaOH + 2HCl = 2NaCl + 2H2O (12)

Сложение реакций (8.11) и (8.12) даёт суммарную реакцию осаждения вольфрамовой кислоты соляной кислотой:

Na2WO4 + 2HCl = 2NaCl + H2WO4 (13)

Однако в том случае возникают большие трудности отмывки осадка от ионов натрия. Поэтому в настоящее время последний метод осаждения вольфрамовой кислоты применяется очень редко.

Полученная осаждением техническая вольфрамовая кислота содержит примеси и поэтому нуждается в очистке.

Наибольшее распространение получил аммиачный способ очистки технической вольфрамовой кислоты. Она основана на том, вольфрамовая кислота хорошо растворяется в аммиачных растворах, в то время как значительная часть содержащихся в ней примесей в растворах аммиака нерастворимы:

H2WO4 + 2NH4OH = (NH4)2WO4 + 2H2O (14)

Аммиачные растворы вольфрамовой кислоты могут содержать примеси молибдена и солей щелочных металлов.

Более глубокая очистка достигается выделением из аммиачного раствора крупных кристаллов паравольфрамата аммония, которые получают путём выпаривания раствора:

12(NH4)2WO4 = (NH4)10W12O41·5Н2О + 14NH3 + 2H2O (15)

вольфрам кислота ангидрид осаждение

Более глубокая кристаллизация нецелесообразна во избежание загрязнения кристаллов примесями. Из маточного раствора, обогащённого примесями, вольфрам осаждают в виде CaWO4 или H2WO4 и возвращают на предыдущие переделы.

Кристаллы паравольфрамата отжимают на фильтрах, затем на центрифуге, промывают холодной водой и сушат.

Окcид вольфрама WO3 получают путём прокаливания вольфрамовой кислоты или паравольфрамата во вращающейся трубчатой печи с трубой из нержавеющей стали и обогреваемой электричеством при температуре 500-850оС:

H2WO4 = WO3 + H2O (16)

(NH4)10W12O41·5Н2О = 12WO3 + 10NH3 +10H2O (17)

В трёхоксиде вольфрама, предназначенного для производства вольфрама, содержание WO3 должно быть не ниже 99,95%, а для производства твёрдых сплавов - не ниже 99,9%

Основными вольфрамовыми минералами являются шеелит, гюбнерит и вольфрамит. В зависимости от вида минералов руды можно раз делить на два типа; шеелитовые и вольфрамитовые (гюбнеритовые).
Шеелитовые руды в России, а также в ряде случаев и за рубежом, обогащают флотацией. В России процесс флотации шеелитовых руд в промышленном масштабе осуществлен до второй мировой войны на Тырны-Аузской фабрике. На этой фабрике перерабатываются очень сложные молибдено-шеелитовые руды, содержащие ряд кальциевых минералов (кальцит, флюорит, апатит). Кальциевые минералы, как и шеелит, флотируют с олеиновой кислотой, депрессия кальцита и флюорита производится перемешиванием в растворе жидкого стекла без подогрева (длительное контактирование) или с подогревом, как на Тырны-Аузской фабрике. Вместо олеиновой кислоты применяют фракции таллового масла, а также кислоты из растительных масел (реагенты 708, 710 и др.) одни или в смеси с олеиновой кислотой.

Типичная схема флотации шеелитовой руды дана на рис. 38. По этой схеме удается удалить кальцит и флюорит и получить кондиционные по трехокиси вольфрама концентраты. Ho апатит все же остается в таком количестве, что содержание фосфора в концентрате выше кондиций. Избыток фосфора удаляют растворением апатита в слабой соляной кислоте. Расход кислоты зависит от содержания карбоната кальция в концентрате и составляет 0,5-5 г кислоты на тонну WO3.
При выщелачивании кислотой часть шеелита, а также повеллит, растворяют и затем высаживают из раствора в виде CaWО4 + СаМоО4 и другие примеси. Полученный грязный осадок затем перерабатывают по методу И.Н. Масленицкого.
Ввиду трудности получения кондиционного вольфрамового концентрата на многих фабриках за границей получают два продукта: богатый концентрат и бедный для гидрометаллургической перерабтки на вольфрамат кальция по методу, разработанному в Механобре И.Н. Масленицким, - выщелачивание содой в автоклаве под давлением с переводом в раствор в виде CaWО4 с последующей очисткой раствора и осаждением CaWO4. В некоторых случаях при крупновкрапленном шеелите доводку флотационных концентратов ведут на столах.
Из руд, содержащих значительное количество CaF2, извлечение шеелита за границей флотацией не освоено. Такие руды, например в Швеции, обогащают на столах. Шеелит, увлеченный с флюоритом во флотационный концентрат, затем выделяют из этого концентрата на столе.
На фабриках России шеелитовые руды обогащают флотацией, получая кондиционные концентраты.
На Тырны-Аузской фабрике из руды с содержанием 0,2% WO3 получают концентраты с содержанием 6о% WO3 при извлечении 82%. На Чорух-Дайронской фабрике при такой же по содержанию VVO3 руде получают в концентратах 72% WO3 при извлечении 78,4%; на Койташской фабрике при руде с 0,46% WO3 в концентрате получают 72,6% WO3 при извлечении WO3 85,2%; на Лянгарской фабрике в руде 0,124%, в концентратах - 72% при извлечении 81,3% WO3. Возможно дополнительное выделение бедных продуктов за счет снижения потерь в хвостах. Во всех случаях при наличии в руде сульфидов их выделяют до шеелитовой флотации.
Расход материалов и энергии иллюстрируется данными, приведенными ниже, кг/т:

Вольфрамитовые (гюбнеритовые) руды обогащают исключительно гравитационными методами. Некоторые руды с неравномерной и крупнозернистой вкрапленностью, как например, руда Букуки (Забайкалье), можно предварительно обогащать в тяжелых суспензиях, выделяя около 60% пустой породы при крупности-26+3 MM с содержанием не выше 0,03% WO3.
Однако при относительно небольшой производительности фабрик (не больше 1000 т/сутки) первую стадию обогащения производят в отсадочных машинах, обычно начиная с крупности около 10 мм при крупновкрапленных рудах. В новых современных схемах используют, кроме отсадочных машин и столов, винтовые сепараторы Гэмфри, заменяя ими часть столов.
Прогрессивная схема обогащения вольфрамовых руд дана на рис. 39.
Доводка вольфрамовых концентратов зависит от их состава.

Сульфиды из концентратов тоньше 2 мм выделяют флотогравитацией: концентраты после перемешивания с кислотой и флотореагентами (ксантат, масла) направляют на концентрационный стол; полученный CO стола концентрат сушат и подвергают магнитной сепарации. Крупнозернистый концентрат предварительно додрабливают. Сульфиды из мелких концентратов со шламовых столов выделяют пенной флотацией.
Если сульфидов много, их целесообразно выделять из слива гидроциклонов (или классификатора) до обогащения на столах. Это улучшит условия выделения вольфрамита на столах и при операциях доводки концентратов.
Обычно грубые концентраты до доводки содержат около 30% WO3 при извлечении до 85%. Для иллюстрации в табл. 86 приведены некоторые данные по фабрикам.

При гравитационном обогащении вольфрамитовых руд (гюбнеритовых, ферберитовых) из шламов тоньше 50 мк извлечение очень низкое и потери в шламовой части значительные (10-15% от содержания в руде).
Из шламов флотацией с жирными кислотами при pH=10 можно дополнительно извлечь WO3 в бедные продукты, содержащие 7- 15% WO3. Эти продукты пригодны для гидрометаллургической переработки.
Вольфрамитовые (гюбнеритовые) руды содержат некоторое количество цветных, редких и благородных металлов. Часть из них переходит при гравитационном обогащении в гравитационные концентраты и переводится в хвосты доводки. Из сульфидных хвостов доводки, как и из шламов, можно выделить селективной флотацией молибденовые, висмуто-свинцовые, свинцово-медно-серебряные, цинковые (в них кадмий, индий) и пиритные концентраты, а дополнительно выделить и вольфрамовый продукт.

25.11.2019

В каждой отрасли, где происходит производство жидкой или вязкой продукции: в фармацевтическом деле, в косметической отрасли, в пищевом и химическом секторах – везде...

25.11.2019

На сегодняшний день обогрев зеркал является новой опцией, позволяющей сохранить чистую поверхность зеркала от горячего пара после приёма водных процедур. Благодаря...

25.11.2019

Штрих код является графическим символом, изображающим чередование полосок чёрного и белого цвета либо других геометрических фигур. Его наносят в составе маркировки...

25.11.2019

О том, как грамотно выбирать топку для камина, задумываются многие хозяева загородных жилых имений, которые хотят создать в своём доме максимально уютную обстановку,...

25.11.2019

И в любительском, и в профессиональном строительстве весьма востребованными являются профильные трубы. С их помощью сооружают способные выдерживать большие нагрузки...

24.11.2019

Спецобувь - часть экипировки рабочего, предназначенная для защиты ног от холода, высоких температур, химикатов, механических повреждений, электричества и т. д....

24.11.2019

Все мы привыкли, выходя из дома, обязательно смотреть в зеркало, чтобы проверить свой внешний вид и лишний раз улыбнуться своему отражению....

23.11.2019

Испокон веков главными делами женщин по всему свету являлись стирка, уборка, приготовление еды и всевозможные действа, способствующие организации уюта в доме. Однако, то...

Основное обогащение

Для некоторых фабрик обогатительных в предварительном обогащении первое Синьхай будет использовать отсадочную машину с подвижным ситом, а затем вступить в операции доводки.

Гравитационное обогащение

Для технологии гравитации вольфрамита Синьхай обычно применяет такой гравитационный процесс, в котором включает многоступенчатую отсадку, многоступенчатый стол и доизмельчение промпродукта. То есть после мелкого дробления достойные руды, которые и через классификации виброгрохота,проводят многоступенчатую отсадку и производят крупный песок со отсадки и с гравитации.Потом балластовые продукты отсадки крупного класса вступят в мельницу для доизмельчении.А балластовые продукты отсадки мелкого класса через классификации вступят в сортировке многоступенчатого стола,затем производятся крупный песок с гравитации и со стола, потом хвосты со стола войдут в бункер хвостов, промпродукты со стола то вернут вэтап цикла доизмельчении,а гравитационный крупный песок со отсадки и стола вступит в операции доводки.

Перечистка

В операции доводки вольфрамита обычно используется объединённая технолония флотации и гравитационного обогащения или объединённая технолония флотации – гравитационного и магнитного обогащения. В тоже время проводит возврат сопутствующего элемента.

В операции доводки обычно используется объединённый метод флотации и стола обогащения и отмывка серного колчедана через флотации. при этим мы можем вступить в флотационном разделении серного колчедана.после этого производится концентраты вольфрамита,если концентраты вольфрамита содержат шеелит и касситерит, то производится концентраты вольфрамита, концентраты шеелита и концентраты касситерита через объединённая технолония флотации и гравитационного обогащения или объединённая технолония флотации – гравитационного и магнитного обогащения.

Обработка тонкого ила

Метод обработки тонкого ила в Синьхае обычно бывает такое: во–первых проводит сероочистку, потом соответственно свойствам тонкого ила и материала используется технология гравитационного, флотационного,магнитного и электрического обогащения или используется объединённая технолония обогащения несколько технологии, чтобы происходит возврат вольфрамовой руды,и в то время проведут утилизацию попутных рудных минералов.

Практические примеры

Объект вольфрамита Синьхая ставился в пример, крупность распределения руды данной шахты было негомогенной, очень сильное зашламливание рудов. Первоначальная технологическая схема,использовалась обогатительной фабрике,которая включает дробление предварительного обогащения,гравитацию и перечистку,из-за ряда технологических дефектов привела огромные потери вольфрамовых рудов мелкого класса, высокая стоимость обогащения, таких как плохое состояние комплексных показателей обогащения. для того,чтобы улучшить состояние сортировки вольфрамита, данная обогатительная фабрика уполномочила Синьхай на задание технической реконструкции. После тщательного исследования по свойствам руды и технологиям для обогащения данной фабрики, Синьхай оптимизировал технологию для обогащения вольфрамита данной фабрики и добавил технологию обработки тонкого ила. и в конечном итоге получить идеальные показатели обогащения. показатель обогащения фабрики до и после трансформации являются следующим:

После преобразования, извлечение вольфрамовой руды значительно усилилось. И смягчил последствий тонкого ила на процесса сортировки вольфрамита, достигается хороший показатель извлечения, эффективно улучшил экономическую эффективность фабрики.

Страница 1 из 25

Государственное бюджетное профессиональное

образовательное учреждение Республики Карелия

«Костомукшский политехнический колледж»

Зам. директора по ОД__________________Кубар Т.С

«_____»_________________________________2019 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Тема: «Ведение основного метода обогащения вольфрамовых руд и применение вспомогательных процессов обезвоживания в технологической схеме Приморского ГОКа»

Студент группы: Кузич С.Э

4 курс, группа ОПИ-15 (41С)

Специальность 21.02.18

«Обогащение полезных ископаемых»

Руководитель ВКР: Волкович О.В

преподаватель спец. дисциплин

Костомукша

2019

Введение………………………………………………………………………...…3

  1. Технологическая часть…………………………………………………………6

1.1 Общая характеристика вольфрамовых руд………………………………….6

1.2 Экономическая оценка вольфрамовых руд…………………………...……10

  1. Технологическая схема обогащения вольфрамовых руд на примере Приморского ГОКа……………………………………………………..……11

2. Обезвоживание продуктов обогащения…………………………………......17

2.1. Сущность процессов обезвоживания…………………………………..….17

2.2. Центрифугирование…………………………………………………..…….24

3. Организация безопасных условий труда…………………………………….30

3.1. Требования по созданию безопасных условий труда на рабочих местах………………………………………………………………..…...30

3.2. Требования по поддержанию безопасности на рабочих местах.…….…..32

3.3. Требования техники безопасности к работникам предприятия…………32

Заключение……………………………………………………………….…..…..34

Список использованных источников и литературы……………………....…...36

Введение

Обогащение полезных ископаемых - это отрасль промышленности, перерабатывающая твёрдые полезные ископаемые с намереньем получить концентраты, т.е. продукты, качество которых выше качества исходного сырья и соответствует требованиям дальнейшего использования их в народном хозяйстве. Полезные ископаемые являются основой народного хозяйства, и нет ни одной отрасли, где бы ни применялись полезные ископаемые или продукты их обработки.

Одним из таких полезных ископаемых является вольфрам - металл с уникальными свойствами. Он имеет самую высокую температуру кипения и плавления среди металлов, при этом – самый низкий коэффициент теплового расширения. Кроме того, он – один самых твёрдых, тяжёлых, стабильных и плотных металлов: плотность вольфрама сравнима с плотностью золота и урана и в 1, 7 раза выше, чем у свинца. Основными вольфрамовыми минералами являются шеелит, гюбнерит и вольфрамит. В зависимости от вида минералов руды можно разделить на два типа; шеелитовые и вольфрамитовые. При переработке вольфрамасодержащих руд используют гравитационные, флотационные, магнитные, а также электростатические, гидрометаллургические и другие методы.

В последние годы широко используются металлокерамические твердые сплавы, изготовленные на основе карбида вольфрама. Такие сплавы применяются в качестве резцов, для изготовления коронок бурового инструмента, фильер для холодного волочения проволоки, штампов, пружин, деталей пневматических инструментов, клапанов двигателей внутреннего сгорания, жаропрочных деталей механизмов, работающих в условиях высоких температур. Наплавочные твердые сплавы (стеллиты), состоящие из вольфрама (3- 15%), хрома (25-35%) и кобальта (45-65%) с небольшим количеством углерода, применяются для покрытий быстро изнашивающихся деталей механизмов (лопастей турбин, экскаваторного оборудования и др.). Сплавы вольфрама с никелем и медью находят применение при изготовлении защитных экранов от гамма – лучей в медицине.

Металлический вольфрам используется в электротехнике, радиотехнике, рентгенотехнике: для изготовления нитей накаливания в электролампах, нагревателях высокотемпературных электрических печей, антикатодов и катодов рентгеновских трубок, электровакуумной аппаратуры и многого другого. Соединения вольфрама применяются в качестве красителей, для придания огнестойкости и водоустойчивости тканям, в химии - как чувствительный реактив на алкалоиды, никотин, белок, в качестве катализатора при производстве высокооктанового бензина.

Широко используется вольфрам и в производстве военной и космической техники (броневые плиты, башни танков, ружейные и орудийные стволы, сердечники ракет и др.).

Структура потребления вольфрама в мире постоянно меняется. Из одних отраслей он вытесняется другими материалами, но появляются все новые области его применения. Так, в первой половине XX века до 90% вольфрама расходовалось на легирование сталей. В настоящее время в промышленности преобладает производство карбида вольфрама, и все более важное значение приобретает использование металлического вольфрама. В последнее время открываются новые возможности применения вольфрама как экологически чистого материала. Вольфрам может заменить свинец в производстве различных боеприпасов, а также найти применение в изготовлении спортивного инвентаря, в частности клюшек и мячей для гольфа. Разработки в этих областях ведутся в США. В перспективе вольфрам должен заменить обедненный уран в производстве боеприпасов большого калибра. В 1970-х годах, когда цены на вольфрам составляли около 170 дол. за 1% содержания WO 3 в 1 т продукта, США, а затем и некоторые страны НАТО заменили в тяжелых боеприпасах вольфрам обедненным ураном, который при тех же технических характеристиках был существенно дешевле.

Вольфрам, как химический элемент входит в группу тяжелых металлов и с экологической точки зрения относится к среднетоксичным (II-III класс). В настоящее время источником загрязнения вольфрамом окружающей среды являются процессы разведки, добычи и переработки (обогащение и металлургия) вольфрамсодержащего минерального сырья. В результате переработки такими источниками являются неиспользуемые твердые отходы, сточные воды, пылевые вольфрамсодержащие тонкодисперсные частицы. Твердые отходы в виде отвалов и различных хвостов образуются при обогащении вольфрамовых руд. Сточные воды обогатительных фабрик представлены сливами хвостохранилищ, которые используются в качестве оборотной воды в процессах измельчения и флотации.

Цель выпускной квалификационной работы : обосновать технологическую схему обогащения вольфрамовых руд на примере Приморского ГОКа и сущность процессов обезвоживания в данной технологической схеме.

г. Владивосток

Аннотация

В данной работе рассмотрены технологии обогащения шеелита и вольфрамита.

Технология обогащения вольфрамовых руд включает: предварительную концентрацию, обогащение измельченных продуктов предварительной концентрации с получением коллективных (черновых) концентратов и их доводку.


Ключевые слова

Шеелитовая руда, вольфрамитовая руда, тяжелосредняя сепарация, отсадка, гравитационный метод, электромагнитная сепарация, флотация.

1. Введение 4

2. Предварительная концентрация 5

3. Технология обогащения вольфрамитовых руд 6

4. Технология обогащения Шеелитовых руд 9

5. Заключение 12

Список литературы 13


Введение

Вольфрам – металл серебристо-белого цвета, обладающий высокой твердостью, температурой кипения около 5500°С.

Российская Федерация располагает крупными разведанными запасами. Вольфрамоворудный потенциал ее оценивается в 2,6 млн. т триоксида вольфрама, в котором подтвержденные запасы составляют 1,7 млн. т, или 35% от таковых в мире.

Разрабатываемые месторождения в Приморском крае: Восток-2, ОАО Приморский ГОК (1,503%); Лермонтовское, АООТ Лермонтовская ГРК (2,462%).

Основными вольфрамовыми минералами являются шеелит, гюбнерит и вольфрамит. В зависимости от вида минералов руды можно раз делить на два типа; шеелитовые и вольфрамитовые (гюбнеритовые).

При переработке вольфрамосодержащих руд используют гравитационные, флотационные, магнитные, а также электростатические, гидрометаллургические и другие методы.

Предварительная концентрация.

Наиболее дешевыми и в то же время высокопроизводительными методами предконцентрации являются гравитационные, такие как тяжелосредная сепарация и отсадка.

Тяжелосредная сепарация позволяет стабилизировать качество поступающего в основные циклы переработки питания, выделить не только отвальный продукт, но и разделить руду на богатую крупновкрапленную и бедную тонковкрапленную, часто требующих принципиально разных схем переработки, поскольку они заметно отличаются по вещественному составу. Процесс характеризуется наибольшей по сравнению с другими гравитационными методами точностью разделения по плотности, что позволяет получать высокое извлечение ценного компонента при минимальном выходе концентрата. При обогащении руды в тяжелых суспензиях достаточна разница в плотностях разделяемых кусков 0,1 г/м3. Этот метод может с успехом применяться для крупновкрапленных вольфрамитовых и шеелит-кварцевых руд. Результаты исследований по обогащению вольфрамовых руд месторождений Пюн-ле-Винь (Франция) и Борралха (Португалия) в промышленных условиях показали, что результаты, получаемые с применением обогащения в тяжелых суспензиях, значительно лучше, чем при обогащении только на отсадочных машинах - в тяжелую фракцию извлечение составило более 93% от руды.

Отсадка по сравнению с тяжелосредным обогащением требует меньших капитальных затрат, позволяет обогащать материал в большом диапазоне плотности и крупности. Крупнокусковая отсадка получила широкое распространение при обогащении крупно- и средневкрапленных руд, не требующих тонкого измельчения. Применение отсадки предпочтительно при обогащении карбонатных и силикатных руд скарновых, жильных месторождений, при этом величина показателя контрастности руд по гравитационному составу должна превышать единицу.

Технология обогащения вольфрамитовых руд

Высокий удельный вес вольфрамовых минералов и крупнозернистая структура вольфрамитовых руд позволяет широко применять при их обогащении гравитационные процессы. Для получения высоких технологических показателей необходимо в гравитационной схеме сочетать аппараты с различными разделительными характеристиками, при которых каждая предыдущая операция по отношению к последующей является как бы подготовительной, улучшающей обогатимость материала. Принципиальная схема обогащения вольфрамитовых руд приведена на рис. 1.

Отсадку применяют, начиная с той крупности, при которой могут быть выделены отвальные хвосты. Эта операция используется также и для выделения крупновкрапленных вольфрамовых концентратов с последующим доизмельчением и обогащением хвостов отсадки. Основанием для выбора схемы отсадки и крупности обогащаемого материала служат данные, получаемые при разделении по плотностям материала крупностью – 25 мм. Если руды тонковкрапленные и предварительными исследованиями показано, что крупнокусковое обогащение и отсадка для них неприемлемы, то руду обогащают во взвесенесущих потоках малой толщины, к которым относится обогащение на винтовых сепараторах, струйных желобах, конусных сепараторах, шлюзах, концентрационных столах. При стадиальном измельчении и стадиальном обогащении руды извлечение вольфрамита в черновые концентраты более полное. Черновые вольфрамитовые гравитационные концентраты доводятся до кондиционных по развитым схемам с применением мокрых и сухих методов обогащения.

Богатые вольфрамитовые концентраты обогащают электромагнитной сепарацией, при этом электромагнитная фракция может быть загрязнена железистой цинковой обманкой, минералами висмута и частично мышьяка (арсенопиритом, скородитом). Для их удаления используют магнетизирующий обжиг, при котором усиливается магнитная восприимчивость сульфидов железа, и в то же время удаляются в виде газообразных оксидов вредные для вольфрамовых концентратов сера и мышьяк. Вольфрамит (гюбнерит) доизвлекают из шламов флотацией с применением жирно-кислотных собирателей и добавкой нейтральных масел. Черновые гравитационные концентраты сравнительно легко доводятся до кондиционных с применением электрических способов обогащения. Флотацию и флотогравитацию проводят с подачей ксантогената и вспенивателя в слабощелочной или слабокислой среде. Если концентраты загрязнены кварцем и легкими минералами, то после флотации их подвергают перечистке на концентрационных столах.


Похожая информация.




Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: