Зависимость скорости реакции от температуры. Температурный коэффициент скорости реакции и его особенности для биохимических процессов. Энергия активации. Температурный коэффициент скорости реакции

Факторы влияющие на протекание реакции

В организме человека протекают тысячи ферментативных реакций, проходящих в живой клетке. Однако в многостадийной цепи процессов достаточно велика разница между скоростями отдельных реакций. Так, синтезу в клетке молекул белка предшествует, по крайней мере, еще две стадии: синтез транспортной РНК и синтез рибосом. Но время, за которое удваивается концентрация молекул т-РНК, составляет 1,7 мин., молекулы белка - 17 мин., а рибосом - 170 мин. Скорость суммарного процесса медленной (лимитирующей) стадии, в нашем примере - скорость синтеза рибосом. Наличие лимитирующей реакции обеспечивает высокую надежность и гибкость управления тысячами реакций, происходящих в клетке. Достаточно держать под наблюдением и регулировать лишь наиболее медленные из них. Такой способ регулирования скорости многостадийного синтеза носит название принципа минимума. Он позволяет существенно упростить и сделать более надежной систему авторегулирования в клетке.

Классификации реакций, применяющиеся в кинетике: реакции, гомогенные, гетерогенные и микрогетерогенные; реакции простые и сложные (параллельные, последовательные, сопряженные, цепные). Молекулярность элементарного акта реакции. Кинетические уравнения. Порядок реакции. Период полупревращения


Микрогетерогенные реакции –


Молекулярность реакции определяется числом молекул, вступающих в химическое взаимодействие в элементарном акте реакции. По этому при­знаку реакции разделяются на мономолекулярные, бимолекулярные и тримолекулярные.

Тогда реакции типа А ->В будут являться мономолекулярными, например:

а) С 16 Н 34 (t°C) ->C g H 18 + С 8 Н 16 - реакция крекинга углеводородов;

б) CaC0 3 (t°C) ->СаО + С0 2 - термическое разложение карбоната кальция.
Реакции типа А + В -> С или 2А -> С - являются бимолекулярными, например:
а) С + 0 2 -> С0 2 ; б) 2Н 2 0 2 -> 2Н 2 0 + 0 2 и т. д.

Тримолекулярные реакции описываются общими уравнениями типа:

а) А + В + С Д; б) 2А + В Д; в) 3А Д.

Например: а) 2Н 2 + 0 2 2Н 2 0; б) 2NO + Н 2 N 2 0 + Н 2 0.

Скорость реакций в зависимости от молекулярности будет выражаться уравнениями: а) V = к С А - для мономолекулярной реакции; б) V = к С А С в или в) V = к С 2 А - для бимолекулярной реакции; г) V = к С С в С э д) V = к С 2 А С в или е) V = k С 3 А - для тримолекулярной реакции.


Молекулярность-число молекул, реагирующих в в одном элементарном химическом акте.

Нередко молекулярность реакции трудно установить, поэтому используют более формальный признак - порядок химической реакции.

Порядок реакции равен сумме показателей степеней концентраций в уравнении, выражающем зависимость скорости реакции от концентрации реагирующих веществ (кинетическом уравнении).

Порядок реакции чаще всего не совпадает с молекулярностью ввиду того, что механизм реакции, т. е. "элементарный акт" реакции (см. определение признака молекулярности), трудно установить.

Рассмотрим ряд примеров, иллюстрирующих указанное положение.

1.Скорость растворения кристаллов описывается уравнениями кинетики нулевого порядка, несмотря на мономолекулярность реакции: AgCl (TB) ->Ag + + CI", V = k C(AgCl (TB p= k"C(AgCl (ra }) - p - плотности и является постоянной величиной, т. е. скорость растворения не зависит от количества (концентрации) растворяемого вещества.

2.Реакция гидролиза сахарозы: СО + Н 2 0 -> С 6 Н 12 0 6 (глюкоза) + С 6 Н 12 0 6 (фруктоза) является бимолекулярной реакцией, но ее кинетика описывается кинетическим уравнением первого порядка: V=k*C cax , так как в условиях опытов, в том числе и в организме, концентрация воды есть величина постоянная С(Н 2 0) - const.

3.
Реакция разложения водородпероксида, протекающая с участием катали­заторов, как неорганических ионов Fe 3+ , Cu 2+ металлической платины, так и био­логических - ферментов, например каталазы, имеет общий вид:

2Н 2 0 2 -> 2Н 2 0 + О э т. е. является бимолекулярной.

Зависимость скорости реакции от концентрации. Кинетические уравнения реакций первого, второго и нулевого порядков. Экспериментальные методы определения скорости и константы скорости реакций.






Зависимость скорости реакции от температуры. Правило Вант - Гоффа. Температурный коэффициент скорости реакции и его особенности для биохимических процессов.


γ-температурный коэффициент скорости реакции.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.


15.Понятие о теории активных соударении. Энергетический профиль реакции; энергия активации; уравнение Аррениуса. Роль стерического фактора. Понятие о теории переходного состояния.




Взаимосвязь константы скорости, энергии активации и температуры описывается уравнением Аррениуса: k T = k 0 *Ae~ E / RT , где к т и к 0 - константы скоростей при температуре Т и Т э е - основание натурального логарифма, А -стерический фактор.

Стерический фактор А определяет вероятность столкновения двух реагирую­щих частиц в активном центре молекулы. Этот фактор имеет особо важное значение для биохимических реакций с биополимерами. При кислотно-основных реакциях Н + -ион должен вступить в реакцию с концевой карбоксильной группой - СОО". Однако не всякое столкновение Н + -иона с молекулой белка приведет к данной реакции. Эффективны будут только те столкновения, которые непосредственно осуществляются в некоторых точках макромолекул, называемых активными центрами.

Из уравнения Аррениуса следует, что константа скорости тем выше, чем меньше величина энергии активации Е и выше температура Т процесса.

Задача № 1. Взаимодействие со свободным кислородом приводит к образованию высокотоксичного диоксида азота / /, хотя эта реакция в физиологических условиях протекает медленно и при низких концентрациях не играет существенной роли в токсическом повреждении клеток, но, однако патогенные эффекты резко возрастают при его гиперпродукции. Определите, во сколько раз возрастает скорость взаимодействия оксида азота (II) c кислородом при увеличении давления в смеси исходных газов в два раза, если скорость реакции описывается уравнением ?

Решение .

1. Увеличение давления вдвое равноценно двойному увеличению концентрации (с ) и . Поэтому скорости взаимодействия, соответствующие и ,примут в соответствии с законом действия масс выражения: и

Ответ . Скорость реакции увеличится в 8 раз.

Задача № 2. Считается, что концентрация хлора (зеленоватый газ с резким запахом) в воздухе выше 25 ppm опасна для жизни и здоровья, но, имеются данные, что если пациент восстановился после острого тяжелого отравления этим газом, то остаточных явлений не наблюдается. Определите, как изменится скорость реакции: , протекающей в газовой фазе, если увеличить в 3-и раза: концентрацию , концентрацию , 3) давление / /?

Решение .

1. Если обозначить концентрации и соответственно через и , то выражение для скорости реакции примет вид: .

2. После увеличения концентраций в 3-и раза они будут равны для и для . Поэтому выражение для скорости реакции примет вид: 1) 2)

3. Увеличение давления во столько же раз увеличивает концентрацию газообразных реагирующих веществ, поэтому

4. Увеличение скорости реакции по отношению к первоначальной определяется отношением соответственно: 1) , 2) , 3) .

Ответ . Скорость реакции увеличится в: 1) , 2) , 3) раза.

Задача № 3 . Как изменяется скорость взаимодействия исходных веществ при изменении температуры с до , если температурный коэффициент реакции равен 2,5?

Решение .

1. Температурный коэффициент показывает, как меняется скорость реакции при изменении температуры на каждые (правило Вант-Гоффа): .

2. Если же изменение температуры: , то с учетом того, что , получаем: . Отсюда, .

3. По таблице антилогарифмов находим: .

Ответ . При изменении температуры (т.е. при повышении) скорость увеличится в 67,7 раз.

Задача № 4 . Вычислите температурный коэффициент скорости реакции, зная, что с повышением температуры на скорость возрастает в 128 раз.

Решение .

1. Зависимость скорости химической реакции от температуры выражается эмпирическим правилом Вант-Гоффа:

.Решая уравнение относительно , находим: , . Следовательно, =2

Ответ . =2.

Задача № 5 . Для одной из реакций были определены две константы скорости: при 0,00670 и при 0,06857. Определите константу скорости этой же реакции при .

Решение .

1. По двум значениям констант скорости реакции, используя уравнение Аррениуса, определяем величину энергии активации реакции: . Для данного случая: Отсюда: Дж/моль.

2. Рассчитаем константу скорости реакции при , используя в расчетах константу скорости при и уравнение Аррениуса: . Для данного случая: и с учетом того, что: , получаем: . Следовательно,

Ответ .

Вычисление константы химического равновесия и определение направление смещения равновесия по принципу Ле-Шателье .

Задача №6. Двуокись углерода / / в отличие от моноксида углерода / / не нарушает физиологических функций и анатомической целостности живого организма и удушающий эффект их обусловлен лишь присутствием в высокой концентрации и снижением процентного содержания кислорода во вдыхаемом воздухе. Чему равна константа равновесия реакции / /: при температуре , выраженная через: а) парциальные давления реагирующих веществ ; б) их молярные концентрации , зная, что состав равновесной смеси выражается объемными долями: , и , а общее давление в системе составляет Па?

Решение .

1. Парциальное давление газа равно общему давлению, умноженному на объемную долю газа в смеси, поэтому:

2. Подставляя эти значения в выражение константы равновесия, получим:

3. Взаимосвязь между и устанавливается на основе уравнения Менделеева ­ Клапейрона для идеальных газов и выражается равенством: , где – разность между числом молей газообразных продуктов реакции и газообразных исходных веществ. Для данной реакции: . Тогда: .

Ответ . Па. .

Задача № 7. В каком направлении сместится равновесие в следующих реакциях:

3. ;

а) при повышении температуры, б) при понижении давления, в) при увеличении концентрации водорода?

Решение .

1. Химическое равновесие в системе устанавливается при постоянстве внешних параметров ( и др.). Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая (вправо) или обратная реакции (влево). Влияние различных факторов на смещение равновесия отражено в принципе Ле Шателье.

2. Рассмотрим влияние на вышеуказанные реакции всех 3-х факторов, влияющих на химическое равновесие.

а) При повышении температуры равновесие смещается в сторону эндотермической реакции, т.е. реакции, идущей с поглощением тепла . 1-я и 3-я реакции – экзотермические / /, следовательно, при повышении температуры равновесие сместится в сторону обратной реакции, а во 2-ой реакции / / – в сторону прямой реакции.

б) При понижении давления равновесие смещается в сторону возрастания числа молей газов, т.е. в сторону большего давления . В 1-ой и 3-ей реакциях в левой и правой частях уравнения будет одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во 2-ой реакции в левой части 4 моля газов, в правой – 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

в) При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В 1-ой реакции водород находится в продуктах, и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во 2-ой и 3-ей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону реакции, идущей с расходом водорода.

Ответ .

а) При повышении температуры в реакциях 1 и 3 равновесие будет смещено влево, а в реакции 2 – вправо.

б) На реакции 1 и 3 понижение давления не повлияет, а в реакции 2 – равновесие будет смещено влево.

в) Повышение температуры в реакциях 2 и 3 повлечет за собой смещение равновесия вправо, а в реакции 1 – влево.

1.2. Ситуационные задачи №№ с 7 по 21 для закрепления материала (выполнить в протокольной тетради).

Задача № 8. Как изменится скорость окисления глюкозы в организме при снижении температуры с до , если температурный коэффициент скорости реакции равен 4 ?

Задача № 9 .Используя приближенное правило Вант-Гоффа, вычислить, на сколько нужно повысить температуру, чтобы скорость реакции возросла в 80 раз? Температурный коэффициент скорости принять равным 3.

Задача № 10. Для практической остановки реакции применяют быстрое охлаждение реакционной смеси («замораживание реакции»). Определите, во сколько раз изменится скорость реакции при охлаждении реакционной смеси с 40 до , если температурный коэффициент реакции равен 2,7.

Задача № 11. Изотоп , применяющийся для лечения некоторых опухолей, имеет период полураспада 8,1 суток. Через какое время содержание радиоактивного йода в организме пациента уменьшится в 5 раз?

Задача № 12. Гидролиз некоторого синтетического гормона (фармпрепарата) является реакцией первого порядка с константой скорости 0,25 (). Как изменится концентрация этого гормона через 2 месяца?

Задача №13. Период полураспада радиоактивного равен 5600 лет. В живом организме за счет обмена веществ поддерживается постоянное количество . В останках мамонта содержание составило от исходного. Определите, когда жил мамонт?

Задача № 14. Период полураспада инсектицида (ядохимиката, применяемого для борьбы с насекомыми) составляет 6 месяцев. Некоторое количество его попало в водоем, где установилась концентрация моль/л. За какое время концентрация инсектицида понизится до уровня моль/л?

Задача №15. Жиры и углеводы окисляются с заметной скоростью при температуре 450 - 500°, а в живых организмах - при температуре 36 - 40°. В чем причина резкого уменьшения температуры, необходимой для окисления?

Задача № 16. Пероксид водорода разлагается в водных растворах на кислород и воду. Реакцию ускоряют как неорганический катализатор (ион ), так и биоорганический (фермент каталаза). Энергия активации реакции в отсутствие катализатора 75,4 кДж/моль. Ион снижает ее до 42 кДж/моль, а фермент каталаза - до 2 кДж/моль. Рассчитайте соотношение скоростей реакции в отсутствие катализатора в случаях присутствия и каталазы. Какой вывод можно сделать об активности фермента? Реакция протекает при температуре 27 °С.

Задача № 17 Константа скорости распада пенициллина при рации Дж/моль.

1.3. Контрольные вопросы

1. Объясните, что означают термины: скорость реакции, константа скорости?

2. Как выражается средняя и истинная скорость химических реакций?

3. Почему о скорости химических реакций имеет смысл говорить только для данного момента времени?

4. Сформулируйте определение обратимой и необратимой реакции.

5. Дайте определение закона действующих масс. В равенствах, выражающих этот закон, отражена ли зависимость скорости реакции от природы реагирующих веществ?

6. Как зависит скорость реакции от температуры? Что называется энергией активации? Что такое активные молекулы?

7. От каких факторов зависит скорость гомогенной и гетерогенной реакции? Приведите примеры.

8. Что такое порядок и молекулярность химических реакций? В каких случаях они не совпадают?

9. Какие вещества называются катализаторами? Каков механизм ускоряющего действия катализатора?

10. В чем заключается понятие «отравление катализатора»? Какие вещества называют ингибиторами?

11. Что называется химическим равновесием? Почему оно называется динамическим? Какие концентрации реагирующих веществ называют равновесными?

12. Что называют константой химического равновесия? Зависит ли она от природы реагирующих веществ, их концентрации, температуры, давления? Каковы особенности математической записи для константы равновесия в гетерогенных системах?

13. Что такое фармакокинетика лекарств?

14. Процессы, происходящие с лекарственным препаратом в организме, количественно характеризуются рядом фармакокинетических праметров. Приведите основные из них.

С повышением температуры скорость химического процесса обычно увеличивается. В 1879 г. голландский ученый Я. Вант-Гофф сформулировал эмпирическое правило: с повышением температуры на 10 К скорость большинства хими­ческих реакций возрастает в 2-4 раза.

Математическая запись правила Я. Вант-Гоффа:

γ 10 = (k т+10)/k т , где k т - константа скорости реакции при температуре Т; k т+10 - константа скорости реакции при температуре Т+10; γ 10 - температурный коэффициент Вант-Гоффа. Его значение колеблется от 2 до 4. Для биохимических процессов γ 10 изменяется в пределах от 7 до 10.

Все биологические процессы протекают в определенном интер­вале температур: 45-50°С. Оптимальной температура является 36-40°С. В организме теплокровных животных эта температура поддерживается постоянной благодаря терморегуляции соответству­ющей биосистемы. При изучении биосистем пользуются темпера­турными коэффициентами γ 2 , γ 3 , γ 5 . Для сравнения их приводят к γ 10 .

Зависимость скорости реакции от температуры, в соответствии с правилом Вант-Гоффа, можно представить уравнением:

V 2 /V 1 = γ ((T 2 -T 1)/10)

Энергия активации. Значительное возрастание скорости реакции при повышении температуры нельзя объяснить только увеличением числа столкно­вений между частицами реагирующих веществ, т.к., в соответ­ствии с кинетической теорией газов, с возрастанием температуры количество столкновений увеличивается в незначительной степени. Увеличение скорости реакции с повышением температуры объяс­няется тем, что химическая реакция происходит не при любом столк­новении частичек реагирующих веществ, а только при встрече ак­тивных частиц, обладающих в момент столкновения необходимым избытком энергии.

Энергия, необходимая для превращения неактивных частичек в ак­тивные, называется энергией активации (Eа) . Энергия активации – избыточная, по сравнению со средним значе­нием, энергия, необходимая для вступления реагирующих веществ в реакцию при их столкновении. Энергию активации измеряют в килоджоулях на моль (кДж/моль). Обычно Е составляет от 40 до 200 кДж/моль.



Энергетическая диаграмма экзотермической и эндотермической реакции представлена на рис. 2.3. Для любого химического процесса можно выделить начальное, промежуточное и конечное состояния. На вершине энергетического барьера реагенты находятся в промежуточном состоянии, которое называется активированным комплексом, или переходным состоянием. Разность между энергией активированного комплекса и начальной энергией реагентов равна Еа, а разность между энергией продуктов реакции и исходных веществ (реагентов) - ΔН, тепловому эффекту реакции. Энергия активации, в отличие от ΔН, всегда величина положительная. Для экзотермической реакции (рис. 2.3, а) продукты расположены на более низком энергетическом уровне, чем реагенты (Еа < ΔН).


Рис. 2.3. Энергетические диаграммы реакций: А – экзотермической Б - эндотермической
А Б

Еа является основным фактором, определяющим скорость реакции: если Еа > 120 кДж/моль (выше энергетический барьер, меньше активных частиц в системе), реакция идет медленно; и наоборот, если Еа < 40 кДж/моль, реакция осуществляется с большой скоростью.

Для реакций с участием сложных биомолекул следует учитывать тот факт, что в активированном комплексе, образовавшемся при соударении частиц, молекулы должны быть ориентированы в пространстве определенным образом, так как трансформации подвергается лишь реагирующий участок молекулы, небольшой по от­ношению к ее размеру.

Если известны константы скорости k 1 и k 2 при температурах Т 1 и Т 2 , можно рассчитать значение Еа.

В биохимических процессах энергия активации в 2-3 раза мень­ше, чем в неорганических. Вместе с тем Еа реакции с участием чу­жеродных веществ, ксенобиотиков, значительно превышает Еа обыч­ных биохимических процессов. Этот факт является естественной биозащитой системы от влияния чужеродных веществ, т.е. есте­ственные для организма реакции происходят в благоприятных усло­виях с низкой Еа, а для чужеродных реакций Еа высокая. Это явля­ется генным барьером, характеризующим одну из главных особен­ностей протекания биохимических процессов.

Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции, числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10°С. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций находится в пределах от 2... 4.

Температурный коэффициент определяют в соответствии с так называемым «правилом Вант-Гоффа», которое математически выражается уравнением

v 2 /v 1 = g (T 2 – T 1)/10 ,

где v 1 и v 2 скорости реакции при температурах Т 1 и Т 2 ; g - температурный коэффициент реакции.

Так, например, если g = 2, то при Т 2 – Т 1 = 50°С v 2 /v 1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т 1 и Т 2 , а только от их разности.

Энергия активации, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах - от нескольких до ~ 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным). Как статистическую величину Э. а. следует отличать от пороговой энергии, или энергетического барьера, - минимальной энергии, которой должна обладать одна пара сталкивающихся частиц для протекания данной элементарной реакции.

Аррениуса уравнение , температурная зависимость константы скорости к элементарной хим. реакции:

где A-предэкспоненциальныи множитель (размерность совпадает с размерностью к), Е а -энергия активации, обычно принимающая положит. значения, Т-абс. температура, k-постоянная Больцмана. Принято приводить Е а в расчете не на одну молекулу. а на число частиц N A = 6,02*10 23 (постоянная Авогадро) и выражать в кДж/моль; в этих случаях в уравнении Аррениуса величину k заменяют газовой постоянной R. График зависимости 1nк от 1/kT (аррениусов график) – прямая линия, отрицательный наклон которой определяется энергией активации Е а и характеризует положит. температурную зависимость к.

Катализа́тор - химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции . Количество катализатора, в отличие от других реагентов, после реакции не изменяется. Важно понимать, что катализатор участвует в реакции. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (до миллиона раз) [источник? ] повторяется.

Катализаторы подразделяются на гомогенные и гетерогенные . Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный - образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества . Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO .

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных , существуют катализаторы окисления-восстановления ; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 +MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Диспе́рсная систе́ма - это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).

Обычно дисперсные системы - это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы. Сочетания трех видов агрегатного состояния позволяют выделить девять видов дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду, например для системы «газ в жидкости» принято обозначение Г/Ж.

Коллоидные растворы. Коллоидное состояние характерно для многих веществ, если их частицы имеют размер от 1 до 500 нм. Легко показать, что суммарная поверхность этих частиц огромна. Если предположить, что частицы имеют форму шара с диаметром 10 нм, то при общем объеме этих частиц 1 см 3 они будут иметь

площадь поверхности порядка 10 м2. Как указывалось ранее поверхностный слой характеризуется поверхностной энергией и способностью адсорбировать те или иные частицы, в том числе ионы

из раствора. Характерной особенностью коллоидных частиц является наличие на их поверхности заряда, обусловленного избирательной адсорбцией ионов. Коллоидная частица имеет сложное строение. Она включает в себя ядро, адсорбированные ионы, противоины и растворитель. Существуют лиофильные (гид.

роф ильные) коллоиды, в которых растворитель взаимодейстиует с ядрами частиц, илнофобные (гидрофобные) коллоиды, в которых растворитель не взаимодействует с ядрами

частиц. Растворитель входит в состав гидрофобных частиц лишь как сольватная оболочка адсорбированных ионов или при наличии стабилизаторов (ПАВ), имеющих лиофобную и лиофильные части.

Приведем несколько примеров коллоидных частиц:

Как. видно, ядро состоит из электронейтрального агрегата час­тиц с адсорбированными ионами элементов, входящих в состав ядра (в данных примерах ионами Аg + , НS-, Fе 3+). Коллоидная час-шца кроме ядра имеет противоионы и молекулы растворителя. Ад­сорбированные ионы и противоионы с растворителем образуют ад­сорбированный слой. Суммарно заряд частицы равен разности за­рядов адсороированных ионов и противоионов. Вокруг частиц на­ходится д и ф ф у з н ы й с л о и и о н о в, заряд которых равен иряду коллоидной частицы. Коллоидная частица и диффузный слои образуют электронейтральную мицеллу

Мицеллы (уменьшительное от лат. mica - частица, крупинка) - частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

Коагуляция - разделение коллоидного раствора на две фазы – растворитель и студнеобразную массу, или загустевание раствора в результате укрупнения частиц растворенного вещества

Пептизация - процесс перехода коллоидного осадка или геля в коллоидный раствор под действием жидкости или добавленных к ней веществ, хорошо адсорбирующихся осадком или гелем, называемых в этом случае пептизаторами (например, пептизация жиров под действием желчи).
Пептизация - разъединение агрегатов частиц гелей (студней) или рыхлых осадков под влиянием определенных веществ - пептизаторов после коагуляции коллоидных растворов. В результате пептизации осадок (или гель) переходит во взвешенное состояние.

РАСТВОРЫ, однофазные системы, состоящие из двух или более компонентов. По своему агрегатному состоянию растворы могут быть твердыми, жидкими или газообразными.

Растворимость , способность вещества образовывать с другим веществом (или веществами) гомогенные смеси с дисперсным распределением компонентов (см. Растворы). Обычно растворителем считают вещество, которое в чистом виде существует в том же агрегатном состоянии, что и образовавшийся раствор. Если до растворения оба вещества находились в одном и том же агрегатном состоянии, растворителем считается вещество, присутствующее в смеси в существенно большем кол-ве.

Растворимость определяется физическим и химическим сродством молекул растворителя и растворяемого вещества, соотношением энергий взаимодействием однородных и разнородных компонентов раствора. Как правило, хорошо растворимы друг в друге подобные по физ. и хим. свойствам вещества (эмпирич. правило "подобное растворяется в подобном"). В частности, вещества, состоящие из полярных молекул, и вещества с ионным типом связи хорошо раств. в полярных растворителях (воде, этаноле, жидком аммиаке), а неполярные вещества хорошо раств. в неполярных растворителях (бензоле, сероуглероде).

Растворимость данного вещества зависит от температуры и давления соответствует общему принципу смещения равновесий (см. Ле Шателье-Брауна принцип). Концентрация насыщенного раствора при данных условиях численно определяет Р. вещества в данном растворителе и также наз. растворимостью. Пересыщенные растворы содержат большее кол-во растворенного вещества, чем это соответствует его растворимости, существование пересыщенных растворов обусловлено кинетич. затруднениями кристаллизации (см. Зарождение новой фазы). Для характеристики растворимости малорастворимых веществ используют произведение активностей ПА (для растворов, близких по своим свойствам к идеальному - произведение растворимости ПР).



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: