Удельное вращение. Определение удельной постоянной вращения и концентрации сахарного раствора Удельное вращение формула

Поляриметрия - это оптический метод исследования, основанный на способности оптически активных соединений вращать плоскость колебания линейно поляризованного света (см. Изомерия).

Атомы и молекулы светящихся тел излучают электромагнитные волны. При полной неупорядоченности в расположении этих частиц тела испускают так называемый естественный свет, в котором колебание векторов напряженности электрического (или магнитного) поля происходит во всех плоскостях, проходящих через направление распространения световой волны. Упорядоченность в направлении колебаний полей называется поляризацией света. Такой свет, в котором колебания напряженности электрических (магнитных) полей происходят в одной плоскости, называется плоско поляризованным светом, а плоскость, в которой колеблется напряженность магнитного поля световых лучей,- плоскостью поляризации. Поляризованный свет можно получить, пропуская естественный свет через поляризующие призмы, изготовляемые из особых кристаллов. К таким кристаллам относятся кристаллы исландского шпата, из которых обычно и готовят поляризующие призмы (призмы Николя). При прохождении поляризованного света через раствор оптически активного вещества происходит вращение плоскости поляризации, но обнаружить его можно только при помощи второй такой же поляризующей призмы (анализатора). Исследование вращения плоскости поляризации используют для изучения строения оптически активных соединений, а также для количественного их определения. Оптическая активность характеризуется величиной удельного вращения [α], т. е. углом поворота плоскости поляризации раствором, содержащим в 1 мл 1 г оптически активного соединения при толщине слоя жидкости в 1 дм.

Удельное вращение рассчитывают по величине вращения раствора данного соединения с известной процентной концентрацией:

[α] = α100/l·C
где α - угол вращения в градусах, C - концентрация в %, l - толщина слоя раствора в дм. Удельное вращение меняется с изменением температуры и длины волны света. Поэтому определение проводят в монохроматическом свете прb определенной температуре. Длина волны и температура помечаются при значениях [а]. Зная из справочных таблиц удельное вращение данного соединения и определив угол вращения раствора этого соединения, легко рассчитать концентрацию:

C = α100/[α]l
Раствор не должен содержать других оптически активных соединений.

Для определения вращения плоскости поляризации применяют оптические приборы-поляриметры. Поляриметр (рис. 1) состоит из двух поляризующих призм: неподвижной - поляризатора и вращаемой - анализатора и трубки с исследуемым раствором. Угол поворота можно определить, устанавливая анализатор на равную освещенность всего поля зрения сначала без раствора, а затем с раствором оптически активного соединения. При этом анализатор надо повернуть на угол, равный углу вращения плоскости поляризации исследуемого раствора. Угол вращения отсчитывают по кругу с делениями (лимбу). Если после установки трубки с раствором а анализатор вращают по часовой стрелке, то говорят о правом (+), если против часовой стрелки - о левом (-) вращении. Для повышения точности поляриметры снабжены дополнительными деталями из кварца. В некоторых поляриметрах выравнивание освещенности после установки раствора и отсчет концентрации оптически активного вещества производится посредством линейного перемещения кварцевого клина. Точность обычных поляриметров 0,05°. Для получения монохроматического света обычно пользуются светофильтрами. Метод поляриметрии широко используется в лабораториях; в клинических лабораториях и лабораториях пищевой промышленности методом поляриметрии пользуются для определения содержания сахаров. Поляриметры, применяемые для определения содержания тростникового сахара, называются сахариметрами (рис. 2).


Рис. 1. Схемы поляриметров различных типов: а - система с двумя пластинками из бикварца; б - полутеневая с николем; в - полутеневая с двумя николями. 1 - поляризатор; 1" и 1" - николи; 2 - пластинка бикварца; 3 - трубка с раствором; 4 - анализатор (справа - схемы освещенности полей поляриметров).


Рис. 2. Клиновой поляриметр-сахариметр СОК (схема): 1 - осветитель; 2 - светофильтр; 3 - диафрагма; 4 - линза; 5 - николь; 6-трубка для исследуемого раствора; 7 - неподвижный кварцевый клин; 8 - подвижный кварцевый клин; 9 - анализатор; 10-окуляр; 11 - крышка; 12 - винт; 13 - лупа.

2. До включения прибора в сеть установите минимальную чувствительность прибора, вращая ручку «Установка 100» против часовой стрелки до упора.

3. Проверьте соответствие нулевого положения стрелки микроамперметра, при необходимости отрегулируйте его винтом 7 корректора (рис. 3).

4. Введите зеленый поглотитель «3» рукояткой «Поглотители».

5. Включить прибор в сеть.

6. Откройте крышку 1 фотоэлектроколориметра и достаньте кюветодержатель.

7. Извлеките кювету «Растворитель», заполните ее на 2/3 объема водой и установите на место. Установите кюветодержатель в фотоколориметр. Крышку кюветной камеры не закрывайте.

8. Рукояткой 3 «Кюветы» расположите кювету с растворителем на пути светового потока.

9. Установите нуль по шкале микроамперметра рукояткой 5 «Установка 0».

10. Закройте крышку 1 кюветного отделения и рукояткой 4 «Установка 100» установите стрелку микроамперметра на сотое деление.

11. Откройте крышку 1 кюветной камеры и достаньте кюветодержатель. Извлеките пустую кювету, заполните ее на 2/3 объема исследуемым раствором наименьшей концентрации и установите на место.

N в таблицу 1.

14. Откройте крышку 1 кюветной камеры и достаньте кюветодержатель. Извлеките кювету с исследуемым раствором и слейте его в баночку с раствором той же концентрации. Протрите кювету, заполните ее на 2/3 объема следующим раствором и установите на место.

15. Поставьте кюветодержатель в фотоколориметр. Рукояткой 3 «Кюветы» расположите кювету с исследуемым раствором на пути светового потока. Закройте крышку кюветной камеры.

16. Произведите отсчет по шкале микроамперметра 6 и запишите N в таблицу 1.

17. Проделайте пункты 14 – 16 с остальными растворами.

18.Проведите еще две серии опытов по пунктам 14 – 16 со всеми растворами, начиная с раствора наименьшей концентрации. Не забудьте слить последний раствор.

19.Выключите прибор из сети.

Обработка результатов измерений

1. По значениям

N для всех опытов определите

Используя

формулу (9). Запишите результаты в таблицу 1.

2. По таблице 2 определите D для всех (см. прим.) и ее сред-

нее значение, результаты занесите в таблицу 1.

Таблица 2

Примечание. В первом столбце таблицы даны значения оптиче-

ской плотности

D через 0,1, а в верхней строке помещены ее сотые

доли. На пересечении строки со столбцом приводятся соответствующие значения коэффициента пропускания. При отыскании значений оптической плотности, соответствующих значениям коэффициентов пропускания, меньших 0,081, сначала увеличьте данный коэффициент пропускания в 10 раз, затем найдите значение оптической плотности, соответствующее полученному коэффициенту пропускания, и к этому значению прибавьте единицу.

3. Рассчитайте для всех значений D ее абсолютную погрешность по формуле D | D ср D изм | , найдите среднее значение D ,

результаты занесите в таблицу 1.

Примечание. Если в результате расчета абсолютной погрешности оптической плотности получается нуль, то примите D 0, 01 .

4. По средним значениям оптической плотности D ср для всех

известных концентраций с учетом абсолютной ее погрешности постройте градуировочный график D f (C ) .

5. Отметьте на графике точку, соответствующую среднему значению оптической плотности раствора неизвестной концентрации.

6. Отметьте на графике интервал средней абсолютной погрешности оптической плотности раствора неизвестной концентрации.

7. Определите по графику значение концентрации раствора C х ,

опустив перпендикуляр на соответствующую координатную ось.

8. Определите по графику абсолютную погрешность концентрации раствора (см. пример на стр. 15).

9. Определите относительную погрешность определения концентрации неизвестного раствора по формуле:

Контрольные вопросы

1. Что называется явлением поглощения света веществом?

2. Что такое интенсивность света? В каких единицах она изме-

3. Каким законом описывается явление поглощения света веществом? Сформулируйте его и запишите математически.

4. В чем заключается физический смысл коэффициента поглощения? В каких единицах он измеряется и как обозначается?

5. Что называется коэффициентом пропускания? В каких единицах он измеряется и как обозначается?

6. Что такое оптическая плотность? В каких единицах она измеряется и как обозначается?

7. Сформулируйте и запишите закон Бера.

8. Сформулируйте и запишите закон Бугера-Ламберта.

9. Изобразите оптическую схему фотоэлектроколориметра и расскажите назначение его основных частей.

10. В чем заключается метод определения концентрации вещества в растворе фотоэлектроколориметром.

Лабораторная работа № 5

ОПРЕДЕЛЕНИЕ КОНЦЕНТРАЦИИ САХАРА В РАСТВОРЕ САХАРИМЕТРОМ

Цель работы: изучить общие закономерности поляризации света; ознакомиться с устройством и принципом работы сахариметра; определить концентрацию сахара в растворе и удельную постоянную вращения сахара.

Оборудование : сахариметр, кюветы с растворами сахара.

Основные теоретические сведения

Световое излучение является частью широкого спектра электромагнитных волн. Электромагнитной волной называется переменное магнитное и электрическое поля, взаимно порождающих друг друга и распространяющаяся в пространстве. Из электромагнитной теории света следует, что световые волны поперечны . В каждой точке на линии распространения такой волны, перпендикулярно направлению еѐ

распространения (поперѐк)

совершают колебания две векторные ха-

рактеристики : напряженность

электрического поля

индукция

E и

магнитного поля B . Векторы E

и B взаимно перпендикулярны между

собой (рис. 1).

Вектор напряженности электрического поля называют световым

вектором , так как фи-

зиологическое,

мическое,

фотоэлектри-

ческое и другие действия

вызываются коле-

человека

Рис. 1. Схема электромагнитной волны

воспринимает

электрическую

ляющую электромагнитной световой волны.

Свет представляет собой суммарное электромагнитное излучение множества атомов источника света. Атомы излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными ко-

Рис. 2. Колебания светового вектора в естественном (а) и поляризованном (б) свете

лебаниями светового вектора. Свет со всевозможными направлениями колебаний светового вектора называется естественным (рис. 2 а ).

Солнце, лампы накаливания, ртутные лампы, лампы дневного света являются источниками естественного света. Свет, в котором направления колебаний светового вектора упорядочены ка- ким-либо образом, называется по-

ляризованным (рис 2 б) . Если ко-

лебания светового вектора происходят только в одной плоскости,

свет называют плоскополяризо-

ванным . Плоскость, в которой происходят колебания светового вектора, называется плоскостью по-

ляризации (рис.3).

Поляризация света происходит при отражении света от поверхности диэлектриков, при преломлении в них, а также при прохождении света через некоторые кристаллы (кварца, турмалина, исландского шпата). Эти вещества, названные поляризаторами (поляроидами ), пропускают колебания, параллельные только одной плоскости (плоскости поляризации), и полностью задерживают колебания, перпендикулярные этой плоскости.

При попадании естественного света на границу диэлектриков (рис. 4) преломленный и отраженные световые волны оказываются частично поляризованными.

Степень поляризации отраженного луча меняется при изменении угла па-

дения. Существует угол

Рис. 3. Поляризованная волна и плоскость поляризации

Рис. 4. Поляризация света при отражении и преломлении

падения, при котором отраженный луч оказывается полностью поляризованным, а преломленный максимально возможно. Этот угол падения называется углом полной поляризации или углом Брюстера α Бр .

Угол Брюстера можно определить по одноименному закону Брюстера : если угол падения равен углу Брюстера, то

отраженный и преломленный лучи взаимно перпендикулярны, при этом тангенс угла полной поляризации равен отношению абсолютного показателя преломления второй среды к абсолютному показателю преломления первой:

Бр n 1

где n 2 и n 1 – абсолютные показатели преломления второй и первой сред соответственно.

Глаз не отличает естественный свет от поляризованного, поэтому поляризованный свет обнаруживается по явлениям, свойственным только ему. Поляризованный свет можно определить при помощи обычного поляризатора. Поляризаторы, предназначенные для исследования поляризованного света, называются анализаторами, т.е. один и тот же поляроид можно использовать и как поляризатор, и как анализатор.

Поляризация света в поляроидах подчиняется закону Малюса: если естественный свет проходит через два поляризующих прибора, плоскости поляризации которых располагаются друг к другу под углом, то интенсивность света, пропущенного такой системой (рис. 5) будет пропорциональна cos2 , при этом в первом поляризаторе свет теряет половину своей интенсивности:

I ест cos 2

I 0 cos2 ,

где I – интенсивность поляризованного света, прошедшего поляризатор и анализатор;

I ест – интенсивность естественного света;

I 0 – интенсивность поляризованного света, прошедшего поляризатор; α – угол между плоскостями поляризации анализатора и поляризатора.

Рис 5. Прохождение света через систему поляризатор-анализатор

Если плоскости поляризации анализатора и поляризатора параллельны (=0, 2), то из закона Малюса следует, что через анализатор проходит свет максимально возможной интенсивности. Если плоскости поляризации анализатора и поляризатора перпендикулярны (= /2, 3 /2), то через анализатор свет проходить не будет совсем.

Интенсивность света не имеет точного определения. Этот термин применяют вместо терминов световой поток, яркость, освещенность и др. в тех случаях, когда несущественно их конкретное содержание, а нужно подчеркнуть лишь большую или меньшую их абсолютную величину. В оптике чаще всего интенсивностью света называют мощность излучения через поверхность единичной площади, т. е. энергию излучения, проходящую за единицу времени через поверхность единичной площади. В этом случае единица интенсивности в СИ: =1 Вт/м2 (ватт на квадратный метр ).

При прохождении поляризованного света через некоторые кристаллы (кварц, киноварь и другие), а так же через растворы сахара, мочевины, белков плоскость колебаний поворачивается на некоторый угол. Это явление называется вращением плоскости колебаний поля-

ризованного света . Вещества, вращающие плоскость поляризации,

называются оптически активными.

Для большинства оптически активных кристаллов обнаружено существование двух модификаций, осуществляющих вращение плоскости поляризации по часовой стрелке (правовращающие) и против (левовращающие) для наблюдателя, смотрящего навстречу лучу.

В растворах угол поворота плоскости поляризации пропорционален толщине раствора и концентрации оптически активного вещества:

0 l C ,

где о – удельная постоянная вращения; l – толщина раствора;

C – концентрация оптически активного вещества.

Физический смысл удельной постоянной вращения заключается в том, что она показывает, на какой угол поворачивает плоскость поляризации оптически активное вещество единичной концентрации при прохождении светом единичной длины. В общем случае она зависит от температуры раствора и от длины волны проходящего через раствор света.

Единица измерения удельной постоянной вращения в СИ: [φ 0 ]=1

рад/м∙% (радиан на метр-процент).

В производстве широко используется Международная сахарная шкала, в которой 100 S=34,62 º угловым. С учетом этого единица измерения удельной постоянной вращения может быть представлена в виде: [φ 0 ]=1 S /м∙% (градус сахарной шкалы на метр-процент ).

Обоснование метода

Явление вращения плоскости колебаний поляризованного света используется для определения концентрации оптически активного вещества в растворах при помощи приборов, называемых поляриметрами . Поляриметры, шкала которых проградуирована в единицах Международной сахарной шкалы, называются сахариметрами .

Определение концентрации растворов сахара при помощи поляриметров и сахариметров применяется при исследованиях в сельском хозяйстве, в лабораториях химической, пищевой, нефтяной промышленности.

Простейший поляриметр (рис. 6) состоит из двух поляризаторов, источника света и устройства для измерения угловых величин.

Рис. 6. Схема простейшего поляриметра

Поляризаторы перед началом измерений устанавливают таким образом, чтобы их плоскости поляризации были взаимно перпендикулярны. При этом свет через систему поляризатор-анализатор не проходит, и наблюдатель видит темноту. Если между двумя поляризаторами поместить оптически активное вещество, то поле зрения просветляется. Это происходит потому, что активное вещество поворачивает плоскость поляризации света, вышедшего из первого поляризатора на угол φ . В результате, часть света проходит анализатор, и наблюдатель может это заметить. Чтобы снова получить темноту, нужно повернуть анализатор против направления вращения плоскости поляризации на угол равный углу вращения φ. Угол поворота анализатора легко поддаѐтся измерению. Зная удельную постоянную вращения вещества и толщину раствора оптически активного вещества, можно по формуле 3 определить концентрацию раствора.

Часто при измерениях концентрации оптически активных веществ в растворах удельная постоянная вращения неизвестна. В этом случае взяв раствор известной концентрации С изв этого же вещества, определяют поляриметром угол поворота плоскости поляризации этим раствором изв , а удельную постоянную вращения о вычисляют из формулы (3):

С изв

Для нахождения концентрации неизвестного раствора С х , с помощью поляриметра определяют угол вращения плоскости поляризации света этим раствором х . Используя формулы (3) и (4), при условии равенства толщины растворов l , определяют С х по формуле:

C x C изв

При таком определении концентрации неизвестного раствора, как видно из формулы (5), знание численного значения удельной постоянной вращения и толщины слоя, вращающего плоскость поляризации вещества, необязательно.

Описание установки

В работе для определения удельной постоянной вращения сахара и его концентрации в растворе используется сахариметр универсальный СУ-4. Принципиальная схема сахариметра представлена на рисунке 7.

Рис. 7. Принципиальная схема полутеневого сахариметра

Исследуемое вещество 5 помещается между полутеневым поляризатором, состоящим из двух половин 3 и 4, и анализатором 6. Пропускание анализатора меняется в соответствии с законом Малюса при изменении угла между плоскостью поляризации анализатора 6 и плоскостью поляризации падающего на него света.

Использование полутеневого поляризатора 3 и 4 обусловлено тем, что установка обычного поляризатора на темноту не может быть осуществлена достаточно точно. В полутеневых поляризаторах произ-

Рис. 8. Вид поля зрения в саха- водится установка не на темноту, а риметре с полутеневым поля- на равенство освещенностей двух ризатором половин полей зрения I и II (рис. 8а ). Глаз человека очень чувствителен к нарушениям равенства

освещенностей двух соседних полей (рис. 8 б , в ), поэтому с помощью полутеневого устройства положение плоскости поляризации может быть установлено с гораздо большей точностью, чем путем установки

поляризатора на темноту.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Поляриметрия ОФС.1.2.1.0018.15
Взамен ГФ
XII ,ч.1, ОФС 42-0041-07

Оптическое вращение – свойство вещества вращать плоскость поляризации при прохождении через него поляризованного света.

В зависимости от природы оптически активного вещества вращение плоскости поляризации может иметь различное направление и величину. Если от наблюдателя, к которому направлен свет, проходящий через оптически активное вещество, плоскость поляризации вращается по часовой стрелке, то вещество называют правовращающим и перед его названием ставят знак (+); если же плоскость поляризации вращается против часовой стрелки, то вещество называют левовращающим и перед его названием ставят знак (–).

Величину отклонения плоскости поляризации от начального положения, выраженную в угловых градусах, называют углом вращения и обозначают греческой буквой α. Величина угла вращения зависит от природы оптически активного вещества, длины пути поляризованного света в оптически активной среде (чистом веществе или растворе) и длины волны света. Для растворов величина угла вращения зависит от природы растворителя и концентрации оптически активного вещества. Величина угла вращения прямо пропорциональна длине пути света, т. е. толщине слоя оптически активного вещества или его раствора. Влияние температуры в большинстве случаев незначительно.

Для сравнительной оценки способности различных веществ вращать плоскость поляризации света вычисляют величину удельного вращении [α].

Удельное оптическое вращение представляет собой угол вращения α плоскости поляризации монохроматического света при длине волны линии D спектра натрия (589,3 нм), выраженный в градусах, измеренный при температуре 20 ºС, рассчитанный для толщины слоя испытуемого вещества 1 дм и приведенный к концентрации вещества, равной 1 г/мл. Выражается в градус-миллилитрах на дециметр-грамм [(º) ∙ мл ∙ дм -1 ∙ г -1 ].

Иногда для измерения используют зеленую линию спектра ртути с длиной волны 546,1 нм.

При определении [α] в растворах оптически активного вещества необходимо иметь в виду, что найденная величина может зависеть от природы растворителя и концентрации оптически активного вещества.

Замена растворителя может привести к изменению [α] не только по величине, но и по знаку. Поэтому, приводя величину удельного вращения, необходимо указывать растворитель и выбранную для измерения концентрацию раствора.

Удельное вращение определяют в пересчете на сухое вещество или из высушенной навески, что должно быть указано в фармакопейной статье.

Измерение угла вращения проводят на поляриметре, позволяющем определить величину угла вращения с точностью ± 0,02 ºС при температуре (20 ± 0,5) ºС. Измерения оптического вращения могут проводиться и при других значениях температуры, но в таких случаях в фармакопейной статье должен быть указан способ учета температуры. Шкалу обычно проверяют при помощи сертифицированных кварцевых пластинок. Линейность шкалы может быть проверена при помощи растворов сахарозы.

Оптическое вращение растворов должно быть измерено в течение 30 мин с момента их приготовления; растворы или жидкие вещества должны быть прозрачными. При измерении прежде всего следует установить нулевую точку прибора или определить величину поправки с трубкой, заполненной чистым растворителем (при работе с растворами), или с пустой трубкой (при работе с жидкими веществами). После установки прибора на нулевую точку или определения величины поправки проводят основное измерение, которое повторяют не менее 3 раз.

Для получения величины угла вращения α показания прибора, полученные при измерениях, алгебраически суммируют с ранее найденной величиной поправки.

Величину удельного вращения [α] рассчитывают по одной из следующих формул.

Для веществ, находящихся в растворе:

l – толщина слоя, дм;

c – концентрация раствора, г вещества на 100 мл раствора.

Для жидких веществ:

где α – измеренный угол вращения, градусы;

l – толщина слоя, дм;

ρ – плотность жидкого вещества, г/мл.

Измерение величины угла вращения проводят для оценки чистоты оптически активного вещества или для определения его концентрации в растворе. Для оценки чистоты вещества по уравнению (1) или (2) рассчитывают величину его удельного вращения [α]. Концентрацию оптически активного вещества в растворе находят по формуле:

Поскольку величина [α] постоянна только в определенном интервале концентраций, возможность использования формулы (3) ограничивается этим интервалом.

Теория поляриметрии

Оптическая активность веществ очень чувствительна к изменениям пространственной структуры молекул и к межмолекулярному взаимодействию.

Исследование оптической активности веществ

С помощью оптических поляриметров определяют величину вращения плоскости поляризации света при прохождении его через оптически-активные среды (твёрдые вещества или растворы).

Поляриметрия широко применяется в аналитической химии для быстрого измерения концентрации оптически-активных веществ (см. Сахариметрия), для идентификации эфирных масел и в других исследованиях.

  • Величина оптического вращения в растворах зависит от их концентрации и специфических свойств оптически-активных веществ.
  • Измерение вращательной дисперсии света (спектрополяриметрия, определение угла вращения при изменении длины волны света позволяет изучать строение веществ.

См. также

Литература

  • Волькенштейн М. В., Молекулярная оптика, М.-Л., 1951
  • Джерасси К., Дисперсия оптического вращения, пер. с англ., М., 1962
  • Терентьев А. П., Органический анализ, М., 1966

Wikimedia Foundation . 2010 .

  • Удельная теплоемкость
  • Удельная электропроводность

Смотреть что такое "Удельное вращение" в других словарях:

    Удельное вращение - см. Вращательная способность химических соединений …

    удельное вращение вещества - Угол, на который поворачивается плоскость поляризации оптического излучения определенной длины волны при прохождении им пути единичной длины в веществе. [ГОСТ 23778 79] Тематики оптика, оптические приборы и измерения EN specific rotation of… …

    удельное вращение раствора - Отношение угла, на который поворачивается плоскость поляризации оптического излучения определенной длины волны при прохождении им пути единичной длины в растворе вещества, к концентрации этого вещества. [ГОСТ 23778 79] Тематики оптика, оптические … Справочник технического переводчика

    Удельное вращение некоторых органических веществ - Вещество Растворитель Удельное вращение* Сахароза Вода +66,462 Глюкоза Вода +52,70 … Химический справочник

    относительное удельное вращение вещества - Отношение удельного вращения вещества к плотности этого вещества. [ГОСТ 23778 79] Тематики оптика, оптические приборы и измерения EN relative specific rotation of substance DE relative spezifische Materialdrehung FR rotation relative spécifique… … Справочник технического переводчика

    Вращение плоскости поляризации - поперечной волны физическое явление, заключающееся в повороте поляризационного вектора линейно поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной,… … Википедия

    ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ - ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ, изменение направления (плоскости) колебаний лучей поляризованного света (см. Поляризация оптическая). Этим свойством обладают: 1. Все прозрачные тела, если их поместить в магнитном поле (магнитное В. п. п.). Для… … Большая медицинская энциклопедия

    УДЕЛЬНОЕ МАГНИТНОЕ ВРАЩЕНИЕ - то же, что (см. ВЕРДЕ ПОСТОЯННАЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    Вращательная способность химических соединений - Под именем вращательной способности химических соединений подразумевается способность, присущая некоторым из них, отклонять плоскость поляризации светового луча от ее первоначального направления. Допустим, что в луче такого поляризованного света… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Сахарозы - (хим.) название, произведенное от слова сахароза, синонима тростникового сахара; систематически употреблено для обозначения углеводов общей формулы С12Н22О11 только в настоящем Энц. сл. и в 1 м томе соч. Толленса Handb. der Kohlenhydrate (Бресл.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Удельное вращение плоскости поляризации оптически активным веществом определяется как угол вращения, отнесенный к единице толщины просвечиваемого материала:

Если угол вращения измеряется в угловых градусах, а толщина слоя l - в мм, то размерность удельного вращения составит [град/мм].

Соответственно удельное вращение оптически активной жидкости (не раствора) с плотностью с [г/см 3 ] определяется выражением

Так как оптическая активность жидкостей намного меньше оптической активности твердых тел, а толщина слоя жидкости измеряется в дециметрах , то удельное вращение жидкостей имеет размерность [град·см- 3 /(дм·г)].

Удельное вращение раствора оптически активного вещества в оптически неактивном растворителе с концентрацией С (г/100 мл) раствора определяется по формуле

В органической химии как разновидность удельного вращения используется также величина молярного вращения.

Определение концентрации растворенных оптически активных веществ по результатам измерения угла вращения б [град] при данной толщине слоя l [дм] для определенной длины волны [нм] производится по уравнению Био (1831 г.):

Закон Био практически всегда выполняется в области низких концентраций, в то время как при высоких концентрациях имеют место существенные отклонения

Мешающие факторы при поляриметрических измерениях

При каждом преломлении и отражении от поверхности, не перпендикулярной направлению света, происходит изменение состояния поляризации падающего света. Из этого следует, что любой вид мутности и пузырей в исследуемом веществе вследствие множества поверхностей сильно снижает поляризацию, и чувствительность измерения может снизиться ниже допустимого уровня. То же самое относится к загрязнениям и царапинам на окнах кювет и на защитных стеклах источника света.

Термические и механические напряжения в защитных стеклах и окнах кювет приводят к двойному преломлению и, следовательно, к эллиптической поляризации, которая накладывается на результат измерения в виде кажущегося поворота. Так как эти явления в большинстве случаев неконтролируемы и не постоянны во времени, следует тщательно следить, чтобы механические напряжения в оптических элементах не появились.

Сильная зависимость оптической активности от длины волны (вращательная дисперсия), которая, например, для сахарозы составляет 0,3%/нм в области видимого света, заставляет использовать в поляриметрии предельно узкие полосы спектра, что обычно требуется лишь в интерферометрии. Поляриметрия является одним из самых чувствительных оптических методов измерения (отношение порога чувствительности к диапазону измерения 1/10000), поэтому для полноценных поляриметрических измерений можно использовать лишь строго монохроматический свет, т. е. изолированные линии спектра. Горелки высокого давления, которые обеспечивают высокую интенсивность света, непригодны для поляриметрии вследствие расширения спектральных линий при изменении давления и повышенной для этого случая доли фона сплошного излучения. Применение более широких спектральных полос возможно лишь для приборов, в которых предусмотрена компенсация вращательной дисперсии, как, например, в приборах с компенсацией при помощи кварцевого клина (сахариметр с кварцевым клином) и приборах с компенсацией по эффекту Фарадея. В приборах с кварцевым клином возможности компенсации при измерении сахарозы ограничены. При компенсации по эффекту Фарадея путем соответствующего выбора материала вращательную дисперсию можно подчинить различным требованиям; однако достичь универсальности использованных способов не удается.

При измерении с конечной шириной спектральной полосы вблизи полос абсорбционного поглощения под действием абсорбции возникает смещение эффективного центра тяжести распределения длин волн, искажающее результаты измерения, из чего следует, что при исследовании абсорбирующих веществ нужно работать со строго монохроматическим излучением.

При контроле быстротекущих непрерывных потоков растворов возникающая вследствие двойного преломления света потоком эллиптическая поляризация может ухудшить чувствительность поляриметрических методов измерения и привести к грубым ошибкам. Эти затруднения можно устранить лишь тщательным формированием потока, например, обеспечением ламинарного параллельного потока в кюветах и снижением его скорости. поляризация свет вращение оптический



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: