Описанный угол окружности. Вписанный угол, теория и задачи

В этой статье я расскажу как решать задачи, в которых используются .

Сначала, как обычно, вспомним определения и теоремы, которые нужно знать, чтобы успешно решать задачи на .

1. Вписанный угол - это угол, вершина которого лежит на окружности, а его стороны пересекают окружность:

2. Центральный угол - это угол, вершина которого совпадает с центром окружности:

Градусная величина дуги окружности измеряется величиной центрального угла, который на нее опирается.

В данном случае градусная величина дуги АС равна величине угла АОС.

3. Если вписанный и центральный угол опираются на одну дугу, то величина вписанного угла в два раза меньше центрального :

4. Все вписанные углы, которые опираются на одну дугу, равны между собой:

5. Вписанный угол, опирающийся на диаметр, равен 90°:

Решим несколько задач.

1 . Задание B7 (№ 27887)

Найдем величину центрального угла, который опирается на ту же дугу:

Очевидно, что величина угла АОС равна 90°, следовательно, угол АВС равен 45°

Ответ: 45°

2 .Задание B7 (№ 27888)

Найдите величину угла ABC. Ответ дайте в градусах.

Очевидно, что угол АОС равен 270°, тогда угол АВС равен 135°.

Ответ: 135°

3 . Задание B7 (№ 27890)

Найдите градусную величину дуги AC окружности, на которую опирается угол ABC. Ответ дайте в градусах.

Найдем величину центрального угла, который опирается на дугу АС:

Величина угла АОС равна 45°, следовательно, градусная мера дуги АС равна 45°.

Ответ: 45°.

4 . Задание B7 (№ 27885)

Найдите угол ACB, если вписанные углы ADB и DAE опираются на дуги окружности, градусные величины которых равны соответственно и . Ответ дайте в градусах.

Угол ADB опирается на дугу АВ, следовательно, величина центрального угла АОВ равна 118°, следовательно, угол BDA равен 59°, и смежный ему угол ADC равен 180°-59°=121°

Аналогично, угол DOE равен 38° и соответствующий вписанный угол DAE равен 19°.

Рассмотрим треугольник ADC:

Сумма углов треугольника равна 180°.

Величина угла АСВ равна 180°- (121°+19°)=40°

Ответ: 40°

5 . Задание B7 (№ 27872)

Стороны четырехугольника ABCD AB, BC, CD и AD стягивают дуги описанной окружности, градусные величины которых равны соответственно , , и . Найдите угол B этого четырехугольника. Ответ дайте в градусах.

Угол В опирается на дугу АDC, величина которой равна сумме величин дуг AD и CD, то есть 71°+145°=216°

Вписанный угол В равен половине величины дуги ADC, то есть 108°

Ответ: 108°

6 . Задание B7 (№ 27873)

Точки A, B, C, D, расположенные на окружности, делят эту окружность на четыре дуги AB, BC, CD и AD, градусные величины которых относятся соответственно как 4:2:3:6 . Найдите угол A четырехугольника ABCD. Ответ дайте в градусах.

(см. чертеж предыдущей задачи)

Так как у нас дано отношение величин дуг, введем единичный элемент х. Тогда величины каждой дуги будут выражаться таким соотношением:

АВ=4х, ВС=2х, СD=3х, AD=6x. Все дуги образуют окружность, то есть их сумма равна 360°.

4х+2х+3х+6х=360°, отсюда х=24°.

Угол А опирается на дуги ВС и CD, которые в сумме имеют величину 5х=120°.

Следовательно, угол А равен 60°

Ответ: 60°

7 . Задание B7 (№ 27874)

Четырехугольник ABCD вписан в окружность. Угол ABC равен , угол CAD

Сегодня мы рассмотрим очередной тип задач 6 — на этот раз с окружностью. Многие ученики не любят их и считают сложными. И совершенно напрасно, поскольку такие задачи решаются элементарно , если знать некоторые теоремы. Или не решаются вообще, если их не знать.

Прежде чем говорить об основных свойствах, позвольте напомнить определение:

Вписанный угол — тот, у которого вершина лежит на самой окружности, а стороны высекают на этой окружности хорду.

Центральный угол — это любой угол с вершиной в центре окружности. Его стороны тоже пересекают эту окружность и высекают на ней хорду.

Итак, понятия вписанного и центрального угла неразрывно связаны с окружностью и хордами внутри нее. А теперь — основное утверждение:

Теорема. Центральный угол всегда в два раза больше вписанного, опирающегося на ту же самую дугу.

Несмотря на простоту утверждения, существует целый класс задач 6, которые решаются с помощью него — и никак иначе.

Задача. Найдите острый вписанный угол, опирающийся на хорду, равную радиусу окружности.

Пусть AB — рассматриваемая хорда, O — центр окружности. Дополнительное построение: OA и OB — радиусы окружности. Получим:

Рассмотрим треугольник ABO . В нем AB = OA = OB — все стороны равны радиусу окружности. Поэтому треугольник ABO — равносторонний, и все углы в нем по 60°.

Пусть M — вершина вписанного угла. Поскольку углы O и M опираются на одну и ту же дугу AB , вписанный угол M в 2 раза меньше центрального угла O . Имеем:

M = O : 2 = 60: 2 = 30

Задача. Центральный угол на 36° больше вписанного угла, опирающегося на ту же дугу окружности. Найдите вписанный угол.

Введем обозначения:

  1. AB — хорда окружности;
  2. Точка O — центр окружности, поэтому угол AOB — центральный;
  3. Точка C — вершина вписанного угла ACB .

Поскольку мы ищем вписанный угол ACB , обозначим его ACB = x . Тогда центральный угол AOB равен x + 36. С другой стороны, центральный угол в 2 раза больше вписанного. Имеем:

AOB = 2 · ACB ;
x + 36 = 2 · x ;
x = 36.

Вот мы и нашли вписанный угол AOB — он равен 36°.

Окружность — это угол в 360°

Прочитав подзаголовок, знающие читатели, наверное, сейчас скажут: «Фу!» И действительно, сравнивать окружность с углом не совсем корректно. Чтобы понять, о чем речь, взгляните на классическую тригонометрическую окружность:

К чему эта картинка? А к тому, что полный оборот — это угол в 360 градусов. И если разделить его, скажем, на 20 равных частей, то размер каждой из них будет 360: 20 = 18 градусов. Именно это и требуется для решения задачи B8.

Точки A , B и C лежат на окружности и делят ее на три дуги, градусные меры которых относятся как 1: 3: 5. Найдите больший угол треугольника ABC .

Для начала найдем градусную меру каждой дуги. Пусть меньшая из них равна x . На рисунке эта дуга обозначена AB . Тогда остальные дуги — BC и AC — можно выразить через AB : дуга BC = 3x ; AC = 5x . В сумме эти дуги дают 360 градусов:

AB + BC + AC = 360;
x + 3x + 5x = 360;
9x = 360;
x = 40.

Теперь рассмотрим большую дугу AC , которая не содержит точку B . Эта дуга, как и соответствующий центральный угол AOC , равна 5x = 5 · 40 = 200 градусов.

Угол ABC — самый большой из всех углов треугольника. Это вписанный угол, опирающийся на ту же дугу, что и центральный угол AOC . Значит, угол ABC в 2 раза меньше AOC . Имеем:

ABC = AOC : 2 = 200: 2 = 100

Это и будет градусная мера большего угла в треугольнике ABC .

Окружность, описанная вокруг прямоугольного треугольника

Эту теорему многие забывают. А зря, ведь некоторые задачи B8 без нее вообще не решаются. Точнее, решаются, но с таким объемом вычислений, что вы скорее уснете, чем дойдете до ответа.

Теорема. Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.

Что следует из этой теоремы?

  1. Середина гипотенузы равноудалена от всех вершин треугольника. Это прямое следствие теоремы;
  2. Медиана, проведенная к гипотенузе, делит исходный треугольник на два равнобедренных. Как раз это и требуется для решения задачи B8.

В треугольнике ABC провели медиану CD . Угол C равен 90°, а угол B — 60°. Найдите угол ACD .

Поскольку угол C равен 90°, треугольник ABC — прямоугольный. Получается, что CD — медиана, проведенная к гипотенузе. Значит, треугольники ADC и BDC — равнобедренные.

В частности, рассмотрим треугольник ADC . В нем AD = CD . Но в равнобедренном треугольнике углы при основании равны — см. «Задача B8: отрезки и углы в треугольниках ». Поэтому искомый угол ACD = A .

Итак, осталось выяснить, чему равен угол A . Для этого снова обратимся к исходному треугольнику ABC . Обозначим угол A = x . Поскольку сумма углов в любом треугольнике равна 180°, имеем:

A + B + BCA = 180;
x + 60 + 90 = 180;
x = 30.

Разумеется, последнюю задачу можно решить по-другому. Например, легко доказать, что треугольник BCD — не просто равнобедренный, а равносторонний. Значит, угол BCD равен 60 градусов. Отсюда угол ACD равен 90 − 60 = 30 градусов. Как видите, можно использовать разные равнобедренные треугольники, но ответ всегда будет один и тот же.

Это угол, сформированный двумя хордами , берущими начало в одной точки окружности. О вписанном угле говорят, что он опирается на дугу, заключенную между его сторонами.

Вписанный угол равен половине дуги, на которую он опирается.

Говоря другими словами, вписанный угол включает в себе столько угловых градусов, минут и секунд, сколько дуговых градусов , минут и секунд заключено в половине дуги, на которую он опирается. Для обоснования проанализируем три случая:

Первый случай:

Центр O расположен на стороне вписанного угла ABС. Прочертив радиус AO, мы получим ΔABO, в нем OA = OB (как радиусы) и, соответственно, ∠ABO = ∠BAO. По отношению к этому треугольнику , угол AOС - внешний. И значит, он равен сумме углов ABO и BAO, или равен двойному углу ABO. Значит ∠ABO равен половине центрального угла AOС. Но этот угол измеряется дугой AC. То есть, вписанный угол ABС измеряется половиной дуги AC.

Второй случай:

Центр O расположен между сторонами вписанного угла ABС.Начертив диаметр BD, мы поделим угол ABС на два угла, из которых, по установленному в первом случае, один измеряется половиной дуги AD, а другой половиной дуги СD. И соответственно угол ABС измеряется (AD+DС) /2, т.е. 1 / 2 AC.

Третий случай:

Центр O расположен вне вписанного угла ABС. Начертив диаметр BD, мы будем иметь:∠ABС = ∠ABD - ∠CBD. Но углы ABD и CBD измеряются, на основании обоснованного ранее половинами дуг AD и СD. И так как ∠ABС измеряется (AD-СD)/2, то есть половиной дуги AC.

Следствие 1. Любые , опирающиеся на одну и ту же дугу одинаковы, то есть равны между собой. Поскольку каждый из них измеряется половиной одной и той же дуги .

Следствие 2. Вписанный угол , опирающийся на диаметр - прямой угол . Поскольку каждый такой угол измеряется половиной полуокружности и, соответственно, содержит 90°.

Инструкция

Если известны радиус (R) круга и длина дуги (L), соответствующая искомому центральному углу (θ), рассчитать его можно как в градусах, так и в радианах. Полная определяется формулой 2*π*R и соответствует центральному углу в 360° или двум числам Пи, если вместо градусов использовать радианы. Поэтому исходите из пропорции 2*π*R/L = 360°/θ = 2*π/θ. Выразите из нее центральный угол в радианах θ = 2*π/(2*π*R/L) = L/R или градусах θ = 360°/(2*π*R/L) = 180*L/(π*R) и рассчитайте по полученной формуле.

По длине хорды (m), соединяющей точки , которые определяет центральный угол (θ), его величину тоже можно рассчитать, если известен радиус (R) круга. Для этого рассмотрите треугольник, образованный двумя радиусами и . Это равнобедренный треугольник, все известны, а найти нужно угол, лежащий напротив основания. Синус его половины равен отношению длины основания - хорды - к удвоенной длине боковой стороны - радиуса. Поэтому используйте для вычислений обратную синусу функцию - арксинус: θ = 2*arcsin(½*m/R).

Центральный угол может быть задан и в долях оборота или от развернутого угла. Например, если нужно найти центральный угол, соответствующей четверти полного оборота, разделите 360° на четверку: θ = 360°/4 = 90°. Эта же величина в радианах должна быть 2*π/4 ≈ 3,14/2 ≈ 1,57. Развернутый угол равен половине полного оборота, поэтому, например, центральный угол, соответствующий четверти от него будет вдвое меньше рассчитанных выше значений как в градусах, так и в радианах.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

Одной из распространенных геометрических задач является вычисление площади кругового сегмента - части круга, ограниченной хордой и соответствующей хорде дугой окружности.

Площадь кругового сегмента равна разности площади соответствующего кругового сектора и площади треугольника, образованного радиусами соответствующего сегменту сектора и хордой, ограничивающей сегмент.

Пример 1

Длина хорды, стягивающей окружность равна величине а. Градусная мера дуги, соответствующей хорде, равна 60°. Найти площадь кругового сегмента.

Решение

Треугольник, образованный двумя радиусами и хордой, является равнобедренным, поэтому высота, проведенная из вершины центрального угла на сторону треугольника, образованную хордой, будет также являться биссектрисой центрального угла, поделив его пополам и медианой, поделив пополам хорду. Зная, что синус угла в равен отношению противолежащего катета к гипотенузе, можно вычислить величину радиуса:

Sin 30°= a/2:R = 1/2;

Sc = πR²/360°*60° = πa²/6

Площадь соответствующего сектору треугольника вычисляется следующим образом:

S▲=1/2*ah, где h - высота, проведенная из вершины центрального угла к хорде. По теореме Пифагора h=√(R²-a²/4)= √3*a/2.

Соответственно, S▲=√3/4*a².

Площадь сегмента, вычисляемая как Sсег = Sc - S▲, равна:

Sсег = πa²/6 - √3/4*a²

Подставив числовое значение вместо величины a, можно с легкостью вычислить числовое значение площади сегмента.

Пример 2

Радиус окружности равен величине а. Градусная мера дуги, соответствующей сегменту, равна 60°. Найти площадь кругового сегмента.

Решение:

Площадь сектора, соответствующего заданному углу можно вычислить по следующей формуле:

Понятие вписанного и центрально угла

Введем сначала понятие центрального угла.

Замечание 1

Отметим, что градусная мера центрального угла равна градусной мере дуги, на которую он опирается .

Введем теперь понятие вписанного угла.

Определение 2

Угол, вершина которого лежит на окружности и стороны которого пересекают эту же окружность, называется вписанным углом (рис. 2).

Рисунок 2. Вписанный угол

Теорема о вписанном угле

Теорема 1

Градусная мера вписанного угла равняется половине градусной меры дуги, на которую он опирается.

Доказательство.

Пусть нам дана окружность с центром в точке $O$. Обозначим вписанный угол $ACB$ (рис. 2). Возможны три следующих случая:

  • Луч $CO$ совпадает с какой либо стороной угла. Пусть это будет сторона $CB$ (рис. 3).

Рисунок 3.

В этом случае дуга $AB$ меньше ${180}^{{}^\circ }$, следовательно, центральный угол $AOB$ равен дуге $AB$. Так как $AO=OC=r$, то треугольник $AOC$ равнобедренный. Значит, углы при основании $CAO$ и $ACO$ равны между собой. По теореме о внешнем угле треугольника, имеем:

  • Луч $CO$ делит внутренний угол на два угла. Пусть он пересекает окружность в точке $D$ (рис. 4).

Рисунок 4.

Получаем

  • Луч $CO$ не делит внутренний угол на два угла и не совпадает ни с одной его стороной (Рис. 5).

Рисунок 5.

Рассмотрим отдельно углы $ACD$ и $DCB$. По доказанному в пункте 1, получим

Получаем

Теорема доказана.

Приведем следствия из данной теоремы.

Следствие 1: Вписанные углы, которые опираются на одну и туже дугу равны между собой.

Следствие 2: Вписанный угол, который опирается на диаметр -- прямой.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: