Как отличить алканы. Структурная изомерия алканов. Что такое изомеры

Алканы или алифатические насыщенные углеводороды - соединения с открытой (нециклічним) цепью, в молекулах которых атомы углерода соединены между собой σ-связью. Атом углерода в алканах находятся в состоянии sp 3 -гибридизации.

Алканы образуют гомологический ряд, в котором каждый член отличается на постоянную структурную единицу -CH 2 -, что называется гомологической разностью. Простейший представитель - метан CH 4 .

  • Общая формула алканов: C n H 2n+2
Изомерия Начиная с бутана C 4 H 10 для алканов характерна структурная изомерия. Количество структурных изомеров возрастает с увеличением числа углеродных атомов в молекуле алканов. Так, для пентана C 5 H 12 известно три изомеры, для октана C 8 H 18 - 18, для декана C 10 H 22 - 75.


Для алканов кроме структурной существует конформационная изомерия и начиная с гептана - енантіомерія:

Номенклатура IUPAC В названиях алканов используют префиксы н- , втор- , изо , трет- , нео :

  • н- означает нормальную (нерозгалужену) строение углеводородного цепи;
  • втор- применяется только для вторичного бутила;
  • трет- означает алкил третичной структуры;
  • изо разветвления на конце цепи;
  • нео используется для алкілу с четвертичным атомом углерода.
Префиксы изо и нео пишутся вместе, а н- , втор- , трет- через дефис.

Номенклатура разветвленных алканов построена основана на следующих основных правилах:

  • Для построения названия выбирают длинную цепь атомов углерода и нумеруют его арабскими цифрами (локантами), начиная с конца, ближе к которому находится заместитель, например:

  • Если одна и та же алкільна группа встречается более одного раза, то в названии перед ней ставят помножуючі приставки ди- (перед гласной ди- ), три- , тетра- и т. п. и обозначают цифрой каждый алкил отдельно, например:


Необходимо заметить, что для сложных остатков (групп) применяются помножуючі префиксы вроде бис- , трис- , тетракіс- прочее.
  • Если в боковых ответвлениях главной цепи размещены различные алкіли-заместители, то их переразовують по алфавиту (при этом помножуючі приставки ди- , тетра- и т. п, а также префиксы н- , втор- , трет- не принимают во внимание), например:

  • Если возможны два или более вариантов длиннейшей цепи, то выбирают тот, который имеет максимальное количество боковых разветвлений.
  • Названия сложных алкильных групп строятся по тем же принципам, что и названия алканов, но нумерация цепи алкілу всегда автономна и начинается с того атома углерода, имеющего свободную валентность , например:

  • При использовании в названии такой группы ее берут в скобки и в алфавитном порядке учитывается первая буква названия всей:

Промышленные методы добычи 1. Извлечения алканов газа. Природный газ состоит главным образом из метана и небольших примесей этана, пропана, бутана. Газ под давлением при пониженных при пониженных температурах разделяют на соответствующие фракции.

2. Извлечения алканов из нефти. Сырую нефть очищают и подвергают переработке (розгонка, фракціювання, крекинг). Из продуктов переработки получают смеси или индивидуальные соединения.

3. Гидрирование угля (метод Ф. Бергіуса, 1925 г.). Каменный или бурый уголь в автоклавах при 30 МПа в присутствии катализаторов (оксиды и сульфиды Fe, Mo, W, Ni) в среде углеводородов гидрированные и превращаются в алканы, так называемое моторное топливо:

nC + (n+1)H 2 = C n H 2n+2

4. Оксосинтеза алканов (метод Ф. Фишера - Г. Тропша, 1922 г.). По методу Фишера - Тропша алканы получают из синтез-газа. Синтез-газ представляет собой смесь CO и H 2 с различным соотношением. Его получают из метана одной из реакций, которые происходят при 800-900°C в присутствии оксида никеля NiO, нанесенного на Al 2 O 3:

CH 4 + H 2 O ⇄ CO + 3H 2

CH 4 + CO 2 ⇄ 2CO + 2H 2

2CH 4 + O 2 ⇄ 2CO + 4H 2

Алканы получают по реакции (температура около 300°C, катализатор Fe-Co):

nCO + (2n+1)H 2 → C n H 2n+2 + nH 2 O

Образованная смесь углеводородов, состоящая в основном из алканов строения (n=12-18), называют "синтином".

5. Сухая перегонка. В относительно небольших количествах алканы получают при помощи сухой перегонки или нагрева угля, сланцев, древесины, торфа без доступа воздуха. Примерный состав полученной смеси при этом составляет 60% водорода, 25% метана и 3-5% этилена.

Лабораторные методы добывания 1. Получение из галогеналкілів

1.1. Взаимодействие с металлическим натрием (Вурц, 1855 г.). Реакция состоит во взаимодействии щелочного металла с галогеналкілом и применяется для синтеза высших симметричных алканов:

2CH 3 -I + 2Na ⇄ CH 3 -CH 3 + 2NaI

В случае участия в реакции двух разных галогеналкілів образуется смесь алканов:

3CH 3 -I + 3CH 3 CH 2 -I + 6Na → CH 3 -CH 3 + CH 3 CH 2 CH 3 + CH 3 CH 2 CH 2 CH 3 + 6NaI

1.2 Взаимодействие с літійдіалкілкупратами. Метод (иногда называют реакцией Е. Коре - Х. Хауса) заключается во взаимодействии реакционноспособных літійдіалкілкупратів R 2 CuLi с галогеналкілами. Сначала происходит взаимодействие металлического лития с галогеналканом в среде эфира. Далее соответствующий алкіллітій реагирует с галогенідом меди(I) с образованием растворимого літійдіалкілкупрату:

CH 3 Cl + 2Li → CH 3 Li + LiCl

2CH 3 Li + CuI → (CH 3 ) 2 CuLi + LiI

При взаимодействии такого літійдіалкілкупрату с соответствующим галогеналкілом образуется конечное соединение:

(CH 3 ) 2 CuLi + 2CH 3 (CH 2 ) 6 CH 2 -I → 2CH 3 (CH 2 ) 6 CH 2 -CH 3 + LiI + CuI

Метод позволяет достичь выхода алканов почти 100% при применении первичных галогеналкілів. При их вторичной или третичной строении выход составляет 30-55%. Природа алкільної составляющей в літійдіалкілкупраті мало влияет на выход алкану.


1.3 Восстановление галогеналкілів. Восстанавливать галогеналкіли возможно каталитически возбужденным молекулярным водородом, атомарным водородом, йодоводнем тому подобное:

CH 3 I + H 2 → CH 4 + HI (катализатор Pd)

CH 3 CH 2 I + 2H → CH 3 CH 3 + HI

CH 3 I + HI → CH 4 + I 2

Метод имеет препаративне значение, часто используют сильный восстановитель - йодоводень.

2. Получение из солей карбоновых кислот.
2.1 Электролиз солей (Кольбе, 1849 г.). Реакция Кольбе заключается в электролизе водных растворов солей карбоновых кислот:

R-COONa ⇄ R-COO - + Na +

На аноде анион карбоновой кислоты окисляется, образуя свободный радикал, и легко декарбоксилюється или отщеплять CO 2 . Алкильные радикалы далее вследствие рекомбинации превращаются в алканы:

R-COO - → R-COO . + e -

R-COO . → R . + CO 2

R . + R . → R-R


Препаративный метод Кольбе считается эффективным при наличии соответствующих карбоновых кислот и невозможности применить другие методы синтеза.

2.2 Сплавления солей карбоновых кислот со щелочью. Соли щелочных металлов карбоновых кислот при славленні с щелочью образуют алканы:

CH 3 CH 2 COONa + NaOH → Na 2 CO 3 + CH 3 CH 3


3. Восстановление кислородсодержащих соединений (спиртов, кетонов, карбоновых кислот). Восстановителями выступают вышеупомянутые соединения. Чаще всего применяют йодоводень, который способен восстанавливать даже кетоны: Первые четыре представителя алканов от метана до бутана (C 1 -C 4) - газы, от пентана до пентадекану (C 5 -C 15 - жидкости, от гексадекану (C 16) - твердые вещества. Увеличения их молекулярных масс приводит к увеличению температур кипения и плавления, при чем алканы с разветвленной цепью кипят при более низкой температуре, чем алканы нормального строения. Это объясняется меньшей вандерваальсівською взаимодействием между молекулами разветвленных углеводородов в жидком состоянии. Температура плавления четных гомологов выше по сравнению с температурой соответственно для нечетных.

Алканы гораздо легче за воду, неполярные и трудно поляризуются, однако растворимы в большинстве неполярных растворителей, благодаря чему сами могут быть растворителем для многих органических соединений.

алканом или парафином (историческое название, которое также имеет другие значения), является ациклический насыщенный углеводород. Другими словами, алкан состоит из водорода и атомов углерода, расположенных в древовидной структуре, в которой все углерод-углеродные связи являются одиночными.

Алканы имеют общую химическую формулу C n H 2n + 2 . Алканы варьируются по сложности от простейшего случая метана, CH 4 , где n = 1 (иногда называемая исходной молекулой), до сколь угодно больших молекул.

Химическая структура метана, простейший алкан

Кроме этого стандартного определения названная Международным союзом теоретической и прикладной химии, в использовании некоторых авторов термин алкана применяется к любому насыщенному углеводороду, в том числе те, которые являются либо моноциклическими (т.е. циклоалканы) или полициклическими.

В алкане, каждый атом углерода имеет 4 связи (либо С-С или С-Н), и каждый атом водорода присоединен к одному из атомов углерода (как в С-Н-связи). Самая длинная серия связанных атомов углерода в молекуле известна как ее углеродный скелет или углеродная основа. Число атомов углерода можно рассматривать как размер алкана.

Одна группа высших алканов представляет собой воски, твердые вещества при стандартных температуре окружающей среды и давлении (СТиДОС(Стандартная температура и давление окружающей среды)), для которых число атомов углерода в углеродной цепи больше, что примерно в 17 раз.

С повторными -CH 2 — звеньями алканы составляют гомологичный ряд органических соединений, в которых группы отличаются молекулярной массой кратным 14,03 мк (общая масса каждой такой метиленовой звеновой единицы, которая содержит единственный атом углерода с массой 12,01 мк и два атома водорода с массой ~ 1,01 мк каждый).

Алканы не очень реакционноспособны и обладают небольшой биологической активностью. Их можно рассматривать как молекулярные деревья, на которых могут быть подвешены более активные / реакционноспособные функциональные группы биологических молекул.

Алканы имеют два основных источника: нефть (сырая нефть) и природный газ.

Алкильная группа, обычно сокращенно обозначаемая символом R, представляет собой функциональную группу, которая, подобно алкану, состоит исключительно из связанных атомов ациклически связанных атомов углерода и водорода, например метильной или этильной группы.

Структура классификации

Насыщенными углеводородами являются углеводороды, имеющие только отдельные ковалентные связи между их атомами углерода. Они могут представлять:

  • Линейную (общая формула C n H 2n + 2), в которой атомы углерода соединены в змееподобной структуреe.
  • Разветвленную (общую формулу C n H2 n + 2 , n> 2), где углеродный скелет отщепляется в одном или нескольких направлениях.
  • Циклическую (общую формулу C n H 2n , n> 3), где углеродная цепь связана с образованием петли.

Изобутана для 2-метилпропана
Изопентан для 2-метилбутана
Неопентана для 2,2-диметилпропана.

Химические свойства алканов

— вы можете изучить по данной , в полном, понятном изложении.

Физические свойства алканов

Все алканы бесцветны и не имеют запаха.

Таблица алканов.

Алкан Формула Точка кипения [° C] Точка плавления [° C] Плотность [г · см-3] (при 20 ° C)
Метан CH 4 −162 −182 Газ
Этан C 2 H 6 -89 −183 Газ
Пропан C 3 H 8 −42 −188 Газ
Бутан C 4 H 10 0 −138 0.626
Пентан C 5 H 12 36 −130 0.659
Гексан C 6 H 14 69 −95 0.684
Гептан C 7 H 16 98 −91 0.684
Октан C 8 H 18 126 −57 0.718
Нонан C 9 H 20 151 −54 0.730
Декан C 10 H 22 174 −30 0.740
Ундекан C 11 H 24 196 -26 0.749
Додекан C 12 H 26 216 −10 0.769
Пентадекан C 15 H 32 270 10-17 0.773
Гексадекан C 16 H 34 287 18 Твердый
Эйкозан C 20 H 42 343 37 Твердый
Триконтан C 30 H 62 450 66 Твердый
Тетроконтан C 40 H 82 525 82 Твердый
Пентоконтан С 50 H 102 575 91 Твердый
Гексоконтан C 60 H 122 625 100 Твердый

Точка кипения

Алканы испытывают межмолекулярные силы Ван-дер-Ваальса. Более сильные межмолекулярные силы Ван-дер-Ваальса вызывают более высокие точки кипения алканов.

Для силы Ван-Дер-Ваальсовых сил существует два детерминанта:

  • Число электронов, окружающих молекулу, которое увеличивается с молекулярной массой алкана
  • Площадь поверхности молекулы

В стандартных условиях от CH 4 до C 4 H 10 алканы являются газообразными; От C 5 H 12 до C 17 H 36 они являются жидкостями; И после C 18 H 38 они являются твердыми. По мере того как температура кипения алканов в первую очередь определяются по весу, она не должна быть неожиданностью, что точка кипения имеет почти линейную зависимость с размером (молекулярная масса) молекулы. Как правило, температура кипения повышается на 20-30 ° C для каждого углерода, добавляемого в цепь. Это правило применяется и к другим гомологичным рядам.

В физической химии силы Ван-дер-Ваальса (или ван-дер-ваальсово взаимодействие), названные в честь голландского ученого Йоханнеса Дидерика Ван дер Ваальса, являются остаточными силами притяжения или отталкивания между молекулами или атомными группами, которые не возникают из ковалентных связей. Можно показать, что силы Ван-дер-Ваальса имеют то же происхождение, что и эффект Казимира, обусловленный квантовыми взаимодействиями с полем нулевой точки. Возникающие в результате силы Ван-дер-Ваальса могут быть притягивающими или отталкивающими.

Прямоцепной алкан будет иметь точку кипения выше, чем алкан с разветвленной цепью из-за большей площади поверхности, находящейся в контакте, таким образом, большие силы Ван-дер-Ваальса между соседними молекулами. Например, сравните изобутан (2-метилпропан) и н-бутан (бутан), которые кипят при -12 и 0 ° С, и 2,2-диметилбутан и 2,3-диметилбутан, которые кипят при 50 и 58 ° С, соответственно. В последнем случае две молекулы 2,3-диметилбутана могут «защелкиваться» друг с другом лучше, чем крестообразный 2,2-диметилбутан, поэтому большие силы Ван-дер-Ваальса

С другой стороны, циклоалканы, как правило, имеют более высокие точки кипения, чем их линейные аналоги из-за заблокированных конформаций молекул, которые дают плоскость межмолекулярного контакта.

Точки плавления

Точки плавления алканов имеют сходную тенденцию к точкам кипения по той же причине, что и выше. То есть, (при прочих равных условиях) тем больше молекуле, тем выше температура плавления. Существует одно существенное различие между точками кипения и температурами плавления. Твердые вещества имеют более жесткую и фиксированную структуру, чем жидкости. Эта жесткая структура требует энергию для разрушения. Таким образом, для лучшего соединения твердых структур потребуется больше энергии для разрыва. Для алканов это видно на графике выше (то есть на зеленой линии). Нечетные алканы имеют более низкую тенденцию к плавлению, чем четные алканы. Это объясняется тем, что даже пронумерованные алканы хорошо укладываются в твердой фазе, образуя хорошо организованную структуру, которая требует больше энергии для разрыва. Алканы с нечетными номерами укладываются хуже, и поэтому организованная структура уплотнения с более «рыхлой» требует меньше энергии для разрыва.

Точки плавления алканов с разветвленной цепью могут быть либо выше, либо ниже, чем у соответствующих алканов с прямой цепью, опять же в зависимости от способности рассматриваемого алкана хорошо укладываться в твердой фазе: это особенно справедливо для изоалканов (2 -метильные изомеры), которые часто имеют температуры плавления выше, чем температуры линейных аналогов.

Проводимость и растворимость

Алканы не проводят электричество и не поляризуются электрическим полем. По этой причине они не образуют водородных связей и нерастворимы в полярных растворителях, таких как вода. Поскольку водородные связи между отдельными молекулами воды выровнены вдали от молекулы алкана, сосуществование алкана и воды приводит к увеличению молекулярного порядка (уменьшение энтропии). Поскольку между молекулами воды и молекулами алкана нет значительного сцепления, второй закон термодинамики предполагает, что это уменьшение энтропии должно быть минимизировано путем сведения к минимуму контакта между алканом и водой: алканы, как говорят, являются гидрофобными в том смысле, что они отталкивают воду.

Их растворимость в неполярных растворителях относительно хорошая, свойство, которое называется липофильностью. Различные алканы, например, смешиваются во всех пропорциях между собой.

Плотность алканов обычно увеличивается с числом атомов углерода, но остается меньше, чем у воды. Следовательно, алканы образуют верхний слой в качестве алкана-водной смеси.

Молекулярная геометрия

Молекулярная структура алканов непосредственно влияет на их физические и химические характеристики. Он получен из электронной конфигурации углерода, которая имеет четыре валентных электрона. Атомы углерода в алканов всегда sp 3 гибридизовали, то есть, что валентные электроны, как говорят, в четырех эквивалентных орбиталей, полученных из комбинации 2 s орбитальных и трех 2р-орбиталей. Эти орбитали, имеющие одинаковые энергии, расположены пространственно в виде тетраэдра, угол между ними cos -1 (- 1/3) ≈ 109,47 °.

Длины связей и валентные углы

Молекула алкана имеет только одинарные связи C-H и C-C. Первые являются следствием перекрытия sp 3 орбитали углерода с 1s-орбиталью водорода; Последний — перекрытием двух sp 3 -орбиталей на разных атомах углерода. Длины связей составляют 1,09 × 10 -10 м для связи C-H и 1,54 × 10 -10 мкм для связи C-C.

Пространственное расположение связей похоже на пространственное расположение четырех sp3-орбиталей — они расположены тетраэдрически с углом 109,47 ° между ними. Структурные формулы, которые представляют собой облигацию как под прямым углом друг к другу, в то время как и общие и полезные, не соответствуют действительности.

Конформация

Структурная формула и углы связи обычно недостаточны для полного описания геометрии молекулы. Существует еще одна степень свободы для каждого углерод-углеродной связи: торсионный угол между атомами или группами, связанными с атомами на каждом конце связи. Пространственное расположение, описываемое углами кручения молекулы, известно как его форма.

Этан образует простейший случай для изучения конформации алканов, так как существует только одна связь C-C. Если посмотреть вниз по оси C-C-связи, то увидите так называемую проекцию Ньюмана. Атомы водорода как на переднем, так и на заднем углеродном атоме имеют угол 120 ° между ними, что обусловлено проекцией основания тетраэдра на плоскую плоскость. Однако угол кручения между данным атомом водорода, присоединенным к переднему углероду, и заданным атомом водорода, присоединенным к заднему углероду, может свободно изменяться от 0 ° до 360 °. Это является следствием свободного вращения вокруг простой углерод-углеродной связи. Несмотря на эту кажущуюся свободу, важны только две предельные конформации: затменная конформация и ступенчатая конформация.


Шариковые и двухшнековые модели двух ротамеров этана

Две конформации, также известные как ротамеры, различаются по энергии: шахматная конформация составляет 12,6 кДж / моль ниже по энергии (более стабильной), чем затмеваемая конформация (наименее стабильная).

Это различие в энергии между двумя конформациями, называемое энергией кручения, мало по сравнению с тепловой энергией молекулы этана при температуре окружающей среды. Постоянное вращение вокруг связи C-C. Время, необходимое для перехода молекулы этана из одной шахматной конформации в другую, что эквивалентно вращению одной группы СН3 на 120 ° относительно другой, составляет порядка 10 -11 с.


Проекции двух конформаций этана: затмивление на левой стороне, в шахматном порядке справа.

Высшие алканы является более сложные, но основанные на аналогичных принципах, при этом антиперипланарная конформация всегда наиболее благоприятна вокруг каждой углерод-углеродной связи. По этой причине алканы обычно показаны зигзагообразно на диаграммах и в моделях. Фактическая структура всегда будет несколько отличаться от этих идеализированных форм, так как различия в энергии между конформациями малы по сравнению с тепловой энергией молекул, так как молекулы алканов не имеют фиксированной структурной формы, независимо от того, что может показывать модель.

Спектроскопические свойства

Практически все органические соединения содержат углерод-углеродные и углерод-водородные связи и поэтому показывают некоторые особенности алканов в их спектрах. Алканы отличаются отсутствием других групп и, следовательно, отсутствием других характерных спектроскопических признаков различных функциональных групп, таких как -ОН, -CHO, -COOH и т.д.

Инфракрасная спектроскопия

Углеродно-водородный метод растяжения дает сильное поглощение между 2850 и 2960 см -1 , в то время как углерод-углеродный режим растяжения поглощает от 800 до 1300 см -1 . Методы изгиба углерод-водород зависят от природы группы: метильные группы показывают полосы при 1450 см -1 и 1375 см -1 , в то время как метиленовые группы показывают полосы при 1465 см -1 и 1450 см -1 . Углеродные цепи с более чем четырьмя атомами углерода демонстрируют слабое поглощение при температуре около 725 см -1 .

ЯМР-спектроскопия

Протон-резонансы алканов обычно обнаруживаются при δH = 0,5-1,5. Резонансы углерода 13 зависят от числа атомов водорода, связанных с углеродом: δ C = 8-30 (первичный, метил, -CH 3), 15-55 (вторичный, метилен, -CH 2 -), 20-60 (третичный, Метин, С-Н) и четвертичный. Углерод-13-резонанс четвертичных атомов углерода характеризуется слабостью из-за отсутствия ядерного эффекта Оверхаузера и длительным временем релаксации и может быть пропущен в слабых образцах или образцах, которые не были проработаны в течение достаточно длительного времени.

Масс-спектрометрия

Алканы обладают высокой энергией ионизации, а у молекулярной ион обычно слабый. Фрагментацию фрагментации может быть трудно интерпретировать, но в случае разветвленных алканов углеродная цепь предпочтительно расщепляется на третичных или четвертичных углеродах из-за относительной стабильности полученных свободных радикалов. Фрагмент, являющийся результатом потери одной метильной группы (М-15), часто отсутствует, а другой фрагмент часто отделен интервалами четырнадцати массовых единиц, что соответствует последовательной потере СН 2 -групп.

Способы получения алканов

О способах получения алканов, вы так же сможете узнать и изучить по данной .

Строение алканов

Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2n+2 . В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации .

Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторон­ней треугольной пирамиды - тетраэдра . Углы между орбиталями равны 109° 28′. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), напри­мер, в молекуле н-пентан.

Особо стоит напомнить о связях в молекулах ал­канов. Все связи в молекулах предельных углеводо­родов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи . Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 10 м). Связи С-Н несколько коро­че. Электронная плотность немного смещена в сто­рону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной .

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Предельные углеводороды составляют гомоло­гический ряд метана.

Изомерия и номенклатура алканов

Для алканов характерна так называемая струк­турная изомерия . Структурные изомеры отлича­ются друг от друга строением углеродного скеле­та. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Рассмотрим подробнее для алканов основы но­менклатуры ИЮПАК .

1. Выбор главной цепи . Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2. Нумерация атомов главной цепи . Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном уда­лении от конца цепи, то нумерация начинается от того конца, при котором их больше (структу­ра В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе стар­ший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начи­нается их название: метил (-СН 3), затем пропил (-СН 2 -СН 2 -СН 3), этил (-СН 2 -СН 3) и т. д.

Обратите внимание на то, что название заме­стителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соот­ветствующий номер в названии повторяется дваж­ды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и на­звание заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).

Названия веществ, структурные формулы кото­рых приведены выше, следующие:

Структура А: 2-метилпропан;

Структура Б: 3-этилгексан;

Структура В: 2,2,4-триметилпентан;

Структура Г: 2-метил 4-этилгексан.

Отсутствие в молекулах предельных углеводоро­дов полярных связей приводит к тому, что они плохо растворяются в воде , не вступают во взаимодействие с заряженными частицами (ионами) . Наиболее ха­рактерными для алканов являются реакции, проте­кающие с участием свободных радикалов .

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы . Простейший из них - ме­тан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, опреде­ляется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных га­зовых приборах для того, чтобы люди, находя­щиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С 5 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые ве­щества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются рас­пространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.

Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения , в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

Приведем уравнения характерных реакций галогенирования :

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор :

Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

Реакция дегидрирования (отщепления водоро­да).

В ходе пропускания алканов над катализато­ром (Pt, Ni, Al 2 O 3 , Cr 2 O 3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена :

Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

1. Горение предельных углеводородов - это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов .

Процесс протекает по свободнорадикальному механизму . Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена :

Реакции термического расщепления лежат в ос­нове промышленного процесса - крекинга угле­водородов . Этот процесс является важнейшей ста­дией переработки нефти.

3. Пиролиз . При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана - раз­ложение на простые вещества:

При нагревании до температуры 1500 °С воз­можно образование ацетилена :

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом :

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Нелишне будет начать с определения понятия алканов. Это насыщенные либо предельные Также можно сказать, что это углероды, в которых соединение атомов C осуществляется посредством простых связей. Общая формула имеет вид: CnH₂n+ 2.

Известно, что соотношение количества атомов H и C в их молекулах максимально, если сравнивать с другими классами. Ввиду того что все валентности заняты либо C, либо H, химические свойства алканов выражены недостаточно ярко, поэтому их вторым названием выступает словосочетание предельные либо насыщенные углеводороды.

Также существует более древнее наименование, которое лучше всего отражает их относительную химинертность - парафины, что в переводе означает «лишенные сродства».

Итак, тема нашего сегодняшнего разговора: «Алканы: гомологический ряд, номенклатура, строение, изомерия». Также будут представлены данные касательно их физических свойств.

Алканы: строение, номенклатура

В них атомы C пребывают в таком состоянии, как sp3-гибридизация. В связи с этим молекулу алканов можно продемонстрировать в качестве набора тетраэдрических структур C, которые связаны не только между собой, но и с H.

Между атомами C и H присутствуют прочные, весьма малополярные s-связи. Атомы же вокруг простых связей всегда вращаются, ввиду чего молекулы алканов принимают разнообразные формы, причем длина связи, угол между ними - постоянные величины. Формы, которые трансформируются друг в друга из-за вращения молекулы, происходящего вокруг σ-связей, принято называть ее конформациями.

В процессе отрыва атома H от рассматриваемой молекулы сформировываются 1-валентные частицы, называемые углеводородными радикалами. Они появляются в результате соединений не только но и неорганических. Если отнять 2 атома водорода от молекулы предельного углеводорода, то получатся 2-валентные радикалы.

Таким образом, номенклатура алканов может быть:

  • радиальной (старый вариант);
  • заместительной (международная, систематическая). Она предложена ИЮПАК.

Особенности радиальной номенклатуры

В первом случае номенклатура алканов характеризуется следующим:

  1. Рассмотрение углеводородов в качестве производных метана, у которого замещен 1 либо несколько атомов H радикалами.
  2. Высокая степень удобства в случае с не очень сложными соединениями.

Особенности заместительной номенклатуры

Заместительная номенклатура алканов имеет следующие особенности:

  1. Основа для названия - 1 углеродная цепь, остальные же молекулярные фрагменты рассматриваются в качестве заместителей.
  2. При наличии нескольких идентичных радикалов перед их наименованием указывается число (строго прописью), а радикальные номера разделяются запятыми.

Химия: номенклатура алканов

Для удобства информация представлена в виде таблицы.

Название вещества

Основа названия (корень)

Молекулярная формула

Название углеродного заместителя

Формула углеродного заместителя

Вышеуказанная номенклатура алканов включает названия, которые сложились исторически (первые 4 члена ряда предельных углеводородов).

Наименования неразвернутых алканов с 5 и более атомами C образованы от греческих числительных, которые отражают данное число атомов C. Так, суффикс -ан говорит о том, что вещество из ряда насыщенных соединений.

При составлении названий развернутых алканов в роли основной цепи выбирается та, которая содержит максимальное количество атомов C. Она нумеруется так, чтобы заместители были с наименьшим номером. В случае двух и более цепей одинаковой длины главной становится та, которая содержит наибольшее количество заместителей.

Изомерия алканов

В качестве углеводорода-родоначальника их ряда выступает метан CH₄. С каждым последующим представителем метанового ряда наблюдается отличие от предыдущего на метиленовую группу - CH₂. Данная закономерность прослеживается во всем ряду алканов.

Немецкий ученый Шиль выдвинул предложение назвать этот ряд гомологическим. В переводе с греческого означает «сходный, подобный».

Таким образом, гомологический ряд - набор родственных органических соединений, имеющих однотипную структуру с близкими химсвойствами. Гомологи - члены данного ряда. Гомологическая разность - метиленовая группа, на которую отличаются 2 соседних гомолога.

Как уже упоминалось ранее, состав любого насыщенного углеводорода может быть выражен посредством общей формулы CnH₂n + 2. Так, следующим за метаном членом гомологического ряда является этан - C₂H₆. Чтобы вывести его структуру из метановой, необходимо заменить 1 атом H на CH₃ (рисунок ниже).

Структура каждого последующего гомолога может быть выведена из предыдущего таким же образом. В итоге из этана образуется пропан - C₃H₈.

Что такое изомеры?

Это вещества, которые имеют идентичный качественный и количественный молекулярный состав (идентичную молекулярную формулу), однако различное химическое строение, а также обладающие разными химсвойствами.

Вышерассмотренные углеводороды отличаются по такому параметру, как температура кипения: -0,5° - бутан, -10° - изобутан. Данный вид изомерии именуется как изомерия углеродистого скелета, она относится к структурному типу.

Число структурных изомеров растет быстрыми темпами с увеличением количества углеродных атомов. Таким образом, C₁₀H₂₂ будет соответствовать 75 изомерам (не включая пространственные), а для C₁₅H₃₂ уже известны 4347 изомеров, для C₂₀H₄₂ - 366 319.

Итак, уже стало понятно, что такое алканы, гомологический ряд, изомерия, номенклатура. Теперь стоит перейти к правилам составления названий по ИЮПАК.

Номенклатура ИЮПАК: правила образования названий

Во-первых, необходимо отыскать в углеводородной структуре углеродную цепь, которая наиболее длинна и содержит максимальное количество заместителей. Затем требуется пронумеровать атомы C цепи, начиная с конца, к которому ближе всего расположен заместитель.

Во-вторых, основа - название неразветвленного насыщенного углеводорода, которому по количеству атомов C соответствует самая главная цепь.

В-третьих, перед основой необходимо указать номера локантов, возле которых расположены заместители. За ними записываются через дефис названия заместителей.

В-четвертых, в случае наличия идентичных заместителей при разных атомах C локанты объединяются, при этом перед названием появляется умножающая приставка: ди - для двух идентичных заместителей, три - для трех, тетра - четырех, пента - для пяти и т. д. Цифры должны быть отделены друг от друга запятой, а от слов - дефисом.

Если один и тот же атом C содержится сразу два заместителя, локант тоже записывается дважды.

Согласно этим правилам и формируется международная номенклатура алканов.

Проекции Ньюмена

Этот американский ученый предложил для графической демонстрации конформаций специальные проекционные формулы - проекции Ньюмена. Они соответствуют формам А и Б и представлены на рисунке ниже.

В первом случае это А-заслоненная конформация, а во втором - Б-заторможенная. В позиции А атомы H располагаются на минимальном расстоянии друг от друга. Данной форме соответствует самое большое значение энергии, ввиду того что отталкивание между ними наибольшее. Это энергетически невыгодное состояние, вследствие чего молекула стремится покинуть его и перейти к более устойчивому положению Б. Здесь атомы H максимально удалены друг от друга. Так, энергетическая разница этих положений - 12 кДж/моль, благодаря чему свободное вращение вокруг оси в молекуле этана, которая соединяет метильные группы, получается неравномерным. После попадания в энергетически выгодное положение молекула там задерживается, другими словами, «тормозится». Именно поэтому оно и называется заторможенным. Результат - 10 тыс. молекул этана пребывают в заторможенной форме конформации при условии комнатной температуры. Только одна имеет другую форму - заслоненную.

Получение предельных углеводородов

Из статьи уже стало известно, что это алканы (строение, номенклатура их подробно описаны ранее). Будет нелишне рассмотреть способы их получения. Они выделяются из таких природных источников, как нефть, природный, каменный уголь. Применяются также и синтетические методы. Например, H₂ 2H₂:

  1. Процесс гидрирования CnH₂n (алкены)→ CnH₂n+2 (алканы)← CnH₂n-2 (алкины).
  2. Из смеси монооксида C и H - синтез-газа: nCO+(2n+1)H₂→ CnH₂n+2+nH₂O.
  3. Из карбоновых кислот (их солей): электролиз на аноде, на катоде:
  • электролиз Кольбе: 2RCOONa+2H₂O→R-R+2CO₂+H₂+2NaOH;
  • реакция Дюма (сплав со щелочью): CH₃COONa+NaOH (t)→CH₄+Na₂CO₃.
  1. Крекинг нефти: CnH₂n+2 (450-700°)→ CmH₂m+2+ Cn-mH₂(n-m).
  2. Газификация топлива (твердого): C+2H₂→CH₄.
  3. Синтез сложных алканов (галогенопроизводных), которые имеют меньшее количество атомов C: 2CH₃Cl (хлорметан) +2Na →CH₃- CH₃ (этан) +2NaCl.
  4. Разложение водой метанидов (карбидов металлов): Al₄C₃+12H₂O→4Al(OH₃)↓+3CH₄.

Физические свойства предельных углеводородов

Для удобства данные сгруппированы в таблицу.

Формула

Алкан

Температура плавления в °С

Температура кипения в °С

Плотность, г/мл

0,415 при t = -165°С

0,561 при t= -100°C

0,583 при t = -45°C

0,579 при t =0°C

2-Метилпропан

0,557 при t = -25°C

2,2-Диметил-пропан

2-Метилбутан

2-Метилпентан

2,2,3,3-Тетра-метилбутан

2,2,4-Триметил-пентан

н-C₁₀H₂₂

н-C₁₁H₂₄

н-Ундекан

н-C₁₂H₂₆

н-Додекан

н-C₁₃H₂₈

н-Тридекан

н-C₁₄H₃₀

н-Тетрадекан

н-C₁₅H₃₂

н-Пентадекан

н-C₁₆H₃₄

н-Гексадекан

н-C₂₀H₄₂

н-Эйкозан

н-C₃₀H₆₂

н-Триаконтан

1 мм рт. ст

н-C₄₀H₈₂

н-Тетраконтан

3 мм рт. ст.

н-C₅₀H₁₀₂

н-Пентаконтан

15 мм рт. ст.

н-C₆₀H₁₂₂

н-Гексаконтан

н-C₇₀H₁₄₂

н-Гептаконтан

н-C₁₀₀H₂₀₂

Заключение

В статье было рассмотрено такое понятие, как алканы (строение, номенклатура, изомерия, гомологический ряд и пр.). Немного рассказано об особенностиях радиальной и заместительной номенклатур. Описаны способы получения алканов.

Кроме того, в статье подробно перечислена вся номенклатура алканов (тест может помочь усвоить полученную информацию).

Физические свойства алканов

В обычных условиях первые четыре члена гомологического ряда алканов (С 1 - С 4) - газы. Нормальные алканы от пентана до гептадекана (С 5 - С 17) - жидкости, начиная с С 18 и выше - твердые вещества. По мере увеличения числа атомов углерода в цепи, т.е. с ростом относительной молекулярной массы, возраста­ют температуры кипения и плавления алканов.

При одинаковом числе атомов углерода в молекуле алканы с разветвленным строением имеют более низкие температуры кипения, чем нормальные алканы.

Алканы практически нерастворимы в воде, т.к. их молекулы малополярны и не взаимодействуют с молекулами воды. Жидкие алканы легко смешиваются друг с другом. Они хорошо растворя­ются в неполярных органических растворителях, таких, как бен­зол, тетрахлорметан и т.п.

Строение

Молекула простейшего алкана - метана - имеет форму пра­вильного тетраэдра, в центре которого находится атом углерода, а в вершинах - атомы водорода. Углы между осями связей С-Н составляют 109°28" (рис. 29).

В молекулах других предельных углеводородов углы между связями (как С-Н, так и С-С) имеют такое же значение. Для описания формы молекул используется понятие гибри­дизации атомных орбиталей (см. часть I, §6).

В алканах все атомы углерода на­ходятся в состоянии sp 3 - гибридиза­ции (рис. 30).

Таким образом, атомы углерода в углеродной цепи не находятся на одной прямой. Расстояние между соседними атомами углерода (между ядрами атомов) строго фиксирова­но - это длина химической связи (0,154 нм). Расстояние С 1 - С 3 , С 2 - С 4 и т.д. (через один атом) тоже постоянны, т.к. постоянен угол между связями -валент­ный угол.

Расстояния между более удаленными атомами углерода могут изменяться (в некоторых пределах) в результате вращения вокруг s-связей. Такое вращение не нарушает перекрывания орбиталей, образующих s-связь, поскольку эта связь имеет осевую симметрию.

Разные пространственные формы одной молекулы, образующиеся при вращении групп атомов вокруг s-связей, называют конформациями (рис. 31).

Конформации различают по энер­гии, но это различие невелико (12-15 кДж/моль). Более устойчивы такие конформации алканов, в которых атомы расположены возможно дальше друг от друга (отталкивание электронных обо­лочек). Переход от одной конформации к другой осуществляется за счет энергии теплового движения. Для изображения конформации используют специальные пространственные формулы (формулы Ньюмена).

Не путать!

Следует различать понятия конформация и конфигурация.

Разные конформации могут превращаться друг в друга без разрыва химических связей. Для превращения молекулы с одной конфигурацией в молекулу с другой конфигурацией требуется разрыв химических связей.

Из четырех видов изомерии для алканов характерны два: изомерия углеродного скелета и оптическая изомерия (см. часть

Химические связи в алканах, их разрыв и образование опре­деляют химические свойства алканов. Связи С-С и С-Н ковалент­ные, простые (s-связи), практически неполярные, достаточно прочные, поэтому:

1) алканы вступают чаще всего в такие реакции, которые идут с гемолитическим разрывом связей;

2) по сравнению с органическими соединениями других классов алканы обладают низкой реакционной способностью (их за это называют парафинами - «лишенными свойства»). Так, алка­ны устойчивы к действию водных растворов кислот, щелочей и окислителей (например, перманганата калия) даже при ки­пячении.

Алканы не вступают в реакции присоединения к ним дру­гих молекул, т.к. алканы не имеют в своих молекулах кратных связей.

Алканы подвергаются разложению при сильном нагревании в присутствии катализаторов в виде платины или никеля, при этом от алканов отщепляется водород.

Алканы могут вступать в реакции изомеризации. Характер­ной реакцией для них является реакция замещения, протекаю­щая по радикальному механизму.

Химические свойства

Реакции радикального замещения

В качестве примера рассмотрим взаимодействие алканов с галогенами. Фтор реагирует очень энергично (как правило, со взрывом) - при этом рвутся все С-Н и С-С связи, и в результате образуются соединения CF 4 и HF. Практического значения реак­ция не имеет. Иод с алканами не взаимодействует. Реакции с хлором или бромом идут либо при освещении, либо при сильном нагревании; при этом происходит образование от моно- до полигалогензамещенных алканов, например:

СН 3 -СН 3 +Сl 2 ® hv СН 3 -СН 2 -Сl+НСl

Образование галогенопроизводных метана протекает по цеп­ному свободнорадикальному механизму. Под действием света мо­лекулы хлора распадаются на неорганические радикалы:

Неорганический радикал Сl . отрывает от молекулы метана атом водорода с одним электроном, образуя НС1 и свободный ра­дикал СН 3

Свободный радикал взаимодействует с молекулой хлора Сl 2 , образуя галогенопроизводное и радикал хлора.

Реакция окисления начинается с отрыва атома водорода мо­лекулой кислорода (которая представляет собой бирадикал) и далее идет как разветвленная цепная реакция. Количество ради­калов в ходе реакции увеличивается. Процесс сопровождается

выделением большого количества теплоты, рвутся уже не только С-Н, но и С-С связи, так что в результате образуется оксид угле­рода (IV) и вода. Реакция может протекать как горение или при­водит к взрыву.

2С n Н2 n+2 +(3n+1)О 2 ®2nСO 2 +(2n+2)Н 2 O

При обычной температуре реакция окисления не идет; ее можно инициировать либо поджиганием, либо действием элект­рического разряда.

При сильном нагревании (свыше 1000°С) алканы полностью разлагаются на углерод и водород. Эта реакция называется пиро­лизом.

СН 4 ® 1200° С+2Н 2

При мягком окислении алканов, в частности метана, кисло­родом воздуха в присутствии различных катализаторов могут быть получены метиловый спирт, формальдегид, муравьиная кислота.

Если метан пропускать через нагретую зону очень быстро, а затем сразу охлаждать водой, то в результате образуется аце­тилен.

Эта реакция - основа промышленного синтеза, который на­зывается крекингом (неполным разложением) метана.

Крекинг гомологов метана проводят при более низкой темпе­ратуре (около 600°С). Например, крекинг пропана включает сле­дующие стадии:

Итак, крекинг алканов приводит к образованию смеси алканов и алкенов меньшей молекулярной массы.

Нагревание алканов до 300-350°С (крекинг еще не идет) в присутствии катализатора (Pt или Ni) приводит к дегидрирова­нию - отщеплению водорода.

При действии разбавленной азотной кислоты на алканы при 140°С и небольшом давлении протекает радикальная реакция:

СН 3 -СН 3 + HNO 3 ®CH 3 -CH 2 -NO 2 + Н 2 О Изомеризация

При определенных условиях алканы нормального строения могут превращаться в алканы с разветвленной цепью.

Получение алканов

Рассмотрим получение алканов на примере получения метана. Метан широко распространен в природе. Он является главной со­ставной частью многих горючих газов, как природных (90-98%), так и искусственных, выделяющихся при сухой перегонке дерева, торфа, каменного угля, а также при крекинге нефти. Природные газы, особенно попутные газы нефтяных месторождений, помимо метана содержат этан, пропан, бутан и пентан.

Метан выделяется со дна болот и из каменноугольных пластов в рудниках, где он образуется при медленном разложении расти­тельных остатков без доступа воздуха. Поэтому метан часто назы­вают болотным газом или рудничным газом.

В лаборатории метан получают при нагревании смеси ацетата натрия с гидроксидом натрия:

CH 3 COONa+NaOH® 200° Na 2 CO 3 +CH 4 ­

или при взаимодействии карбида алюминия с водой: Аl 4 Сl 3 +12H 2 O®4Аl(ОН) 3 +3CH 4 ­

В последнем случае метан получается весьма чистым.

Метан может быть получен из простых веществ при нагрева­нии в присутствии катализатора:

С+2Н 2 ® Ni СН 4 8 также синтезом на основе водяного газа

CO+3H 2 ® Ni CH 4 +H 2 O

Этот способ имеет промышленное значение. Однако используют обычно метан природных газов или газов, образующихся при кок­совании каменных углей и при переработке нефти.

Гомологи метана, как и метан, в лабораторных условиях полу­чают прокаливанием солей соответствующих органических кис­лот с щелочами. Другой способ - реакция Вюрца, т.е. нагревание моногалогенопроизводных с металлическим натрием, например:

С 2 Н 5 Br+2Na+BrC 2 H 6 ® С 2 Н 5 -С 2 Н 5 +2NaBr

В технике для получения технического бензина (смесь угле­водородов, содержащих 6-10 атомов углерода) применяют синтез

из оксида углерода (II) и водорода в присутствии катализатора (соединения кобальта) и при повышенном давлении. Процесс

можно выразить уравнением

nСО+(2n+1)Н 2 ® 200° C n H 2n+2 +nН 2 O

I Итак, основным источником алканов служат природный газ и нефть. Однако некоторые предельные углеводороды синтезиру­ют из других соединений.

Применение алканов

Большая часть алканов используется как топливо. Крекинг и

Дегидрирование их приводит к непредельным углеводородам, на

базе которых получают множество других органических веществ.

Метан - основная часть природных газов (60-99%). В состав

природных газов входят пропан и бутан. Жидкие углеводороды

применяются в качестве горючего в двигателях внутреннего сгорания а автомашинах, самолетах и др. Очищенная смесь жидких

и твердых алканов образует вазелин. Высшие алканы являются

исходными веществами при получении синтетических моющих средств. Алканы, полученные путем изомеризации, используют­ся в производстве высококачественных бензинов и каучука. Ниже приведена схема применения метана

Циклоалканы

Строение

Циклоалканы - насыщенные углеводороды, в молекулах ко­торых имеется замкнутое кольцо из углеродных атомов.

Циклоалканы (циклопарафины) образуют гомологический ряд с общей формулой С n Н 2 n , в котором первым членом является

циклопропан С 3 Н 6 , т.к. для образования кольца необходимо на­личие не менее трех атомов углерода.

Циклоалканы имеют несколько названий: циклопарафины, нафтены, цикланы, полиметилены. Примеры некоторых соеди­нений:

Формула С n Н 2 n характерна для циклопарафинов, и точно такая же формула описывает гомологический ряд алкенов (непре­дельных углеводородов, имеющих одну кратную связь). Из этого можно сделать вывод, что каждому циклоалкану изомерен соот­ветствующий алкен - это пример «межклассовой» изомерии.

Циклоалканы по размеру цикла делятся на ряд групп, из которых рассмотрим две: малые (С 3 , С 4) и обычные (С 5 -С 7) циклы.

Названия циклоалканов строятся путем добавления пристав­ки цикло- к названию алкана с соответствующим числом атомов углерода. Нумерацию в цикле проводят так, чтобы заместители получили наименьшие номера.

Структурные формулы циклоалканов обычно записываются в сокращенном виде, используя геометрическую форму цикла и опуская символы атомов углерода и водорода. Например:

Структурная изомерия циклоалканов обусловлена размером цикла (циклобутан и метилциклопропан - изомеры) и положе­нием заместителей в цикле (например, 1,1- и 1,2-диметилбутан), а также их строением.

Пространственная изомерия также характерна для цикло­алканов, т.к. она связана с различным расположением замес­тителей относительно плоскости цикла. При расположении за­местителей по одну сторону от плоскости цикла получаются цис-изомеры, по разные стороны - транс-изомеры.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: