Виды оборудования применяемые для переработки полимерных материалов. Вторичная переработка отходов полимеров: технология, оборудование. Характеристики свойств пэнп до и после старения


Классификация отходов

Отходы образуются при переработке полимеров и изготовлении из них изделий - это технологические отходы, частично возвращаемые в процесс. То, что остается после использования пластиковых изделий - различных пленок (парниковых, строительных и т.п.), тары, бытовой и крупнооптовой упаковки - это бытовые и промышленные отходы.

Технологические отходы, подвергаются термическому воздействию в расплаве, а затем при дроблении и агломерации - еще и интенсивным механическим воздействиям. В массе полимера интенсивно протекают процессы термо- и механодеструкции с потерей ряда физико-механических свойств и при многократной переработке могут отрицательно влиять на свойства изделия. Так, при возврате в основной процесс, как обычно, 10-30 процентов вторичных отходов, заметное количество материала проходит до 5 циклов экструзии и дробления.

Бытовые и промышленные отходы не только перерабатываются несколько раз при высокой температуре, но также подвергаются и длительному воздействию прямого солнечного света, кислорода и влаги воздуха. Парниковые пленки могут также контактировать с ядохимикатами, пестицидами, ионами железа, способствующими деструкции полимера. В результате в массе полимера накапливается большое количество активных соединений, ускоряющих распад полимерных цепей. Подход к вторичной переработке таких разных отходов соответственно и должен быть разным, учитывающим предысторию полимера. Но сначала рассмотрим пути снижения объемов образующихся отходов.

Снижение количества технологических отходов

Количество технологических отходов, в первую очередь пусковых, можно снизить, применяя термостабилизаторы перед остановкой экструдера или литьевого агрегата, в виде так называемого стоп-концентрата, о чем многие забывают или пренебрегают. При остановках оборудования на простой материал в цилиндре экструдера или ТПА довольно долгое время находится под действием высокой температуры при остывании и затем нагреве цилиндра. За это время в цилиндре активно протекают процессы сшивки, разложения и пригара полимера, накапливаются продукты, которые после пуска длительное время выходят в виде геликов и окрашенных включений (пригарков). Термостабилизаторы предотвращают эти процессы, облегчая и ускоряя тем самым чистку оборудования после запуска. Для этого перед остановкой в цилиндр машины вводится 1-2 процента стоп-концентрата за 15-45 мин. до остановки из расчета вытеснения 5-7 объемов цилиндра.

Снизить количество отходов позволяют также процессинговые (экструзионные) добавки, повышающие технологичность процесса. По своей природе эти добавки, например, «Дайнамар» фирмы «Дайнеон», «Вайтон» фирмы «Дюпон», являются производными фторкаучуков. Они плохо совместимы с основными полимерами и в местах наибольших усилий сдвига (фильеры, литники и т.п.) высаживаются из расплава на поверхность металла, создавая на ней пристенный смазывающий слой, по которому скользит расплав при формовании. Применение процессинговой добавки в самых малых количествах (400-600 ppm) позволяет решить многочисленные технологические проблемы - снизить крутящий момент и давление на головке экструдера, повысить производительность при снижении энергозатрат, устранить дефекты внешнего вида и снизить температуру экструзии полимеров и композиций, чувствительных к воздействию повышенных температур, увеличить гладкость изделий, производить более тонкие пленки. При изготовлении крупногабаритных или тонкостенных литьевых изделий сложной формы, применение добавки позволяет улучшить проливаемость, убрать дефекты поверхности, линии спая и улучшить внешний вид изделия. Всё это само по себе снижает долю брака, т.е. количество отходов. К тому же процессинговая добавка снижает налипание нагара на фильере, обрастание литников, обладает моющим эффектом, т.е. снижает число остановок для чистки оборудования, а значит, количество пусковых отходов.

Дополнительный эффект приносит использование чистящих концентратов. Они применяются при чистке литьевого и пленочного оборудования для быстрого перехода с цвета на цвет без остановки, чаще всего в пропорции 1:1-1:3 с полимером. При этом сокращается количество отходов и затраты времени на смену цвета. В состав чистящих концентратов, производимых многими отечественными (в т.ч. «Клинол», «Клинстайр» от НПФ «Барс-2», «Ластик» от ООО «Сталкер») и зарубежными изготовителями (например, «Шульман» - «Поликлин»), входят, как правило, мягкие минеральные наполнители и поверхностно-активные моющие добавки.

Снижение количества бытовых и промышленных отходов.

Существуют различные пути снижения количества отходов путем увеличения срока работы изделий, прежде всего пленок, за счет использования термо- и светостабилизирующих добавок. При продлении срока службы парниковой пленки с 1 до 3-х сезонов соответственно снижается и количество отходов, подлежащих утилизации. Для этого достаточно ввести в пленку небольшие количества светостабилизаторов, не более половины процента. Затраты на стабилизацию невелики, а эффект при утилизации пленок - значителен.

Обратный путь - ускорение разложения полимеров путем создания фото- и биоразрушаемых материалов, быстро разрушающихся после использования под действием солнечных лучей и микроорганизмов. Для получения фоторазрушаемых пленок в полимерную цепочку вводятся сомономеры с функциональными группами, способствующими фотодеструкции (винилкетоны, оксид углерода), либо в состав полимера вводятся фотокатализаторы, как активные наполнители, способствующие разрыву полимерной цепи под действием солнечного света. В качестве катализаторов используются дитиокарбаматы, пероксиды или оксиды переходных металлов (железа, никеля, кобальта, меди). В Институте химии воды НАН Украины (В.Н.Мищенко) разработаны экспериментальные методы формирования на поверхности частиц диоксида титана наноразмерных кластерных структур, содержащих частицы металла и оксида. Скорость разложения пленок повышается в 10 раз - со 100 до 8-10 часов.

Основные направления получения биоразлагаемых полимеров:
синтез полиэфиров на основе гидроксикарбоновых (молочной, масляной) или дикарбоновых кислот, однако пока они намного дороже традиционных пластмасс;
пластмассы на основе воспроизводимых природных полимеров (крахмал, целлюлоза, хитозан, протеин), сырьевая база таких полимеров, можно сказать, не ограничена, но технология и свойства получаемых полимеров пока не достигают уровня основных многотоннажных полимеров;
придание биоразлагаемости промышленным полимерам (полиолефинам в первую очередь, а также ПЭТу) путем компаундирования.

Первые два направления требуют больших капитальных затрат на создание новых производств, переработка таких полимеров также потребует значительных изменений в технологии. Наиболее простой путь - компаундирование. Биоразлагаемые полимеры получают, вводя в матрицу биологически активные наполнители (крахмал, целлюлозу, древесную муку). Так, еще в 80-х В.И.Скрипачев и В.И.Кузнецов из ОНПО «Пластполимер» разработали крахмалонаполненных пленки с ускоренным сроком старения. К сожалению, актуальность такого материала тогда была чисто теоретической, да и сейчас широкого распространения он не получил.

Вторичная переработка отходов

Придать полимеру вторую жизнь можно с помощью специальных комплексных концентратов - рециклизаторов. Поскольку полимер подвергается термодеструкции на каждой стадии переработки, фотоокислительной деструкции во время эксплуатации изделия, механодеструкции при измельчении и агломерации отходов, в массе материала накапливаются продукты деструкции, и содержится большое количество активных радикалов, перекисных и карбонильных соединений, способствующих дальнейшему разложению и сшивке полимерных цепей. Поэтому в состав таких концентратов входят первичные и вторичные антиоксиданты, термо- и светостабилизаторы фенольного и аминного типа, а также фосфиты или фосфониты, нейтрализующие активные радикалы, накопившиеся в полимере и разлагающие перекисные соединения, а также пластифицирующие и совмещающие добавки, позволяющие улучшить физико-механические свойства вторичного материала и подтянуть их более или менее близко к уровню первичного полимера.

Комплексные добавки фирмы «Сиба». Фирма «Сиба», Швейцария, предлагает семейство комплексных стабилизаторов для переработки различных полимеров - ПВД, ПНД, ПП: «Рециклостаб» / Recyclostab и «Рециклосорб» / Recyclossorb. Они представляют собой таблетированные смеси различных фото- и термостабилизаторов с широким диапазоном температур плавления (50-180°С), пригодные для ввода в перерабатывающее оборудование. Природа добавок в составе «Рециклостаба» обычна для переработки полимеров - фенольные стабилизаторы, фосфиты и процессинговые стабилизаторы. Разница заключается в соотношении компонентов и в подборе оптимального состава в соответствии с конкретной задачей. «Рециклоссорб» применяется тогда, когда важную роль играет светостабилизация, т.е. получаемые изделия эксплуатируются на открытом воздухе. В этом случае увеличена доля светостабилизаторов. Рекомендуемые фирмой уровни ввода - 0,2-0,4 процента.

«Рециклостаб 421» специально разработан для переработки и термической стабилизации отходов пленок ПВД и смесей с высоким его содержанием.

«Рециклостаб 451» разработан для переработки и термической стабилизации отходов ПП и смесей с высоким его содержанием.

«Рециклостаб 811» и «Рециклоссорб 550» используются для продления сроков службы изделий из продуктов вторичной переработки, используемых на солнечном свете, поэтому они содержат больше светостабилизаторов.

Стабилизаторы применяются при получении литьевых или пленочных изделий из вторичных полимеров: ящиков, поддонов, контейнеров, труб, пленок неответственного назначения. Выпускаются в гранулированной, не пылящей форме, без полимерной основы, прессованные гранулы с пределами плавления 50-180°С.

Комплексные концентраты фирмы «Барс-2». Для переработки вторичных полимеров НПФ «Барс-2» выпускает комплексные концентраты на полимерной основе, содержащие кроме стабилизаторов также совмещающие и пластифицирующие добавки. Комплексные концентраты «Ревтол» - для полиолефинов или «Ревтен» - для ударопрочного полистирола, вводятся в количестве 2-3 процентов при переработке вторичных пластиков и благодаря комплексу специальных добавок предотвращают термоокислительное старение вторичных полимеров. Концентраты облегчают их переработку вследствие улучшения реологических характеристик расплава (повышения ПТР), увеличивают прочностные характеристики готовых изделий (их пластичность и стойкость к растрескиванию) по сравнению с изделиями, изготовленными без их применения, облегчают их переработку в результате повышения технологичности материала (снижается крутящий момент и нагрузка на привод). При переработке смеси вторичных полимеров «Ревтол» или «Ревтен» улучшают их совместимость, поэтому физико-механические свойства получаемых изделий также повышаются. Применение «Ревтена» позволяет повысить свойства вторичного УПМ до уровня 80-90 процентов свойств исходного полистирола, предотвратив появление брака.

Сейчас очень актуальна разработка комплексного концентрата для переработки вторичного ПЭТ. Основной бич здесь - пожелтение материала, накопление ацетальдегида, снижение вязкости расплава. Известны добавки западных фирм - «Сибы», «Кларианта», позволяющие преодолеть пожелтение и улучшить перерабатываемость полимера. Однако на Западе и у нас различен подход к использованию вторичного ПЭТ. Если там 90 процентов его используется для получения полиэфирных волокон или технических изделий и добавки для этой цели хорошо разработаны, то наши переработчики стремятся вернуть вторичный ПЭТ в основной процесс - получение преформ и бутылок методами литья и раздува или получение пленок и листов методом плоскощелевой экструзии. В этом случае целевые свойства полимера, на которые необходимо воздействовать, несколько иные - технологичность, формуемость, прозрачность, и рецептура комплексных добавок должна отвечать поставленной цели.

В современном мире проблема утилизации полимерных отходов считается достаточно актуальной. Ежегодно на мусорных полигонах собираются миллионы тонн продукции данного типа. И лишь небольшая часть полимеров подвергается вторичной переработки. В результате ее проведения получают высококачественное сырье, пригодное для производства новой продукции.

Что такое полимерная продукция?

Каждый год объем выработки полимерных материалов увеличивается приблизительно на 5%. Такая популярность связана с их многочисленными положительными свойствами.

Данная продукция преимущественно используется в качестве тары. Она повышает срок службы изделий, которые находятся внутри упаковки. Также полимеры имеют отличный внешний вид и долгий срок службы.

Современная промышленность выпускает следующие разновидности продукции данного типа:

  • полиэтилен и материалы, изготовленные на его основании – 34%;
  • ПЭТ – 20%;
  • бумага с ламинацией – 17%;
  • ПВХ – 14%;
  • полипропилен – 7%;
  • полистирол – 8%.

Какая продукция пригодна для переработки?

Рециклингу подвергаются не все полимеры.

Термопластические синтетические материалы, которые при воздействии высокой температуры способны изменять свою форму, чаще всего используются для вторичной переработки.

Поэтому для этой цели собирают и специальным образом подготавливают такие виды отходов:

  • материалы, которые остаются в процессе производства пластика. Чаще всего это всевозможные отрезки. Продукция данного типа отличается высоким качеством, поскольку в их составе отсутствуют примеси. На перерабатывающие заводы они поступают уже в отсортированном виде, что значительно упрощает подготовительный этап работы. Рециклингу обычно подвергается до 90% от всех промышленных отходов;
  • полимеры, полученные после потребления. Их также называют бытовыми отходами. Это пакеты, одноразовая посуда, пластиковые бутылки, оконные профили и многие другие изделия. Особенностью данных материалов считается их загрязненность. Для переработки полимеров данного типа следует затратить много сил и ресурсов для сортировки и очистки отходов.

В чем основная проблема переработки полимерных отходов?

На данный момент переработке подвергается лишь небольшая часть от всех существующих отходов. Развитие данной сферы происходит медленно, несмотря на ее актуальность. Это связано со следующим:

  • государство не обеспечивает всеми необходимыми нормативными и техническими нормами, которые могли бы обеспечить высокое качество вторсырья. Именно поэтому отсутствуют мощные производства, поставляющие на рынок переработанные отходы с оптимальными характеристиками;
  • поскольку для осуществления процесса переработки не применяются современные технологии, для его поддержания необходимы огромные денежные ресурсы;
  • из-за отсутствия поддержки государства уровень сбора отходов среди населения и мелких предприятий находится на низком уровне;
  • получаемое вторсырье не обладает достаточной конкурентоспособностью;
  • среди населения не проводится агитация, которая б стимулировала их к раздельному выбросу мусора. Большинство людей не понимают, что использование вторсырья позволяет ограничить потребление других ресурсов – нефти, газа.

Как происходит сбор вторсырья для переработки?

Вторичная переработка полимеров происходит после того, как пройдены все этапы подготовки сырья:

  1. Открываются специальные пункты, которые занимаются сбором и первичной сортировкой полученной продукции. Они сотрудничают как с населением, так и с промышленными предприятиями разного типа.
  2. Сбор полимеров на полигонах хранения бытовых отходов. Обычно этим занимаются специальные компании.
  3. Сырье попадает на вторичный рынок после предварительной сортировки на специальных мусороперерабатывающих пунктах.
  4. Перерабатывающими компаниями производится закупка вторсырья у крупных промышленных комплексов. Такие материалы менее загрязнены и не подлежат столь тщательной подготовки к переработке.
  5. Небольшая часть вторсырья также собирается благодаря специальной программе, которая подразумевает раздельный сбор мусора.

Как осуществляется переработка полимеров?

После сбора и первичной сортировки переработка полимерных отходов происходит таким способом:

  1. Измельчение сырья. Является одним из важных этапов подготовки полимеров к дальнейшей переработке. Степень измельчения материалов определяет качественные характеристики изделий, которые будут изготовляться в дальнейшем. Для проведения данного этапа работ современные заводы используют криогенный способ переработки. Он позволяет получить из полимерной продукции порошок со степенью дисперсности от 0,5 до 2 мм.
  2. Разделение пластмасс по видам. Для осуществления данной операции чаще всего применяется флотационный метод. Он подразумевает добавление в воду специальных поверхностно-активных веществ, которые способны воздействовать на некоторых типы полимеров и изменять их гидрофильные свойства. Также очень эффективно растворение сырья специальными веществами. В последующем его обрабатывают паром, что позволяет выделить необходимые продукты. Существуют и другие методы разделения полимеров (аэро- и электросепарация, химический способ, проведение глубокой заморозки), но они менее популярны.
  3. Мойка. Полученное сырье моют в несколько этапов с применением специальных средств.
  4. Сушка. Материалы предварительно избавляются от воды в центрифугах. Заключительная сушка происходит в специальных машинах. В результате получают продукт с влажностью 0,2%.
  5. Гранулирование. Подготовленный материал попадает в специальную установку, где он максимально уплотняется. В результате получают продукт, который подходит для производства полимерной продукции любого типа.

Переработка пластиковых бутылок

Стандартный перечень оборудования для мусороперерабатывающего завода

Переработка отходов полимеров осуществляется при помощи следующего оборудования:

  • линия для мойки, где очищение сырья происходит с минимальными трудозатратами;
  • экструдер – применяется для придания пластичной массе желаемой формы методом продавливания;
  • ленточные транспортеры – для перемещения сырья в нужном направлении;
  • шредеры – предназначены для первичного дробления материалов. Они способны работать практически с любым сырьем;
  • дробилки – активно применяются для более тщательного измельчения сырья после применения шредера;
  • смесители и дозаторы;
  • агломераторы – необходимы для переработки тонких полимерных пленок;
  • грануляторы – используются для уплотнения переработанного сырья;
  • сушилки;
  • холодильники;
  • мойки;
  • пресс и другие.

Какая стоимость отходов на соответствующем рынке?

Проведя анализ цен на рынке, понятно, что стоимость отходов, которые хранятся на мусорных полигонах, ниже от цены на вторсырье в 3-6 раз (относительно первичного сырья в 7-10 раз). Если проанализировать ценообразование на примере полиэтиленовой пленки, можно понять следующее:

  • цена полигонного материала у компаний-посредников составляет 5 рублей за 1 кг;
  • после мытья и сортировки стоимость пленки повышается до 12 руб./кг;
  • сырье в виде агломерата или гранул имеет еще большую стоимость – 25-35 руб./кг;
  • цена на первичный полиэтилен варьируется от 37 до 49 руб./кг.

Такая большая разница в ценах наблюдается не у всей продукции. Например, она почти не ощутима с ПВХ, полипропиленом, полистиролом и АБС-пластиком. В случае с ПЭТ стоимость полигонного сырья отличается от вторпродукции всего в 2-3 раза. Это объясняется особенностями его переработки, в результате которой за счет измельчения получают хлопья.

Куда сбывают полученное вторсырье?

Компании, которые занимаются переработкой отходов, чаще всего отправляют полученный продукт на продажу. Если такие заводы имеют собственное оборудование, они могут заниматься производством полимеров из полученного сырья. Только это не всегда экономически выгодно

Изготовленные пластиковые изделия чаще всего однотипные, что утрудняет их реализацию большими партиями.

Чаще всего подобные компании занимаются производством канализационных труб, строительных материалов или некоторых деталей автомобилей. На продукцию данного типа существует большой спрос на рынке.

Также очень популярна сторонняя переработка отходов полимерного типа. Эта услуга заключается в том, что заинтересованная компания отдает свой мусор заводу, который после проведения рециклинга возвращает ей готовое вторсырье. Владелец полимерных отходов платит за их переработку около 8-10 руб./кг, что считается очень выгодной сделкой.

1. ВВЕДЕНИЕ

Одним из наиболее осязаемых результатов антропогенной деятельности является образование отходов, среди которых отходы пластмасс занимают особое место в силу своих уникальных свойств.


Пластмассы – это химическая продукция, состоящая из высокомолекулярных, длинноцепных поли­меров. Производство пластических масс на современном этапе развития возрастает в среднем на 5…6 % ежегодно и к 2010 г., по прогнозам, достигнет 250 млн. т. Их потребление на душу населения в индуст­риально развитых странах за последние 20 лет удвоилось, достигнув 85…90 кг, К концу десятилетия как полагают, эта цифра повысится на 45…50 %.


НАСЧИТЫВАЕТСЯ ОКОЛО 150 ВИДОВ ПЛАСТИКОВ, 30 % ИЗ ИХ – ЭТО СМЕСИ РАЗЛИЧНЫХ ПОЛИМЕРОВ. ДЛЯ ДОСТИЖЕНИЯ ОПРЕДЕЛЕННЫХ СВОЙСТВ, ЛУЧШЕЙ ПЕРЕРАБОТКИ В ПОЛИМЕРЫ ВВОДЯТ РАЗЛИЧНЫЕ ХИМИЧЕСКИЕ ДОБАВКИ, КОТОРЫХ УЖЕ БОЛЕЕ 20, А РЯД ИЗ НИХ ОТНОСЯТСЯ К ТОКСИЧНЫМ МАТЕРИАЛАМ. ВЫПУСК ДОБАВОК НЕПРЕРЫВНО ВОЗРАСТАЕТ. ЕСЛИ В 1980 Г. ИХ БЫЛО ПРОИЗВЕДЕНО 4000 Т, ТО К 2000 Г. ОБЪЕМ ВЫПУСКА ВОЗРОС УЖЕ ДО 7500 Т, И ВСЕ ОНИ БУДУТ ВВЕДЕНЫ В ПЛАСТИКИ. А СО ВРЕМЕНЕМ ПОТРЕБЛЯЕМЫЕ ПЛАСТИКИ НЕИЗБЕЖНО ПЕРЕХОДЯТ В ОТХОДЫ.


ОДНИМ ИЗ БЫСТРОРАЗВИВАЮЩИХСЯ НАПРАВЛЕНИЙ ИСПОЛЬЗОВАНИЯ ПЛАСТМАСС ЯВЛЯЕТСЯ УПАКОВКА.

Из всех выпускаемых пластиков 41 % используется в упаковке, из этого количества 47 % расходуется на упаковку пищевых продуктов. Удобство и безопасность, низкая цена и высокая эстетика явля­ются определяющими условиями ускоренного роста использования пластических масс при изготовлении упаковки.


Такая высокая популярность пластмасс объясняется их легкостью, экономичностью и набором цен­нейших служебных свойств. Пластики являются серьезными конкурентами металлу, стеклу, керамике. Например, при изготовлении стеклянных бутылей требуется на 21 % больше энергии, чем на пластмассовые.


Но наряду с этим возникает проблема с утилизацией отходов, которых существует свыше 400 различных видов, появляющихся в результате использования продукции полимерной промышленности.


В наши дни, как никогда прежде, люди нашей планеты задумались над огромным засорением Земли непрерывно возрастающими отходами пластиков. В связи с этим, учебное пособие восполняет знания в области утилизации и вторичной переработки пластиков с целью возврата их в производство и улучшения экологии в РФ и в мире.

2 АНАЛИЗ СОСТОЯНИЯ ВТОРИЧНОЙ ПЕРЕРАБОТКИ И УТИЛИЗАЦИИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

2.1 АНАЛИЗ СОСТОЯНИЯ ВТОРИЧНОЙ ПЕРЕРАБОТКИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Из всех выпускаемых пластиков 41 % используется в упаковке, из этого количества 47 % расходу­ется на упаковку пищевых продуктов. Удобство и безопасность, низкая цена и высокая эстетика явля­ются определяющими условиями ускоренного роста использования пластических масс при изготовле­нии упаковки. Упаковка из синтетических полимеров, составляющая 40 % бытового мусора, практиче­ски "вечна" – она не подвергается разложению. Поэтому использование пластмассовой упаковки со­пряжено с образованием отходов в размере 40…50 кг/год в расчете на одного человека.

В России предположительно к 2010 г. полимерные отходы составят больше одного миллиона тонн, а процент их использования до сих пор мал. Учитывая специфические свойства полимерных мате­риалов – они не подвергаются гниению, коррозии, проблема их утилизации носит, прежде всего, эколо­гический характер. Общий объем захоронения твердых бытовых отходов только в Москве составляет около 4 млн. т в год. От общего уровня отходов перерабатывается только 5…7 % от их массы. По данным на 1998 г. в усредненном составе твердых бытовых отходов, поставляемых на захоронение, 8 % составляет пластмасса, что составляет 320 тыс. т в год.

Однако в настоящее время проблема переработки отходов полимерных материалов обретает акту­альное значение не только с позиций охраны окружающей среды, но и связана с тем, что в условиях дефицита полимерного сырья пластмассовые отходы становятся мощным сырьевым и энергетическим ресурсом.


Вместе с тем решение вопросов, связанных с охраной окружающей среды, требует значительных капитальных вложений. Стоимость обработки и уничтожения отходов пластмасс примерно в 8 раз пре­вышает расходы на обработку большинства промышленных и почти в три раза – на уничтожение быто­вых отходов. Это связано со специфическими особенностями пластмасс, значительно затрудняющими или делающими непригодными известные методы уничтожения твердых отходов.


Использование отходов полимеров позволяет существенно экономить первичное сырье (прежде всего нефть) и электроэнергию.

Проблем, связанных с утилизацией полимерных отходов, достаточно много. Они имеют свою спе­цифику, но их нельзя считать неразрешимыми. Однако решение невозможно без организации сбора, сортировки и первичной обработки амортизованных материалов и изделий; без разработки системы цен на вторичное сырье, стимулирующих предприятия к их переработке; без создания эффективных спосо­бов переработки вторичного полимерного сырья, а также методов его модификации с целью повышения качества; без создания специального оборудования для его переработки; без разработки номенклатуры изделий, выпускаемых из вторичного полимерного сырья.


Отходы пластических масс можно разделить на 3 группы:

а) технологические отходы производства, которые возникают при синтезе и переработке термопластов. Они делятся на неустранимые и устранимые технологические отходы. Неустранимые – это кромки, высечки, обрезки, литники, облой, грат и т.д. В отраслях промышленности, занимающихся производством и переработкой пластмасс, таких отходов образуется от 5 до 35 %. Неустранимые отходы, по существу, представляющие собой высококачественное сырье, по свойствам не отличаются от исходного первичного полимера. Переработка его в изделия не требует специального оборудования и производится на том же предприятии. Устранимые технологические отходы производства образуются при несоблюдении технологических режимов в процессе синтеза и переработки, т.е. это – технологический брак, который может быть сведен до минимума или совсем устранен. Технологические отходы произ водства перерабатываются в различные изделия, используются в качестве добавки к исходному сырью и т.д.;

б) отходы производственного потребления – накапливаются в результате выхода из строя изделий из полимерных материалов, используемых в различных отраслях народного хозяйства (амортизованные шины, тара и упаковка, детали машин, отходы сельскохозяйственной пленки, мешки из-под удобрений и т.д.). Эти отходы являются наиболее однородными, малозагрязненными и поэтому представляют наи больший интерес с точки зрения их повторной переработки;

в) отходы общественного потребления, которые накапливаются у нас дома, на предприятиях общественного питания и т.д., а затем попадают на городские свалки; в конечном итоге они переходят в но вую категорию отходов – смешанные отходы.


Наибольшие трудности связаны с переработкой и использованием смешанных отходов. Причина этого в несовместимости термопластов, входящих в состав бытового мусора, что требует их постадийного выделения. Кроме того, сбор изношенных изделий из полимеров у населения является чрезвычайно сложным мероприятием с организационной точки зрения и пока еще у нас в стране не налажен.

Основное количество отходов уничтожают – захоронением в почву или сжиганием. Однако уничтожение отходов экономически невыгодно и технически сложно. Кроме того, захоронение, затопление и сжигание полимерных отходов ведет к загрязнению окружающей среды, к сокращению земельных угодий (организация свалок) и т.д.


Однако и захоронение, и сжигание продолжают оставаться довольно широко распространенными способами уничтожения отходов пластмасс. Чаще всего тепло, выделяющееся при сжигании, использу­ют для получения пара и электроэнергии. Но калорийность сжигаемого сырья невелика, поэтому уста­новки для сжигания, как правило, являются экономически малоэффективными. Кроме того, при сжига­нии происходит образование сажи от неполного сгорания полимерных продуктов, выделение токсич­ных газов и, следовательно, повторное загрязнение воздушного и водного бассейнов, быстрый износ печей за счет сильной коррозии.


В начале 1970-х гг. прошлого века интенсивно начали развиваться работы по созданию био-, фото-и водоразрушаемых полимеров. Получение разлагаемых полимеров вызвало настоящую сенсацию, и этот способ уничтожения вышедших из строя пластмассовых изделий рассматривался как идеальный. Однако последующие работы в этом направлении показали, что трудно сочетать в изделиях высокие физико-механические характеристики, красивый внешний вид, способность к быстрому разрушению и низкую стоимость.

В последние годы исследования в области саморазрушающихся полимеров значительно сократи­лись в основном потому, что издержки производства при получении таких полимеров, как правило, значительно выше, чем при получении обычных пластических масс, и этот способ уничтожения является экономически невыгодным.


Основной путь использования отходов пластмасс – это их утилизация, т.е. повторное использование. Показано, что капитальные и эксплуатационные затраты по основным способам утилизации отхо­дов не превышают, а в ряде случаев даже ниже затрат на их уничтожение. Положительной стороной утилизации является также и то, что получается дополнительное количество полезных продуктов для различных отраслей народного хозяйства и не происходит повторного загрязнения окружающей среды. По этим причинам утилизация является не только экономически целесообразным, но и экологически предпочтительным решением проблемы использования пластмассовых отходов. Подсчитано, что из ежегодно образующихся полимерных отходов в виде амортизованных изделий утилизации подвергает­ся только незначительная часть (всего несколько процентов). Причиной этого являются трудности, связанные с предварительной подготовкой (сбор, сортировка, разделение, очистка и т.д.) отходов, отсутст­вием специального оборудования для переработки и т.д.


К основным способам утилизации отходов пластических масс относятся:


  1. термическое разложение путем пиролиза;
  2. разложение с получением исходных низкомолекулярных продуктов (мономеров, олигомеров);
  3. вторичная переработка.

Пиролиз – это термическое разложение органических продуктов в присутствии кислорода или без него. Пиролиз полимерных отходов позволяет получить высококалорийное топливо, сырье и полуфабрикаты, используемые в различных технологических процессах, а также мономеры, применяемые для синтеза полимеров.


Газообразные продукты термического разложения пластмасс могут использоваться в качестве топли­ва для получения рабочего водяного пара. Жидкие продукты используются для получения теплоносителей. Спектр применения твердых (воскообразных) продуктов пиролиза отходов пластмасс достаточно широк (компоненты различного рода защитных составов, смазок, эмульсий, пропиточных материалов и др.)

Разработаны также процессы каталитического гидрокрекинга для превращения полимерных отхо­дов в бензин и топливные масла.

Многие полимеры в результате обратимости реакции образования могут снова разлагаться до ис­ходных веществ. Для практического использования имеют значение способы расщепления ПЭТФ, полиамидов (ПА) и вспененных полиуретанов. Продукты расщепления используют снова в качестве сырья для проведения процесса поликонденсации или как добавки к первичному материалу. Однако имею­щиеся в этих продуктах примеси часто не позволяют получать высококачественные полимерные изделия, например, волокна, но чистота их достаточна для изготовления литьевых масс, легкоплавких и растворимых клеев.


Гидролиз является реакцией, обратной поликонденсации. С его помощью при направленном действии воды по местам соединения компонентов поликонденсаты разрушаются до исходных соединений. Гидролиз происходит под действием экстремальных температур и давлений. Глубина протекания реакции зависит от pH среды и используемых катализаторов.


Этот способ использования отходов энергетически более выгоден, чем пиролиз, так как в оборот возвращаются высококачественные химические продукты.


По сравнению с гидролизом для расщепления отходов ПЭТФ более экономичен другой способ – гликолиз. Деструкция происходит при высоких температурах и давлении в присутствии этиленгликоля и с участием катализаторов до получения чистого дигликольтерефталата. По этому принципу можно также переэтерифицировать карбаматные группы в полиуретане.


Все же самым распространенным термическим методом переработки отходов ПЭТФ является их расщепление с помощью метанола – метанолиз. Процесс протекает при температуре выше 150°С и дав­лении 1,5 МПа, ускоряется катализаторами переэтерификации. Этот метод очень экономичен. На прак­тике применяют и комбинацию методов гликолиза и метанолиза.


В настоящее время наиболее приемлемым для России является вторичная переработка отходов по­лимерных материалов механическим рециклингом , так как этот способ переработки не требует дорого­го специального оборудования и может бать реализован в любом месте накопления отходов.


2.2 УТИЛИЗАЦИЯ ОТХОДОВ ПОЛИОЛЕФИНОВ

Полиолефины – самый многотоннажный вид термопластов. Они находят широкое применение в различных отраслях промышленности, транспорта и в сельском хозяйстве. К полиолефинам относятся полиэтилен высокой и низкой плотности (ПЭВП и ПЭНП), ПП. Наиболее эффективным способом утилизации отходов ПО является их повторное использование. Ресурсы вторичных ПО велики: только от­ходы потребления ПЭНП в 1995 г. достигли 2 млн. т. Использование вторичных термопластов вообще, и ПО в частности, позволяет увеличить степень удовлетворения в них на 15…20 %.


Способы переработки отходов ПО зависят от марки полимера и их происхождения. Наиболее просто перерабатываются технологические отходы, т.е. отходы производства, которые не подверглись ин­тенсивному световому воздействию в процессе эксплуатации. Не требуют сложных методов подготовки и отходы потребления из ПЭВП и ПП, так как с одной стороны изделия, изготавливаемые из этих поли­меров, также не претерпевают значительных воздействий вследствие своей конструкции и назначения (толстостенные детали, тара, фурнитура и т.д.), а с другой стороны – исходные полимеры более устойчивы к воздействию атмосферных факторов, чем ПЭНП. Такие отходы перед повторным использовани­ем нуждаются только в измельчении и гранулировании.

2.2.1 Структурно-химические особенности вторичного полиэтилена

Выбор технологических параметров переработки отходов ПО и областей использования получае­мых из них изделий обусловлен их физико-химическими, механическими и технологическими свойствами, которые в значительной степени отличаются от тех же характеристик первичного полимера. К основным особенностям вторичного ПЭНП (ВПЭНП), которые определяют специфику его переработки, следует отнести: низкую насыпную плотность; особенности реологического поведения расплава, обусловленные высоким содержанием геля; повышенную химическую активность вследствие изменений структуры, происходящих при переработке первичного полимера и эксплуатации полученных из него изделий.


В процессе переработки и эксплуатации материал подвергается механохимическим воздействиям, термической, тепло- и фотоокислительной деструкции, что приводит к появлению активных групп, коорые при последующих переработках способны инициировать реакции окисления.


Изменение химической структуры начинается уже в процессе первичной переработки ПО, в частности при экструзии, когда полимер подвергается значительным термоокислительным и механохимиче-ским воздействиям. Наибольший вклад в изменения, протекающие при эксплуатации, вносят фотохи­мические процессы. Эти изменения необратимы, в то время как физико-механические свойства, напри­мер, полиэтиленовой пленки, отслужившей один-два сезона для укрытия парников, после перепрессовки и экструзии почти полностью восстанавливаются.


Образование в ПЭ пленке при ее эксплуатации значительного числа карбонильных групп приводит к повышенной способности ВПЭНП поглощать кислород, следствием чего является образование во вторичном сырье винильных и винилиденовых групп, которые значительно снижают термоокислительную стабильность полимера при последующих переработках, инициируют процесс фотостарения таких материалов и изделий из них, снижают срок их службы.


Наличие карбонильных групп не определяет ни механические свойства (введением их до 9 % в ис­ходную макромолекулу не оказывает существенного влияния на механические свойства материала), ни пропускание пленкой солнечного света (поглощение света карбонильными группами лежит в области длин волн менее 280 нм, а свет такого состава практически не содержится в солнечном спектре). Однако именно наличие карбонильных групп в ПЭ обусловливает весьма важное его свойство – стойкость к воздействию света.

Инициатором фотостарения ПЭ являются гидропероксиды, образующиеся еще при переработке первичного материала в процессе механохимической деструкции. Их инициирующее действие особенно эффективно на ранних стадиях старения, в то время как карбонильные группы оказывают су­щественное влияние на более поздних стадиях.


Как известно, при старении протекают конкурирующие реакции деструкции и структурирования. Следствием первой является образование низкомолекулярных продуктов, второй – нерастворимой гель-фракции. Скорость образования низкомолекулярных продуктов максимальна в начале старения. Этот период характеризуется низким содержанием геля и снижением физико-механических показателей.

В дальнейшем скорость образования низкомолекулярных продуктов снижается, наблюдается резкое возрастание содержания геля и уменьшение относительного удлинения, что свидетельствует о протека­нии процесса структурирования. Затем (после достижения максимума) содержание геля в ВПЭ при его фотостарении снижается, что совпадает с полным израсходованием винилиденовых групп в полимере и достижением предельно допустимых значений относительного удлинения. Такой эффект объясняется вовлечением образовавшихся пространственных структур в процессе деструкции, а также растрескива­нием по границе морфологических образований, что приводит к снижению физико-механических характеристик и ухудшению оптических свойств.


Скорость изменения физико-механических характеристик ВПЭ практически не зависит от содержа­ния в нем гель-фракции. Однако содержание геля необходимо всегда учитывать как структурный фактор при выборе способа повторной переработки, модификации и при определении областей использо­вания полимера.


В табл. 1 приведены характеристики свойств ПЭНП до и после старения в течение трех месяцев и ВПЭНП, полученного экструзией из состаренной пленки.


1 Характеристики свойств ПЭНП до и после старения

























































Характеристики

Исходный

После эксплуатации

Экструзионный

Разрушающее напряжение при растяжении, MПа

Относительное удлинение при разрыве, %

Стойкость к растрескиванию, ч

Светостойкость, сут


Характер изменения физико-механических характеристик для ПЭНП и ВПЭНП неодинаков: у первичного полимера наблюдается монотонное снижение и прочности и относительного удлинения, кото­рые составляют 30 и 70 % соответственно после старения в течение 5 месяцев. Для вторичного ПЭНП характер изменения этих показателей несколько отличается: разрушающее напряжение практически не изменяется, а относительное удлинение уменьшается на 90 %. Причиной этого может быть наличие гель-фракции во ВПЭНП, которая выполняет функцию активного наполнителя полимерной матрицы. Наличие такого "наполнителя" – причина появления значительных напряжений, следствием чего явля­ется повышение хрупкости материала, резкое снижение относительного удлинения (вплоть до 10 % от значений для первичного ПЭ), стойкости к растрескиванию, прочности при растяжении (10…15 МПа), эластичности, повышение жесткости.

В ПЭ при старении происходит не только накопление кислородосодержащих групп, в том числе ке-тонных, и низкомолекулярных продуктов, но и значительное снижение физико-механических характе­ристик, которые не восстанавливаются после вторичной переработки состаренной полиолефиновой пленки. Структурно-химические превращения в ВПЭНП происходят в основном в аморфной фазе. Это приводит к ослаблению межфазной границы в полимере, в результате чего материал теряет прочность, становится хрупким, ломким и подверженным дальнейшему старению как при повторной переработке в изделия, так и при эксплуатации таких изделий, которые характеризуются низкими физико-механическими показателями и сроком службы.


Для оценки оптимальных режимов переработки вторичного полиэтиленового сырья большое значение имеют его реологические характеристики. Для ВПЭНП характерна низкая текучесть при малых напряжениях сдвига, которая повышается при увеличении напряжения, причем рост текучести для ВПЭ больше, чем для первичного. Причиной этого является наличие геля во ВПЭНП, который значительно повышает энергию активации вязкого течения полимера. Текучесть можно регулировать, также изменяя температуру при переработке – с увеличением температуры текучесть расплава увеличивается.


Итак, на вторичную переработку поступает материал, предыстория которого оказывает весьма существенное влияние на его физико-механические и технологические свойства. В процессе вторичной переработки полимер подвергается дополнительным механохимическим и термоокислительным воздействиям, причем изменение его свойств зависит от кратности переработки.


При исследовании влияния кратности переработки на свойства получаемых изделий показано, что 3 – 5 кратная переработка оказывает незначительное влияние (гораздо меньше, чем первичная). Заметное снижение прочности начинается при 5 – 10 кратной переработке. В процессе повторных переработок ВПЭНП рекомендуется повышать температуру литья на 3…5 % или число оборотов шнека при экструзии на 4…6 % для разрушения образующегося геля. Необходимо отметить, что в процессе повторных переработок, особенно при воздействии кислорода воздуха, происходит снижение молекулярной массы полиолефинов, которое приводит к резвому повышению хрупкости материала. Многократная переработка другого полимера из класса полиолефинов – ПП приводит обычно к увеличению показателя теку­чести расплава (ПТР), хотя при этом прочностные характеристики материала не претерпевают значи­тельных изменений. Поэтому отходы, образующиеся при изготовлении деталей из ПП, а также сами де­тали по окончании срока эксплуатации могут быть повторно использованы в смеси с исходным мате­риалом для получения новых деталей.


Из всего сказанного выше следует, что вторичное ПО сырье следует подвергать модификации с це­лью улучшения качества и повышения срока службы изделий из него.

2.2.2 Технология переработки вторичного полиолефинового сырья в гранулят

Для превращения отходов термопластов в сырье, пригодное для последующей переработки в изде­лия, необходима его предварительная обработка. Выбор способа предварительной обработки зависит в основном от источника образования отходов и степени их загрязненности. Так, однородные отходы производства и переработки ПЭНП обычно перерабатывают на месте их образования, для чего требуется незначительная предварительная обработка – главным образом измельчение и грануляция.


Отходы в виде вышедших из употребления изделий требуют более основательной подготовки. Предварительная обработка отходов сельскохозяйственной ПЭ пленки, мешков из под удобрений, отходов из других компактных источников, а также смешанных отходов включает следующие этапы: сортировка (грубая) и идентификация (для смешанных отходов), измельчение, разделение смешанных от­ходов, мойка, сушка. После этого материал подвергают грануляции.


Предварительная сортировка предусматривает грубое разделение отходов по различным признакам: цвету, габаритам, форме и, если это нужно и возможно, – по видам пластмасс. Предварительную сорти­ровку производят, как правило, вручную на столах или ленточных конвейерах; при сортировке одновременно удаляют из отходов различные посторонние предметы и включения.


Разделение смешанных (бытовых) отходов термопластов по видам проводят следующими основными способами: флотационным, разделением в тяжелых средах, аэросепарацией, электросепарацией, химическими методами и методами глубокого охлаждения. Наибольшее распространение получил метод флотации, который позволяет разделять смеси таких промышленных термопластов, как ПЭ, ПП, ПС и ПВХ. Разделение пластмасс производится при добавлении в воду поверхностно-активных ве­ществ, которые избирательно изменяют их гидрофильные свойства.


В некоторых случаях эффективным способом разделения полимеров может оказаться растворение их в общем растворителе или в смеси растворителей. Обрабатывая раствор паром, выделяют ПВХ, ПС и смесь полиолефинов; чистота продуктов – не менее 96 %.

Методы флотации и разделения в тяжелых средах являются наиболее эффективными и экономически целесообразными из всех перечисленных выше.


Вышедшие из употребления ПО отходы с содержанием посторонних примесей не более 5 % со склада сырья поступают на узел сортировки отходов 1 , в процессе которой из них удаляют случайные инородные включения и выбраковывают сильно загрязненные куски. Отходы, прошедшие сортировку, измельчают в ножевых дробилках 2 мокрого или сухого измельчения до получения рыхлой массы с размером частиц 2…9 мм.


Производительность измельчительного устройства определяется не только его конструкцией, числом и длиной ножей, частотой вращения ротора, но и видом отходов. Так, самая низкая производитель­ность при переработке отходов пенопластов, которые занимают очень большой объем и которые трудно компактно загрузить. Более высокая производительность достигается при переработке отходов пленок, волокон, выдувных изделий.


Для всех ножевых дробилок характерной особенностью является повышенный шум, который связан со спецификой процесса измельчения вторичных полимерных материалов. Для снижения уровня шума измельчитель вместе с двигателем и вентилятором заключают в шумозащитный кожух, который может выполняться разъемным и иметь специальные окна с заслонками для загрузки измельчаемого материала.


Измельчение – очень важный этап подготовки отходов к переработке, так как степень измельчения определяет объемную плотность, сыпучесть и размеры частиц получаемого продукта. Регулирование степени измельчения позволяет механизировать процесс переработки, повысить качество материала за счет усреднения его технологических характеристик, сократить продолжительность других технологических операций, упростить конструкцию перерабатывающего оборудования.


Весьма перспективным способом измельчения является криогенный, который позволяет получать порошки из отходов со степенью дисперсности 0,5…2 мм. Использование порошковой технологии имеет ряд преимуществ: снижение продолжительности смешения; сокращение расхода энергии и затрат рабочего времени на текущее обслуживание смесителей; лучшее распределение компонентов в смеси; уменьшение деструкции макромолекул и др.


Из известных методов получения порошкообразных полимерных материалов, используемых в хи­мической технологии, для измельчения отходов термопластов наиболее приемлемым является способ механического измельчения. Механическое измельчение можно осуществлять двумя путями: криогенным способом (измельчение в среде жидкого азота или другого хладоагетна и при обычных температурах в среде дезагломерирующих ингредиентов, которые являются менее энергоемкими.


Далее измельченные отходы подают на отмывку в моечную машину 3 . Отмывку ведут в несколько приемов специальными моющими смесями. Отжатую в центрифуге 4 массу с влажностью 10…15 % по­дают на окончательное обезвоживание в сушильную установку 5 , до остаточного содержания влаги 0,2 %, а затем в гранулятор 6 (рис. 1.1).

src="/modules/section/images/article/theory_clip_image002.jpg" width=373>

Рис. 1.1 Схема вторичной переработки полиолефинов в гранулы:

1 – узел сортировки отходов; 2 – дробилка; 3 – моечная машина; 4 – центрифуга; 5 – сушильная установка; 6 – гранулятор

Для сушки отходов применяют сушилки различных типов: полочные, ленточные, ковшевые, с "кипящим" слоем, вихревые и т.д.

За рубежом выпускают установки, в которых есть устройства и для мойки, и для сушки производи­тельностью до 350…500 кг/ч. В такой установке измельченные отходы загружают в ванну, которую за­полняют моющим раствором. Пленка перемешивается лопастной мешалкой, при этом грязь оседает на дно, а отмытая пленка всплывает. Обезвоживание и сушку пленки осуществляют на вибросите и в вих­ревом сепараторе. Остаточная влажность составляет менее 0,1 %.


Грануляция является заключительной стадией подготовки вторичного сырья для последующей переработки в изделия. Эта стадия особенно важна для ВПЭНП в связи с его низкой насыпной плотно­стью и трудностью транспортирования. В процессе гранулирования происходит уплотнение материала, облегчается его дальнейшая переработка, усредняются характеристики вторичного сырья, в результате чего получают материал, который можно перерабатывать на стандартном оборудовании.


Для пластикации измельченных и очищенных отходов ПО наиболее широкое применение нашли одночервячные экструдеры с длиной (25…30) D , оснащенные фильтром непрерывного действия и имеющие зону дегазации. На таких экструдерах довольно эффективно перерабатываются практически все виды вторичных термопластов при насыпной плотности измельченного материала в пределах 50…300 кг/м3. Однако для переработки загрязненных и смешанных отходов необходимы червячные прессы специальных конструкций, с короткими многозаходными червяками (длиной (3,5…5) D ), имеющими цилиндрическую насадку в зоне выдавливания.


Основным блоком этой системы является экструдер с мощностью привода 90 кВт, диаметром шнека 253 мм и отношением L /D = 3,75. На выходе экструдера сконструирована гофрированная насадка диаметром 420 мм. Благодаря выделению тепла при трении и сдвиговым воздействиям на полимерный материал он плавится за короткий промежуток времени, причем обеспечивается быстрая гомогенизация

расплава. Изменяя зазор между конусной насадкой и кожухом, можно регулировать усилие сдвига и силу трения, изменяя при этом режим переработки. Поскольку плавление происходит очень быстро, тер­модеструкции полимера не наблюдается. Система снабжена узлом дегазации, что является необходимым условием при переработке вторичного полимерного сырья.


Вторичные гранулированные материалы получают в зависимости от последовательности процессов резки и охлаждения двумя способами: грануляцией на головке и подводным гранулированием. Выбор способа гранулирования зависит от свойств перерабатываемого термопласта и, особенно от вязкости его расплава и адгезии к металлу.


При грануляции на головке расплав полимера выдавливается через отверстие в виде цилиндрических жгутов, которые отрезаются скользящими по фильерной плите ножами. Полученные гранулы но­жом отбрасываются от головки и охлаждаются. Резание и охлаждение можно производить в воздушной среде, в воде, либо резанием в воздушной среде, а охлаждение – в воде. Для ПО, которые имеют высо­кую адгезию к металлу и повышенную склонность к слипанию, в качестве охлаждающей среды применяют воду.


При использовании оборудования с большой единичной мощностью применяют так называемое подводное гранулирование. При этом способе расплав полимера выдавливается в виде стренг через отверстия фильерной плиты на головке сразу в воду и разрезается на гранулы вращающимися ножами. Температура охлаждающей воды поддерживается в пределах 50…70 °С, что способствует более интен­сивному испарению остатков влаги с поверхности гранул; количество воды составляет 20…40 м3 на 1 т гранулята.


Чаще всего в головке грануляторов формуются стренги или ленты, которые гранулируются после охлаждения в водяной ванне. Диаметр получаемых гранул составляет 2…5 мм.


Охлаждение должно проводиться при оптимальном режиме, чтобы гранулы не деформировались, не слипались, и чтобы обеспечивалось удаление остатков влаги.


Существенное влияние на распределение гранул по размерам оказывает температура головки. Для обеспечения равномерной температуры расплава между экструдером и выходными отверстиями голов­ки располагают решетки. Число выходных отверстий в головке – 20…300.


Производительность процесса гранулирования зависит от вида вторичного термопласта и его реологических характеристик.

Исследования гранулята ВПЭ свидетельствуют о том, что его вязкотекучие свойства практически не отличаются от свойств первичного ПЭ, т.е. его можно перерабатывать при тех же режимах экструзии и литья под давлением, что и первичный ПЭ. Однако получаемые изделия характеризуются низкими качеством и долговечностью.


Из гранулята получают упаковки для товаров бытовой химии, вешалки, детали строительного назначения, сельскохозяйственные орудия, поддоны для транспортировки грузов, вытяжные трубы, обли­цовку дренажных каналов, безнапорные трубы для мелиорации и другие изделия. Эти изделия получа­ют из "чистого" вторичного сырья. Однако более перспективным является добавление вторичного сырья к первичному в количестве 20…30 %. Введение в полимерную композицию пластификаторов, ста­билизаторов, наполнителей позволяет увеличить эту цифру до 40…50 %. Это повышает физико-механические характеристики изделий, однако их долговечность (при эксплуатации в жестких климатических условиях) составляет всего 0,6…0,75 от долговечности изделий из первичного полимера. Более эффективный путь – модификация вторичных полимеров, а также создание высоконаполненных вторичных полимерных материалов.

2.2.3 Способы модификации вторичных полиолефинов

Результаты исследования механизма процессов, протекающих при эксплуатации и переработке ПО и их количественное описание, позволяют сделать вывод о том, что получаемые из вторичного сырья полупродукты должны содержать не более 0,1…0,5 моля окисленных активных групп и иметь оптимальные молекулярную массу и ММР, а также обладать воспроизводимыми физико-механическими и технологическими показателями. Только в этом случае полупродукт можно использовать для производства изделий с гарантированным сроком службы взамен дефицитного первичного ПО сырья. Однако получаемый в настоящее время гранулят этим требованиям не удовлетворяет.


Надежным путем решения проблемы создания качественных полимерных материалов и изделий из вторичных ПО является модификация гранулята, цель которой – экранирование функциональных группи активных центров химическими или физико-химическими способами и создание однородного по структуре материала с воспроизводимыми свойствами.


Методы модификации вторичного ПО сырья можно разделить на химические (сшивание, введение различных добавок, главным образом органического происхождения, обработка кремнийорганическими жидкостями и др.) и физико-механические (наполнение минеральными и органическими наполнителя­ми).


Например, максимальное содержание гель-фракции (до 80 %) и наиболее высокие физико-механические показатели сшитого ВПЭНП достигаются при введении 2…2,5 % пероксида дикумила на вальцах при 130 °С в течение 10 мин. Относительное удлинение при разрыве такого материала – 210 %, показатель текучести расплава составляет 0,1…0,3 г/10 мин. Степень сшивания уменьшается с повышением температуры и увеличением продолжительности вальцевания в результате протекания конкури­рующего процесса деструкции. Это позволяет регулировать степень сшивания, физико-механические и технологические характеристики модифицированного материала.

Разработан метод формования изделий из ВПЭНП путем введения пероксида дикумила непосредственно в процессе переработки и получены опытные образцы труб и литьевых изделий, содержащих 70… 80 % гель-фракции.


Введение воска и эластопласта (до 5 масс. ч.) значительно улучшает перерабатываемость ВПЭ, по­вышает показатели физико-механических свойств (особенно относительное удлинение при разрыве и стойкость к растрескиванию – на 10 % и с 1 до 320 ч соответственно) и уменьшают их разброс, что сви­детельствует о повышении однородности материала.


Модификация ВПЭНП малеиновым ангидридом в дисковом экструдере также приводит к повыше­нию его прочности, теплостойкости, адгезионной способности и стойкости к фотостарению. При этом модифицирующий эффект достигается при меньшей концентрации модификатора и меньшей продолжительности процесса, чем при введении эластопласта.


Перспективным способом повышения качества полимерных материалов из вторичных ПО является термомеханическая обработка кремнийорганическими соединениями. Этот способ позволяет получать изделия из вторичного сырья с повышенными прочностью, эластичностью и стойкостью к старению. Механизм модификации заключается в образовании химических связей между силоксановыми группа­ми кремнийорганической жидкости и непредельными связями и кислородосодержащими группами вторичных ПО.

Технологический процесс получения модифицированного материала включает следующие стадии: сортировка, дробление и отмывка отходов; обработка отходов кремнийорганической жидкостью при 90 ± 10 °С в течение 4…6 ч; сушка модифицированных отходов методом центрифугирования; перегрануляция модифицированных отходов.

Помимо твердофазного способа модификации предложен способ модификации ВПЭ в растворе, ко­торый позволяет получать порошок ВПЭНП с размером частиц не более 20 мкм. Этот порошок может быть использован для переработки в изделия методом ротационного формования и для нанесения покрытий методом электростатического напыления.

Большой научный и практический интерес представляет создание наполненных полимерных материалов на основе вторичного полиэтиленового сырья. Использование полимерных материалов из вторичного сырья, содержащих до 30 % наполнителя, позволит высвободить до 40 % первичного сырья и направить его на производство изделий, которые нельзя получать из вторичного (напорные трубы, упаковочные пленки, транспортная многооборотная тара и др.). Это в значительной степени сократит дефицит первичного полимерного сырья.

Для получения наполненных полимерных материалов из вторичного сырья можно использовать дисперсные и армирующие наполнители минерального и органического происхождения, а также наполнители, которые можно получать из полимерных отходов (измельченные отходы реактопластов и резиновая крошка). Наполнению можно подвергать практически все отходы термопластов, а также смешан­ные отходы, которые для этой цели использовать предпочтительней и с экономической точки зрения.

Например, целесообразность применения лигнина связана с наличием в нем фенольных соединений, способствующих стабилизации ВПЭН при эксплуатации; слюды – с получением изделий, обладающих низкой ползучестью, повышенной тепло- и атмосферостойкостью, а также характеризующихся небольшим износом перерабатывающего оборудования и низкой стоимостью. Каолин, ракушечник, сланцевая зола, угольные сферы и железо применяются как дешевые инертные наполнители.

При введении в ВПЭ мелкодисперсного фосфогипса, гранулированного в полиэтиленовом воске, получены композиции, имеющие повышенное удлинение при разрыве. Этот эффект можно объяснить пластифицирующим действием полиэтиленового воска. Так прочность при разрыве ВПЭ, наполненного фосфогипсом на 25 % выше, чем у ВПЭ, а модуль упругости при растяжении больше на 250 %.

Усиливающий эффект при введении во ВПЭ слюды связан с особенностями кристаллического строения наполнителя, высоким характеристическим отношением (отношением диаметра чешуйки к толщине), причем применение измельченного, порошкообразного ВПЭ позволило сохранить строение чешуек при минимальном разрушении.

Композиции, содержащие лигнин, сланцы, каолин, сферы, отходы сапропеля, обладают сравнительно невысокими физико-механическими показателями, зато они являются наиболее дешевыми и могут найти применение при производстве изделий строительного назначения.


2.3 ВТОРИЧНАЯ ПЕРЕРАБОТКА ПОЛИВИНИЛХЛОРИДА

В процессе переработки полимеры подвергаются воздействию высоких температур, сдвиговых напряжений и окислению, что приводит к изменению структуры материала, его технологических и эксплуатационных свойств. На изменение структуры материала решающее влияние оказывают термические и термоокислительные процессы.

ПВХ – один из наименее стабильных карбоцепных промышленных полимеров. Реакция деструкции ПВХ – дегидрохлорирование начинается уже при температурах выше 100 °С, а при 160 °С реакция протекает очень быстро. В результате термоокисления ПВХ происходят агрегативные и дезагрегативные процессы – сшивание и деструкция.

Деструкция ПВХ сопровождается изменением начальной окраски полимера из-за образования хромофорных группировок и существенным ухудшением физико-механических, диэлектрических и других эксплуатационных характеристик. В результате сшивания происходит превращение линейных макро­молекул в разветвленные и, в конечном счете, в сшитые трехмерные структуры; при этом значительно ухудшаются растворимость полимера и его способность к переработке. В случае пластифицированного ПВХ сшивание уменьшает совместимость пластификатора с полимером, увеличивает миграцию пла­стификатора и необратимо ухудшает эксплуатационные свойства материалов.

Наряду с учетом влияния условий эксплуатации и кратности переработки вторичных полимерных материалов, необходимо оценить рациональное соотношение отходов и свежего сырья в композиции, предназначенной к переработке.

При экструзии изделий из смешанного сырья существует опасность брака из-за разной вязкости расплавов, поэтому предлагается экструдировать первичный и вторичный ПВХ на разных машинах, од­нако порошкообразный ПВХ практически всегда можно смешивать с вторичным полимером.

Важной характеристикой, определяющей принципиальную возможность вторичной переработки ПВХ отходов (допустимое время переработки, срок службы вторичного материала или изделия), а так­же необходимость дополнительного усиления стабилизирующей группы, является время термостабильности.

2.3.1 Методы подготовки отходов поливинилхлорида

Однородные производственные отходы, как правило, подвергаются вторичной переработке, причем в случаях, когда глубокому старению подвергаются лишь тонкие слои материала.


В некоторых случаях рекомендуется использовать абразивный инструмент для снятия деструктированного слоя с последующей переработкой материала в изделия, которые не уступают по свойствам из­делиям, полученным из исходных материалов.

Для отделения полимера от металла (провода, кабели) используют пневматический способ. Обычно выделенный пластифицированный ПВХ может использоваться в качестве изоляции для проводов с низ­ким напряжением или для изготовления изделий методом литья под давлением. Для удаления металлических и минеральных включений может быть использован опыт мукомольной промышленности, осно­ванный на применении индукционного способа, метод разделения по магнитным свойствам. Для отделения алюминиевой фольги от термопласта используют нагрев в воде при 95…100 °С.

Предлагается негодные контейнеры с этикетками погружать в жидкий азот или кислород с температурой не выше –50 °С для придания этикеткам или адгезиву хрупкости, что позволит затем их легко из­мельчить и отделить однородный материал, например бумагу.

Энергетически экономичен способ сухой подготовки пластмассовых отходов с помощью компакто­ра. Способ рекомендуется для переработки отходов искусственных кож (ИК), линолеумов из ПВХ и включает ряд технологических операций: измельчение, сепарацию текстильных волокон, пластикацию, гомогенизацию, уплотнение и грануляцию; можно также вводить добавки. Подкладочные волокна отделяются трижды – после первого ножевого дробления, после уплотнения и вторичного ножевого дробления. Получают формовочную массу, которую можно перерабатывать литьем под давлением, содер­жащую еще волокнистые компоненты, которые не мешают переработке, а служат наполнителем, усили­вающим материал.

2.3.2 Методы переработки отходов поливинилхлоридных пластиков

Литье под давлением

Основными видами отходов на основе ненаполненных ПВХ являются нежелатинизированный пластизоль, технологические отходы и бракованные изделия. На предприятиях легкой промышленности России действует следующая технология переработки отходов пластизоля методами литья под давлением.

Установлено, что изделия из вторичных ПВХ-материалов удовлетворительного качества можно получить по пластизольной технологии. Процесс включает измельчение отходов пленок и листов, приго­товление пасты ПВХ в пластикаторе, формование нового изделия методом литья.

Нежелатинизированный пластизоль при очистке дозатора, смесителя собирали в емкости, подвергали желатинизации, далее смешивали с технологическими отходами и бракованными изделиями на вальцах, полученные листы подвергали переработке на измельчителях роторного типа. Полученную та­ким образом пластизольную крошку перерабатывали методом литья под давлением. Пластизольная крошка в количестве 10…50 масс. ч может быть использована в композиции с каучуком для получения резиновых смесей, причем это позволяет исключить из рецептур мягчители.

Для переработки отходов методом литья под давлением, как правило, применяют машины, работающие по типу интрузии, с постоянно вращающимся шнеком, конструкция которого обеспечивает самопроизвольный захват и гомогенизацию отходов.

Одним из перспективных методов использования отходов ПВХ является многокомпонентное литье. При таком способе переработки изделие имеет наружный и внутренний слои из различных материалов. Наружный слой – это, как правило, товарные пластмассы высокого качества, стабилизированные, окрашенные, имеющие хороший внешний вид. Внутренний слой – вторичное поливинилхлоридное сырье. Переработка термопластов данным методом позволяет значительно экономить дефицитное первичное сырье, сокращая его потребление более чем в два раза.

Экструзия

В настоящее время одним из наиболее эффективных способов переработки отходов полимерных материалов на основе ПВХ с целью их утилизации является метод упруго-деформационного диспергирования, основанный на явлении множественного разрушения в условиях комбинированного воздействия на материал высокого давления и сдвиговой деформации при повышенной температуре.

Упруго-деформационное диспергирование предварительно грубодробленных материалов с размером частиц 103 мкм проводится в одношнековом роторном диспергаторе. Использованные отходы пла­стифицированных дублированных пленочных материалов на различной основе (линолеум на полиэфирной тканевой основе, пеноплен на бумажной основе, искусственная кожа на х/б тканевой основе) перерабатываются в дисперсный однородный вторичный материал, представляющий смесь ПВХ-пластиков с измельченной основой с наиболее вероятным размером частиц 320…615 мкм, преимущест­венно асимметричной формы, с высокой удельной поверхностью (2,8…4,1 м2/г). Оптимальные условия диспергирования, при которых образуется наиболее высокодисперсный продукт – температура по зонам диспергатора 130…150…70 °С; степень загрузки не более 60 %; минимальная скорость вращения шнека 35 об/мин. Повышение температуры переработки ПВХ материалов приводит к нежелательной интенсификации деструкционных процессов в полимере, выражающееся в потемнении продукта. Повышение степени загрузки и скорости вращения шнека ухудшает дисперсность материала.

Переработку отходов безосновных пластифицированных ПВХ-материалов (сельхозпленка, изоляционная пленка, ПВХ-шланги) методом упруго-деформационного диспергирования с получением ка­чественного высокодисперсного вторичного материала можно проводить без технологических затруднений при более широком варьировании режимов диспергирования. Образуется более тонкодисперсный продукт с размером частиц 240…335 мкм, преимущественно сферической формы.



Упруго-деформационное воздействие при диспергировании жестких ПВХ-материалов (ударопроч­ный материал для бутылок под минеральную воду, сантехнические ПВХ-трубы и др.) необходимо про­водить при более высоких температурах (170…180…70 °С), степени загрузки не более 40 % и минимальной скорости вращения шнека 35 об/мин. При отклонении от заданных режимов диспергирования наблюдаются технологические затруднения и ухудшение качества получаемого вторичного продукта по дисперсности.

В процессе переработки отходов ПВХ-материалов одновременно с диспергированием можно осу­ществлять модификацию полимерного материала путем введения в исходное сырье 1…3 масс. ч ме­таллсодержащих термостабилизаторов и 10…30 масс. ч пластификаторов. Это приводит к повышению запаса термостабильности при использовании стеаратов металлов на 15…50 мин и улучшению показа­теля текучести расплава, переработанного совместно со сложноэфирными пластификаторами материала на 20…35 %, а также улучшению технологичности процесса диспергирования.

Получаемые вторичные ПВХ-материалы, благодаря высокой дисперсности и развитой поверхности частиц обладают поверхностной активностью. Это свойство образующихся порошков предопределило их весьма хорошую совместимость с другими материалами, что позволяет использовать их для замены (до 45 % масс.) исходного сырья при получении тех же или новых полимерных материалов.

Для переработки отходов ПВХ могут быть также использованы двухшнековые экструдеры. В них достигается прекрасная гомогенизация смеси, а процесс пластикации осуществляется в более мягких условиях. Так как двухшнековые экструдеры работают по принципу вытеснения, то время пребывания полимера в них при температуре пластикации четко определено и его задержка в зоне высоких темпера­тур исключается. Это предотвращает перегрев и термодеструкцию материала. Равномерность прохож­дения полимера по цилиндру обеспечивает хорошие условия для дегазации в зоне пониженного давле­ния, что позволяет удалять влагу, продукты деструкции и окисления и другие летучие, как правило, содержащиеся в отходах.

Для переработки полимерных комбинированных материалов, в том числе ИК, отходов кабельной изоляции, термопластичных покрытий на бумажной основе и других могут быть использованы спосо­бы, основанные на комбинации экструзионной подготовки и формования методом прессования. Для реализации этого метода предлагается агрегат, состоящий из двух машин, впрыск каждой из которых 10 кг. Доля присутствующих в отходах специально введенных в них неполимерных материалов может составлять до 25 %, причем даже содержание меди может достигать 10 %.

Также применяется метод совместной экструзии свежего термопласта, образующего пристенные слои, и полимерных отходов, составляющих внутренний слой, в результате может быть получено трех­слойное изделие (например, пленка). Другой метод – раздувное формование предложен в . В разработанной конструкции экструзионно-раздувной установки в качестве генератора расплава предусмот­рен червячно-дисковый экструдер с раздувным приводом. Экструзией с раздувом из смеси первичного и вторичного ПВХ изготавливают бутыли, емкости и другие полые изделия.

Каландрование

Примером переработки отходов методом каландрования может служить так называемый процесс "Регал", заключающийся в каландровании материала и получении плит и листов, которые применяются для производства тары и мебели. Удобство такого процесса для переработки отходов различного состава заключается в легкости его регулировки путем изменения зазора между валками каландра для дос­тижения хорошего сдвигового и диспергирующего воздействия на материал. Хорошая пластикация и гомогенизация материала при переработке обеспечивает получение изделий с достаточно высокими прочностными показателями. Способ экономически выгоден для термопластов, пластицируемых при относительно низких температурах, в основном, это мягкий ПВХ.

Для подготовки отходов ИК и ленолеума разработан агрегат, состоящий из ножевой дробилки, смесительного барабана и трехвалковых рафинировочных вальцев. Компоненты смеси в результате боль­шой фрикции, высокого прессующего давления и перемешивания между вращающимися поверхностя­ми еще больше измельчаются, пластицируются и гомогенизируются. Уже за один проход через машину материал приобретает достаточно хорошее качество.

Прессование

Одним из традиционных методов переработки отходов полимерных материалов является прессование, в частности, наиболее распространенным может быть назван метод "Регал-Конвертер". Помол отходов равномерной толщины на транспортной ленте подают в печь и расплавляют. Пластицированная таким образом масса затем спрессовывается. Предложенным методом перерабатывают смеси пластмасс с содержанием посторонних веществ более 50 %.



Существует непрерывный способ переработки отходов синтетических ковров и ИК. Суть его в сле­дующем: размолотые отходы подают в смеситель, куда добавляют 10 % связующего материала, пиг­менты, наполнители (для усиления). Из этой смеси прессуют пластины в двухленточном прессе. Пла­стины имеют толщину 8…50 мм при плотности около 650 кг/м3. Благодаря пористости пластины обла­дают тепло- и звукоизоляционными свойствами. Они находят применение в машиностроении и в авто­мобильной промышленности в качестве конструкционных элементов. При одно- или двухстороннем кашировании эти пластины можно использовать в мебельной промышленности. В США процесс прессования используется для изготовления тяжеловесных пластин.

Также применяется другой технологический способ, основанный на вспенивании в форме. Разработанные варианты отличаются методами введения порообразователей во вторичное сырье и подводом теплоты. Порообразователи могут быть введены в закрытом смесителе или экструдере. Однако производительнее метод формового вспенивания, когда процесс порообразования проводят в прессе.

Существенным недостатком метода прессового спекания полимерных отходов является слабое пе­ремешивание компонентов смеси, что приводит к снижению механических показателей получаемых материалов.

Проблема регенерации отходов ПВХ-пластиков в настоящее время интенсивно разрабатывается, однако имеется немало трудностей, связанных прежде всего с наличием наполнителя. Некоторые разра­ботчики пошли по пути выделения полимера из композита с последующим его использованием. Однако зачастую эти технологические варианты неэкономичны, трудоемки и пригодны для узкого ассортимен­та материалов.

Известные способы прямого термоформования либо требуют высоких дополнительных затрат (подготовительные операции, добавка первичного полимера, пластификаторов, использование специального оборудования), либо не позволяют перерабатывать высоконаполненные отходы, в частности, ПВХ-пластиков.

2.4 УТИЛИЗАЦИЯ ОТХОДОВ ПОЛИСТИРОЛЬНЫХ ПЛАСТИКОВ

Отходы полистирола накапливаются в виде вышедших из употребления изделий из ПС и его сопо­лимеров (хлебницы, вазы, сырницы, различная посуда, решетки, банки, вешалки, облицовочные листы, детали торгового и лабораторного оборудования и т.д.), а также в виде промышленных (технологиче­ских) отходов ПС общего назначения, ударопрочного ПС (УПС) и его сополимеров.


Вторичное использование полистирольных пластиков может идти по следующим путям:


  1. утилизация сильно загрязненных промышленных отходов;
  2. утилизация технологических отходов УПС и АБС-пластика методами литья под давлением, эк­трузии и прессования;
  3. утилизация изношенных изделий;
  4. утилизация отходов пенополистирола (ППС);
  5. утилизация смешанных отходов.

Сильно загрязненные промышленные отходы образуются в производстве ПС и полистирольных пластиков при чистке реакторов, экструдеров и технологических линий в виде кусков различной величины и формы. Эти отходы вследствие загрязненности, неоднородности и низкого качества в основном уничтожают путем сжигания. Возможна их утилизация деструкцией, с использованием получаемых жидких продуктов в качестве топлива.

Возможность присоединения к бензольному кольцу полистирола ионогенных групп позволяет получать на его основе иониты. Растворимость полимера в процессе переработки и эксплуатации также не меняется. Поэтому для получения механически прочных ионитов можно применять технологические отходы и изношенные полистирольные изделия, молекулярную массу которых путем термической деструкции доводят до значений, которые требуются по условиям синтеза ионитов (40…50 тыс.). Последующее хлорметилирование полученных продуктов приводит к получению соединений, растворимых в воде, что свидетельствует о возможности использования вторичного полистирольного сырья для полу­чения растворимых полиэлектролитов.

Технологические отходы ПС (так же, как и ПО) по своим физико-механическим и технологиче­ским свойствам не отличаются от первичного сырья. Эти отходы являются возвратными и в основном



используются на тех предприятиях, где они образуются. Их можно добавлять к первичному ПС или ис­пользовать в качестве самостоятельного сырья при производстве различных изделий.

Значительное количество технологических отходов (до 50 %) образуется в процессе переработки полистирольных пластиков литьем под давлением, экструзией и вакуум-формованием, возврат которых в технологические процессы переработки позволяет значительно повысить эффективность использова­ния полимерных материалов и создавать безотходные производства в промышленности переработки пластмасс.

АБС-пластики широко применяются в автомобилестроении для изготовления крупных деталей автомобилей, при производстве сантехнического оборудования, труб, товаров народного потребления и т.д.

В связи с увеличением потребления стирольных пластиков растет и количество отходов, использование которых является экономически и экологически целесообразным с учетом возрастания стоимости сырья и уменьшения его ресурсов. Во многих случаях вторичное сырье можно использовать для замены первичных материалов.

Установлено, что при неоднократной переработке АБС полимера в нем протекают два конкури­рующих процесса: с одной стороны, частичная деструкция макромолекул, с другой – частичная межмо­лекулярная сшивка, возрастающие по мере увеличения числа циклов переработки.

При выборе способа переработки экструзионного АБС доказана принципиальная возможность формования изделий методами прямого прессования, экструзии, литья под давлением.

Эффективной технологической стадией переработки отходов АБС является сушка полимера, позволяющая довести содержание влаги в нем до уровня, не превышающего 0,1 %. В этом случая устраняется образование таких дефектов в материале, возникающих от избытка влаги, как чешуйчатая поверхность, серебристость, расслаивание изделий по толщине; от предварительной сушки свойства материала улучшаются на 20…40 %.

Однако способ прямого прессования оказывается малопроизводительным, а экструзия полимера затрудняется из-за его высокой вязкости.

Перспективной представляется переработка технологических отходов АБС полимера методом ли­тья под давлением. При этом для улучшения текучести полимера необходимо вводить технологические добавки. Добавка к полимеру облегчает процесс переработки АБС полимера, так как приводит к увеличению подвижности макромолекул, гибкости полимера и снижению его вязкости.

Полученные по такому способу изделия по своим эксплутационным показателям не уступают изде­лиям из первичного полимера, а порой даже превосходят их.

Бракованные и изношенные изделия можно утилизировать измельчением с последующим формованием полученной крошки в смеси с первичными материалами или в качестве самостоятельного сырья.

Значительно более сложная ситуация наблюдается в области утилизации изношенных изделий из ПС, в том числе вспененных пластиков. За рубежом основными путями их утилизации являются пиро­лиз, сжигание, фото- или биоразложение, захоронение. Амортизованные изделия культурно-бытового назначения, а также промышленности полимерных, строительных, теплоизоляционных материалов и других можно подвергать повторной переработке в изделия. В основном это касается изделий из ударо­прочного ПС.

Блочный ПС необходимо перед повторной переработкой совмещать с ударопрочным ПС (в соотношении 70:30), модифицировать другими способами или подвергать вторичной переработке его сополимера с акрилонитрилом, метилметакрилатом (МС) или тройные сополимеры с МС и акрилонитрилом (МСН). Сополимеры МС и МСН отличаются более высокой стойкостью к атмосферному старению (по сравнению с ударопрочными композициями), что имеет большое значение при последующей перера­ботке. Вторичный ПС можно добавлять к ПЭ.

Для превращения отходов полистирольных пленок во вторичное полимерное сырье их подвергают агломерированию в роторных агломераторах. Низкое значение ударной вязкости ПС обусловливает бы­строе измельчение (по сравнению с другими термопластами). Однако высокая адгезионная способность ПС приводит, во-первых, к слипанию частиц материала и образованию крупных агрегатов до того (80 °С), как материал становится пластичным (130 °С),и, во-вторых, к прилипанию материала к перерабатывающему оборудованию. Это значительно затрудняет агломерирование ПС по сравнению с ПЭ, ПП и ПВХ.

Отходы ППС можно растворять в стироле, а затем полимеризовать в смеси, содержащей измельченный каучук и другие добавки. Полученные таким способом сополимеры характеризуются достаточ­но высокой ударной прочностью.



В настоящее время перед перерабатывающей промышленностью стоит проблема переработки сме­шанных отходов пластмасс. Технология переработки смешанных отходов включает сортировку, помол, промывку, сушку и гомогенизацию. Полученный из смешанных отходов вторичный ПС обладает высо­кими физико-механическими показателями, его можно в расплавленном состоянии добавлять в асфальт и битум. При этом снижается их стоимость, и прочностные характеристики возрастают примерно на 20 %.

Для повышения качества вторичного полистирольного сырья проводят его модификацию. Для этого необходимы исследования его свойств в процессе термостарения и эксплуатации. Старение ПС пласти­ков имеет свою специфику, которая наглядно проявляется особенно для ударопрочных материалов, ко­торые помимо ПС содержат каучуки.

При термообработке материалов из ПС (при 100…200 °С) его окисление идет через образование гидропероксидных групп, концентрация которых в начальной стадии окисления быстро растет, с последующим образованием карбонильных и гидроксильных групп.

Гидропероксидные группы инициируют процессы фотоокисления, протекающие при эксплуатации изделий из ПС в условиях воздействия солнечной радиации. Фотодеструкция инициируется также ненасыщенными группами, содержащимися в каучуке. Следствием комбинированного влияния гидропе-роксидных и ненасыщенных групп на ранних стадиях окисления и карбонильных групп на более позд­них стадиях является меньшая стойкость к фотоокислительной деструкции изделий из ПС по сравне­нию с ПО. Наличие ненасыщенных связей в каучуковой составляющей УПС при его нагревании приво­дит к автоускорению процесса деструкции.

При фотостарении ПС, модифицированного каучуком, разрыв цепи преобладает над образованием поперечных связей, особенно при большом содержании двойных связей, что оказывает значительное влияние на морфологию полимера, его физико-механические и реологические свойства.

Все эти факторы необходимо учитывать при повторной переработке изделий из ПС и УПС.

2.5 ПЕРЕРАБОТКА ОТХОДОВ ПОЛИАМИДОВ

Значительное место среди твердых полимерных отходов занимают отходы полиамидов образую­щиеся в основном при производстве и переработке в изделия волокон (капрон и анид), а также вышед­шие из употребления изделия. Количество отходов при производстве и переработке волокна достигает 15 % (из них при производстве – 11…13 %). Так как ПА дорогостоящий материал, обладающий рядом ценных химических и физико-механических свойств рациональное использование его отходов приобре­тает особую важность.


Многообразие видов вторичного ПА требует создания специальных методов переработки и в то же время открывает широкие возможности для их выбора.

Наиболее стабильными показателями обладают отходы ПА-6,6, что является предпосылкой созда­ния универсальных методов их переработки. Ряд отходов (обрезиненный корд, обрезь, изношенные чу­лочно-носочные изделия) содержит неполиамидные составляющие и требует специального подхода при переработке. Изношенные изделия загрязнены, причем количество и состав загрязнений определяется условиями эксплуатации изделий, организацией их сбора, хранения и транспортирования.

Основными направлениями переработки и использования отходов ПА можно назвать измельчение, термоформование из расплава, деполимеризацию, переосаждение из раствора, различные методы мо­дификации и текстильную обработку с получением материалов волокнистой структуры. Возможность, целесообразность и эффективность применения тех или иных отходов обусловлены, в первую очередь, их физико-химическими свойствами.

Большое значение имеет молекулярная масса отходов, которая влияет на прочность регенерированных материалов и изделий, а также на технологические свойства вторичного ПА. Значительное влияние на прочность, термостабильность и условия переработки оказывает содержание низкомолекулярных со­единений в ПА-6. Наиболее термостабильным в условиях переработки является ПА-6,6.

Для выбора методов и режимов переработки, а также направлений использования отходов важным является изучение термического поведения вторичного ПА. При этом значительную роль могут играть структурно-химические особенности материала и его предыстория.

2.5.1 Методы переработки отходов ПА

Существующие способы переработки отходов ПА можно отнести к двум основным группам: меха­нические, не связанные с химическими превращениями, и физико-химические. Механические способы включают измельчение и различные приемы и методы, использующиеся в текстильной промышленно­сти для получения изделий с волокнистой структурой.

Механической переработке могут быть подвергнуты слитки, некондиционная лента, литьевые отходы, частично вытянутые и невытянутые волокна.

Измельчение является не только операцией, сопровождающей большинство технологических про­цессов, но и самостоятельным методом переработки отходов. Измельчение позволяет получить порош­кообразные материалы и крошку для литья под давлением из слитков, ленты, щетины. Характерно, что при измельчении физико-химические свойства исходного сырья практически не изменяются. Для полу­чения порошкообразных продуктов применяют, в частности, процессы криогенного измельчения.

Отходы волокон и щетины используют для производства рыболовной лесы, мочалок, сумочек и др., однако при этом требуются значительные затраты ручного труда.

Из механических методов переработки отходов наиболее перспективными, получившими широкое распространение следует считать производство нетканых материалов, напольных покрытий и штапельных тканей. Особую ценность для этих целей представляют отходы полиамидных волокон, которые легко перерабатываются и окрашиваются.

Физико-химические методы переработки отходов ПА могут быть классифицированы следующим образом:


  1. деполимеризация отходов с целью получения мономеров, пригодных для производства волокна и олигомеров с последующим их использованием в производстве клеев, лаков и других продуктов;
  2. повторное плавление отходов для получения гранулята, агломерата и изделий экструзией и литьем под давлением;
  3. переосаждение из растворов с получением порошков для нанесения покрытий;
  4. получение композиционных материалов;
  5. химическая модификация для производства материалов с новыми свойствами (получение лаков, клеев и т.д.).

Деполимеризация широко применяется в промышленности для получения высококачественных мономеров из незагрязненных технологических отходов.

Деполимеризацию проводят в присутствии катализаторов, которыми могут быть нейтральные, ос­новные или кислые соединения.

Широкое распространение в нашей стране и за рубежом получил метод повторного плавления отходов ПА, которое проводят в основном в вертикальных аппаратах в течение 2–3 ч и в экструзионных установках. При длительном термическом воздействии удельная вязкость раствора ПА-6 в серной ки­слоте снижается на 0,4…0,7 %, а содержание низкомолекулярных соединений возрастает с 1,5 до 5–6 %. Плавление в среде перегретого пара, увлажнение и плавление в вакууме улучшают свойства регенерированного полимера, однако не решают проблемы получения достаточно высокомолекулярных продук­тов.

В процессе переработки экструзией ПА окисляется значительно меньше, чем при длительном плав­лении, что способствует сохранению высоких физико-механических показателей материала. Повыше­ние влагосодержания исходного сырья (для снижения степени окисления) приводит к некоторой деструкции ПА.

Получение порошков из отходов ПА путем переосаждения из растворов представляет собой способ очистки полимеров, получения их в виде, удобном для дальнейшей переработки. Порошки могут при­меняться, например, для чистки посуды, как компонент косметических средств и др.

Широко распространенным методов регулирования механических свойств ПА является наполнение их волокнистыми материалами (стекловолокном, асбестовым волокном и т.п.).

Примером высокоэффективного использования отходов ПА является создание на их основе мате­риала АТМ-2, обладающего высокими прочностью, износостойкостью, стабильностью размеров.

Перспективным направлением улучшения физико-механических и эксплуатационных свойств изделий из вторичного ПКА является физическое модифицирование формованных деталей путем их объем­но-поверхностной обработки. Объемно-поверхностная обработка образцов из вторичного ПКА, напол­ненного каолином и пластифицированного сланцевым мягчителем в нагретом глицерине приводит к росту ударной вязкости на 18 %, разрушающего напряжения при изгибе на 42,5 %, что может быть объ­яснено формованием более совершенной структуры материала и снятием остаточных напряжений.

2.5.2 Технологические процессы повторной переработки отходов ПА

Основными процессами, используемыми для регенерации вторичного полимерного сырья из отхо­дов ПА, являются:


  1. регенерация ПА путем экструзии изношенных капроновых сетематериалов и технологических отходов с получением гранулированных продуктов, пригодных для переработки в изделия методом литья под давлением;
  2. регенерация ПА из изношенных изделий и технологических отходов капрона, содержащих во­локнистые примеси (не полиамиды), путем растворения, фильтрации раствора и последующего осажде­ния ПА в виде порошкообразного продукта.

Технологические процессы переработки изношенных изделий отличаются от переработки технологических отходов наличием стадии предварительной подготовки, включающей разборку сырья, его от­мывку, промывку, отжим и сушку вторичного сырья. Предварительно подготовленные изношенные из­делия и технологические отходы поступают на измельчение, после чего направляются в экструдер для грануляции.

Вторичное волокнистое полиамидное сырье, содержащее неполиамидные материалы, обрабатывают в реакторе при комнатной температуре водным раствором соляной кислоты, фильтруют для удале­ния неполиамидных включений. Порошкообразный полиамид осаждают водным раствором метанола. Осажденный продукт измельчают и полученный порошок рассеивают.

В настоящее время в нашей стране технологические отходы, образующиеся в производстве капро­нового волокна достаточно эффективно используются для производства нетканых материалов, наполь­ных покрытий и гранулята для литья и экструзии. Основной причиной недостаточного использования вышедших из строя изделий из ПА из компактных источников является отсутствие высокоэффективного оборудования для их первичной обработки и переработки.

Разработка и промышленное внедрение процессов переработки изношенных изделий из капроново­го волокна (чулочно-носочных, сетеснастных материалов и др.) во вторичные материалы позволит дос­тичь экономии значительного количества исходного сырья и направить его в наиболее эффективные области применения.


2.6 ВТОРИЧНАЯ ПЕРЕРАБОТКА ОТХОДОВ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

Переработка лавсановых волокон и изношенных изделий из ПЭТФ аналогична вторичной переработке полиамидных отходов, поэтому в данном разделе рассмотрим вторичную переработку ПЭТФ бу­тылок.

За более чем 10 лет массового потребления в России напитков в упаковке из ПЭТФ на полигонах твердых бытовых отходов накопилось по некоторым оценкам более 2 млн. т использованной пластико­вой тары, являющейся ценным химическим сырьем.

Взрывной рост производства бутылочных преформ, повышение мировых цен на нефть и, соответст­венно, на первичный ПЭТФ, повлияли на активное формирование в России в 2000 г. рынка по перера­ботке использованных ПЭТФ бутылок.

Существует несколько методов переработки использованных бутылок. Одной из интересных мето­дик является глубокая химическая переработка вторичного ПЭТФ с получением диметилтерефталата в процессе метанолиза или терефталевой кислоты и этиленгликоля в ряде гидролитических процессов. Однако такие способы переработки имеют существенный недостаток – дороговизна процесса деполи­меризации. Поэтому в настоящее время чаще применяются довольно известные и распространенные механохимические способы переработки, в процессе которых конечные изделия формируются из рас­плава полимера. Разработан значительный ассортиментный ряд изделий, получаемых из вторичного бу­тылочного полиэтилентерефталата. Основным крупнотоннажным производством является получение лавсановых волокон (в основном штапельных), производство синтепонов и нетканых материалов. Большой сегмент рынка занимает экструзия листов для термоформования на экструдерах с листовальными головками, и, наконец, наиболее перспективным способом переработки повсеместно признано получение гранулята, пригодного для контакта с пищевыми продуктами, т.е. получение материала для повторной отливки преформ.


Бутылочный полупродукт может быть использован в технических целях: в процессе переработки в изделия вторичный ПЭТФ можно добавлять в первичный материал; компаундирование – вторичный ПЭТФ можно сплавлять с другими пластиками (например, с поликарбонатом, с ВПЭ) и наполнять волокнами для производства деталей технического назначения; получение красителей (суперконцентра­тов) для производства окрашенных пластиковых изделий.

Также очищенные ПЭТФ хлопья можно непосредственно использовать для изготовления широкого ассортимента товаров: текстильного волокна; набивочных и штапельных волокон – синтепона (утепли­тель для зимних курток, спальных мешков и др.); кровельных материалов; пленок и листов (окрашен­ных, металлизированных); упаковки (коробки для яиц и фруктов, упаковка для игрушек, спортивных товаров и т.д.); литьевых изделий конструкционного назначения для автомобильной промышленности; деталей осветительных и бытовых приборов и др.

В любом случае исходным сырьем для деполимеризации или переработки в изделия являются не бутылочные отходы, которые могли пролежать какое-то время на свалке, и представляющие собой бес­форменные сильно загрязненные объекты, а чистые хлопья ПЭТФ.

Рассмотрим процесс переработки бутылок в чистые хлопья пластика.

По возможности бутылки должны уже собираться в отсортированном виде, не смешиваясь с другими пластиками и загрязняющими объектами. Оптимальным объектом для переработки является спрес­сованная кипа из бесцветных ПЭТФ бутылок (окрашенные бутылки должны быть отсортированы и переработаны отдельно). Бутылки необходимо хранить в сухом месте. Пластиковые мешки с ПЭТФ бу­тылками навалом опорожняют в загрузочный бункер. Далее бутылки поступают в бункер-питатель. Пи­татель кип используется одновременно и как бункер хранения с системой равномерной подачи, и как разбиватель кип. Транспортер, расположенный на полу бункера, продвигает кипу к трем вращающимся шнекам, разбивающим агломераты на отдельные бутылки и подающим их на разгрузочный конвейер. Здесь необходимо разделять бутылки из окрашенного и неокрашенного ПЭТФ, а также удалять посто­ронние объекты, такие как резина, стекло, бумага, металл, другие типы пластиков.

В однороторной дробилке, оборудованной гидравлическим толкателем, ПЭТФ бутылки измельча­ются, образуя крупные фракции размером до 40 мм.

Измельченный материал проходит через воздушный вертикальный классификатор. Тяжелые части­цы (ПЭТФ) падают против воздушного потока на экран вибросепаратора. Легкие частицы (этикетки, пленка, пыль и т.д.) уносятся вверх потоком воздуха и собираются в специальном пылесборнике под циклоном. На виброэкране сепаратора частицы разделяются на две фракции: крупные частицы ПЭТФ "перетекают" через экран, а мелкие частицы (в основном тяжелые фракции загрязнений), проходят во­внутрь экрана и собираются в емкости под сепаратором.

Флотационный танк используется для сепарации материалов с разными относительными плотностями. Частицы ПЭТФ опускаются на наклонное дно, и шнек непрерывно выгружает ПЭТФ на водоот-делительный экран.

Экран служит одновременно как для отделения воды, нагнетаемой вместе с ПЭТФ из флотатора, так и для отделения тонких фракций загрязнений.

Предварительно раздробленный материал эффективно отмывается в наклонном двухступенчатом вращающемся барабане с перфорированными стенками.

Сушка хлопьев происходит во вращающемся барабане, изготовленном из перфорированного листа. Материал перевертывается в потоках горячего воздуха. Воздух нагревается электрическими нагревателями.

Далее хлопья попадают во вторую дробилку. На этой стадии крупные частицы ПЭТФ измельчаются в хлопья, размер которых составляет приблизительно 10 мм. Необходимо отметить, что идея переработ­ки состоит в том, что материал не измельчается в хлопья товарного продукта на первой стадии измель­чения. Такое ведение процесса позволяет избежать потерь материала в системе, достичь оптимального отделения этикеток, улучшить моющий эффект и уменьшить износ ножей во второй дробилке, так как стекло, песок и прочие абразивные материалы удаляются до стадии вторичного измельчения.

Конечный процесс аналогичен процессу первичной воздушной классификации. Остатки этикеток и пыль ПЭТФ удаляются с воздушным потоком. Конечный продукт – чистые ПЭТФ хлопья засыпаются в бочки.

Таким образом, можно решить серьезный вопрос утилизации вторичной пластиковой тары с полу­чением продукта.

Перспективным способом вторичной переработки ПЭТФ является производство бутылок из бутылок.

Главными стадиями классического процесса рецайклинга для реализации схемы "бутылка к бутылке" являются: сбор и сотрировка вторичного сырья; пакетирование вторичного сырья; измельчение и промывка; выделение дробленки; экструзия с получением гранул; обработка гранул в шнековом аппарате с целью увеличения вязкости продукта и обеспечения стерилизации продукта для возможности прямого контакта с пищевыми продуктами. Но для реализации этого процесса необходимы серьезные капитальные вложения, так как невозможно проведение данного процесса на стандартном оборудовании.

2.7 СЖИГАНИЕ

Сжигать целесообразно только некоторые типы пластмасс, потерявших свои свойства, для по­лучения тепловой энергии. Например, тепловая электростанция в г. Вульвергемтоне (Великобритания) впервые в мире работает не на газе и не на мазуте, а на старых автомобильных покрышках. Осуществить этот уникальный проект, позволяющий обеспечить электроэнергией 25 тыс. жилых домов, помогло английское Управление по утилизации неископаемых видов топлива.

Сжигание некоторых видов полимеров сопровождается образованием токсичных газов: хлорида водорода, оксидов азота, аммиака, цианистых соединений и др., что вызывает необходимость мероприятий по защите атмосферного воздуха. Кроме того, экономическая эффективность этого процесса является наименьшей по сравнению с другими процессами утилизации пластмассовых отходов. Тем не менее, сравнительная простота организации сжигания определяет довольно широкое его распространение на практике.

2.8 ПЕРЕРАБОТКА ОТХОДОВ РТИ

Согласно новейшей статистике в Западной Европе ежегодно образуется около 2 млн. т изношенных шин, в России – приблизительно 1 млн. т шин и такое же количество старой резины дают резиновые технические изделия (РТИ). На предприятиях по производству шин и РТИ образуется много отходов, немалая доля которых повторно не используется, например отработанные бутило­вые диафрагмы на шинных заводах, этиленпропиленовые отходы и т.п.

Ввиду большого количества старой резины по-прежнему доминирующее положение в утили­зации занимает сжигание, в то время как материальная утилизация до сих пор составляет незначи­тельную долю, несмотря на актуальность именно этой утилизации для улучшения экологии и со­хранения сырьевых ресурсов. Материальная утилизация не получила широкого использования из-за больших энергозатрат и высокой стоимости получения тонкодисперсных резиновых порошков и регенератов.

Без экономического регулирования со стороны государства утилизация шин пока остается убыточной. В Российской Федерации отсутствует система сбора, депонирования и переработки изношенных шин и РТИ. Не разработаны методы правового и экономического регулирования и стимулирования решения этой проблемы. В большей части изношенные шины скапливаются на территориях автопарков или вывозятся в леса и карьеры. В настоящее время значительные количе­ства ежегодно образующихся изношенных шин являются большой экологической проблемой для всех регионов страны.

Как показывает практика, на региональном уровне эту задачу решить очень трудно. В России должна быть разработана и внедрена Федеральная программа по утилизации шин и РТИ. В Про­грамме необходимо заложить правовые и экономические механизмы, обеспечивающие движение изношенных шин по предлагаемой схеме.

В качестве экономического механизма работы системы по утилизации шин в нашей стране обсуждаются два принципиальных подхода:


  1. за утилизацию шин платит непосредственно их владелец –"загрязнитель платит";
  2. за утилизацию шин платит изготовитель или импортер шин – "производитель платит".

Принцип "загрязнитель платит" частично реализуется в таких регионах, как Татарстан, Москва, Санкт-Петербург и др. Реально оценивая уровень экологического и экономического нигилизма наших сограждан, успешное использование принципа "загрязнитель платит" можно считать бесперспективным.

Лучшим для нашей страны было бы введение принципа "производитель платит". Этот принцип успешно работает в Скандинавских странах. Например, его использование в Финляндии позволяет утилизировать более 90 % шин.

2.8.1 Дробление изношенных покрышек и камер

Начальная стадия получения регенерата существующими промышленными методами из изно­шенных резиновых изделий (покрышек, камер и др.) – их измельчение.

Измельчение шинных резин сопровождается некоторой деструкцией вулканизационной сетки резин, величина которой, оцениваемая по изменению степени равновесного набухания, при прочих равных условиях тем больше, чем меньше размер частиц получаемой резиновой крошки. Хлоро-форменный экстракт резин при этом изменяется крайне незначительно. Одновременно происходит также деструкция углеродных структур. Дробление резин, содержащих активный технический уг­лерод, сопровождается некоторой деструкцией цепочечных структур по связям углерод – углерод; в случае малоактивного технического углерода (термического) число контактов между частицами углерода несколько возрастает. В общем изменения вулканизационной сетки и углеродных структур резин при дроблении должны, как и в случае любого механохимического процесса, зави­сеть от типа полимера, природы и количества наполнителя, содержащегося в резине, природы по­перечных связей и густоты вулканизационной сетки, температуры процесса, а также степени из­мельчения резины и типа применяемого при этом оборудования. Размер частиц получаемой рези­новой крошки определяется методом девулканизации резины, типом измельчаемой резины и тре­бованиями к качеству конечного продукта – регенерата.

Чем меньше размеры частиц крошки, тем более быстро и равномерно деструктированного материала, уменьшению содержания в девулканизате недостаточно девулканизованных частиц резины ("крупы") и, как следствие этого, – получению более однородного по качеству регенерата, снижению количества отходов рафинирования и повышению производительности рафинировочного оборудования. Однако по мере уменьшения размеров частиц резиновой крошки возрастают затраты на ее производство.

В связи с этим при существующих в настоящее время способах получения резиновой крошки применение для получения регенерата шинной резиновой крошки с размерами частиц 0,5 мм и ме­нее, как правило, экономически нецелесообразно. Поскольку в изношенных покрышках наряду с резиной содержатся другие материалы – текстиль и металл, при дроблении покрышек одновремен­но производится очистка резины от этих материалов. Если наличие металла в резиновой крошке является недопустимым, то возможное содержание в ней остатков текстиля зависит от последую­щего метода девулканизации резиновой крошки и типа текстиля.

Для дробления изношенных резиновых изделий наиболее широко применяются вальцы (в РФ, ПНР, Англии, США) и дисковые мельницы (в Германии, Венгрии, Чехии). Используют для этого и ударные (молотковые) дробилки, роторные измельчители, например установки "Новоротор". Резины измельчают также экструзионным методом, основанным на разрушении резин в условиях все­стороннего сжатия и сдвига.

Предложен аппарат, в котором измельчаемый материал проходит между ротором, и стенкой корпуса. Эффект измельчения при этом усиливается за счет изменения величины и формы зазора между ротором и стенкой корпуса при вращении ротора. Сопоставление ряда действующих схем дробления изношенных покрышек показало, что по производительности оборудования, энерго- и трудоемкости процесса лучшие показатели имеет схема, основанная на применении вальцев, чем на применении дисковых мельниц или роторной машины.

Существующая на отечественных регенератных заводах технология измельчения изношенных покрышек позволяет получать резиновую крошку из покрышек с текстильным кордом.


Выдержки из учебного пособия

"Утилизация и вторичная переработка полимерных материалов"

Клинков А.С., Беляев П.С., Соколов М.В.

Предоставлены компанией INVENTRA, входящей в Группу CREON и организовавшей данное мероприятие, собравшее 17 февраля ведущих представителей индустрии в российской столице.

Рециклинг полимеров, столь развитый в европейских странах, в России пока находится в зачаточном состоянии: раздельный сбор отходов не налажен, нормативная база отсутствует, инфраструктуры нет, как нет и сознательности среди большей части населения. Однако игроки рынка смотрят в будущее с оптимизмом, возлагая надежды в том числе на Год экологии, который объявлен в стране в 2017 г. указом Президента.

Третья международная конференция «Вторичная переработка полимеров 2017» , организованная компанией INVENTRA, состоялась в Москве 17 февраля. Партнерами мероприятия выступили Polymetrix, Uhde Inventa-Fischer, Starlinger Viscotec, MAAG Automatik, Erema и Moretto; поддержку оказали Nordson, DAK Americas и PETplanet. Информационный спонсор конференции – журнал «Полимерные материалы».

«Сейчас ситуация не вдохновляет, но ее улучшение – дело времени, – отметил в приветственном слове управляющий директор Группы CREON Сергей Столяров . – При высоких ценах на первичное сырье спрос на переработанные полимеры и изделия из них будет расти. В то же время появление отечественного сырья сместит структуру потребления первичного в сторону волокон и пленок. В этой связи использование вторичных полимеров становится особенно перспективно».

По итогам 2016 г. объем мирового сбора ПЭТФ для вторичной переработки составил 11.2 млн т, сообщила консультант PCI Wood Mackenzie Хелен МакГиу . Основная доля пришлась на страны Азии – 55%, в Западной Европе собрано 17% от мирового объема, в США – 13%. По прогнозу эксперта, к 2020 г. сборы ПЭТФ для рециклинга превысят 14 млн т, а в процентном выражении уровень сбора достигнет 56% (сейчас 53%). Основной рост ожидается за счет азиатских стран, в частности, Китая.

На данный момент наибольший уровень сбора наблюдается в Китае, он составляет 80%, примерно такого же показателя достигли и другие азиатские страны.

По словам г-жи МакГиу, из собранного в 2016 г. ПЭТФ (а это, напомним, 11.2 млн т) производственные потери составили 2.1 млн т, соответственно, хлопьев было получено 9.1 млн т. Основное направление дальнейшей переработки – волокна и нити (66%).

К 2025 г. в Европе будет перерабатываться 60% бытовых отходов, в 2030 г. этот показатель вырастет до 65%. Такие поправки планируются в Рамочную директиву по отходам, сообщил Каспарс Фогельманис , председатель Совета директоров Nordic Plast. Сейчас уровень рециклинга гораздо ниже – в Латвии, например, он составляет всего 21%, в среднем в Европе – 44%.

При этом объемы производимой в Прибалтике пластмассовой упаковки ежегодно растут, наиболее распространенные перерабатываемые полимеры – пленка ПЭНП, ПЭВП и ПП.

В России по итогам 2016 г. потребление вторичного ПЭТФ (reПЭТФ) составило около 177 тыс. т, из них на внутренний сбор пришлось 90%. Как сообщил Константин Рзаев , председатель Совета директоров ГК «ЭкоТехнологии», почти 100% импорта пришлось на ПЭТ-хлопья для производства полиэфирного волокна. Крупнейшие страны-поставщики – это Украина (более 60%), а также Казахстан, Белоруссия, Азербайджан, Литва и Таджикистан.

Константин Рзаев отметил, что в прошлом году уровень сбора впервые превысил 25%, и это позволяет говорить о появлении в России полноценной отрасли, уже представляющей интерес для инвестиций. Сегодня главным потребителем (62% всего объема) и драйвером цены по-прежнему является сегмент вторичного ПЭТ-волокна. Но изменения в законодательстве и тренд к приоритетному использованию вторичных материалов в рамках стратегий Устойчивого Развития транснациональных компаний-производителей (ТНП) обеспечивают благоприятную почву для развития другого ключевого сегмента потребления reПЭТФ – bottle-to-bottle.

За прошедший год не появилось новых крупных производств, потребляющих reПЭТФ, однако постепенно растет его использование в сегменте «лист».

Однако уже в 2017 г. ожидается открытие новых производств вторичного ПЭТ-волокна и расширение существующих, что вместе с курсом рубля будет основным фактором влияния на баланс рынка и цены на reПЭТФ.

Однако есть немало других направлений – пока неразвитых, но достаточно перспективных, где рециклированный ПЭТФ тоже востребован. Как рассказал почетный президент АРПЭТ Виктор Керницкий , это нити для мебельных тканей, обивки автомобилей и различных видов геосинтетики, вспененные материалы для тепло- и звукоизоляции, сорбционные материалы для очистки сточных вод, а также волокна, армирующие битум, для дорожного строительства.

По словам эксперта, существует множество новых технологий переработки и сфер применения, и целью государственной политики должно быть не ограничение применения ПЭТФ, а сбор и рациональное использов ание его отходов.

Тему продолжила Любовь Меланевская , исполнительный директор ассоциации «РусПЭК», которая рассказала о первых итогах введения в России расширенной ответственности производителей (РОП). Она вступила в действие в 2016 г., ее цель – создать постоянный, платежеспособный и растущий спрос на переработку отходов продукции и упаковки. По прошествии года уже можно сделать некоторые выводы, основной из которых – существует ряд проблем, из-за которых механизм по реализации РОП зачастую попросту не работает. Как рассказала на конференции г-жа Меланевская, налицо необходимость изменения и дополнения существующего регулирования. В частности, при декларировании товаров, включая упаковку, производители столкнулись с несовпадением кодов упаковки товаров с кодами, указанными в принятых нормативных актах, вследствие чего многие производители и импортеры не смогли подать декларации, т.к. не нашли себя в регулировании. Решением стал отказ от кодов и предложение перейти на идентификацию упаковки по материалам.

В дальнейшем, считает «РусПЭК», необходимо принятие единой сквозной терминологии для всех элементов РОП и определение однозначных, понятных и прозрачных условий для заключения контрактов с операторами по обращению с отходами. В целом же ассоциация поддерживает закон о РОП как нужный и позитивный для отрасли.

При внедрении и популяризации в стране рециклинга ПЭТФ огромное значение имеет и наличие современных технологий (как правило, их предоставляют иностранные компании). Так, Polymetrix предлагает современные решения по вторичной переработке ПЭТФ, в частности, технологию SSP для рециклинга в пищевой бутылочный полиэтилентерефталат. Сейчас в мире работает 21 такая линия, рассказал Данил Поляков, региональный менеджер по продажам. Технология предполагает переработку бутылок в гранулы для пищевых контейнеров. Первым этапом является мойка, когда происходит полное удаление волокон бумаги и поверхностных загрязнений, а также этикеток и клея. Далее бутылки измельчаются в хлопья, которые сортируются по цвету. Затем идет удаление примесей (дерево, металл, резина, цветные хлопья) до уровня менее 20 ppm.

По словам г-на Полякова, в процессе экструзии возможно получение разнообразных гранул: цилиндрических или сферических, аморфных или кристаллизованных.

Viscotec предлагает своим потребителям технологию переработки ПЭТ-бутылок в листы, говорит представитель компании Герхард Осбергер . Так, реакторы твердофазной поликонденсации viscoSTAR и deCON предназначены для очищения и повышения вязкости ПЭТ-гранул и хлопьев. Их используют после гранулятора, перед производственным экструзионным оборудованием или как самостоятельную установку.

Линия ViscoSHEET способна производить ленту, изготовленную на 100% из вторичного ПЭТФ и полностью пригодную для использования с пищевыми продуктами.

Представитель компании Erema Кристоф Вьосс рассказал о поточном производстве пищевых пластиковых бутылок из ПЭТ-хлопьев. Система VACUREMA® инлайн дает возможность перерабатывать флексы напрямую в готовый термоформовочный лист, бутылочную преформу, в готовую упаковочную ленту или мононить.

Подводя итоги конференции, ее участники определили основные факторы, сдерживающие развитие рециклинга полимеров в России. Главным из них они назвали отсутствие регулирующих нормативных документов:

«Тем не менее, есть еще один фактор, который мы не можем не учитывать, – это общественное сознание, – рассуждает директор конференции Рафаэль Григорян . – К сожалению, наш менталитет сегодня таков, что раздельный сбор отходов воспринимается скорее как баловство, нежели как норма. И какие бы подвижки мы ни наблюдали в других сферах, необходимо прежде всего менять мышление наших сограждан. Без этого даже самая современная инфраструктура окажется бесполезной».

Такими оказались итоги отраслевой конференции “Вторичная переработка полимеров 2017”. С подробным перечнем можно познакомиться в нашем календаре.

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

В России уровень производства и потребления полимерных материалов относительно невысок, если сравнивать с другими развитыми странами мира. Переработка полимеров выполняется всего на 30% от общего объема материала. Это очень мало, учитывая общий объем утильсырья подобного типа.

Немного о полимерной продукции

Почти половина всех полимеров приходится на упаковочную тару. Такое использование полимерных материалов обуславливается не только эстетичным видом продукта, но и сохранностью изделия, находящегося в упаковке. Полимерные отходы образуются в значительном количестве – около 3,3 миллиона тонн. Ежегодно это количество увеличивается примерно на 5%.

Основные виды полимерных отходов представлены следующими материалами:

  • Материалы из полиэтилена – 34%
  • ПЭТ – 20%
  • Ламинированная бумага – 17%
  • ПВХ – 14%. Полистирол – 8%
  • Полипропилен – 7%

Утилизация основного объема пластика заключается в захоронении в почву или же сжигании. Однако такие методы недопустимы с экологической точки зрения. При захоронении материалов происходит отравление почвы ввиду наличия в составе вредных веществ. Также и при сжигании в атмосферу выделяются ядовитые вещества, которыми впоследствии дышит все живое.

Переработка полимерных материалов при помощи новых технологий развивается слабо по следующим причинам:

  1. Отсутствие в государстве необходимых нормативно-технических условий и производств для создания качественного вторичного сырья. По этой причине вторичное полимерное сырье, создаваемое из отходов, характеризуется невысоким качеством.
  2. Полученная продукция обладает низкой конкурентоспособностью.
  3. Высокая стоимость переработки пластмасс – ценовая оценка данного мероприятия показала, что требуется примерно в 8 раз больше средств для обработки, чем для бытовых отходов.
  4. Низкий уровень сбора и переработки подобного материала в связи с отсутствием экономических условий и законодательной поддержки.
  5. Отсутствие информационной базы относительно вопроса переработки и раздельного сбора мусора. Немногие люди осведомлены, что вторичная переработка полимеров является прекрасной альтернативой нефти в производстве.

Классификация

Существует 3 основных разновидности полимерных отходов:

  1. Технологические – включают в себя две группы: устранимые и неустранимые. Первый вид представлен бракованной продукцией, которая впоследствии сразу же перерабатывается в другое изделие. Вторая разновидность представляет собой всевозможные отходы в процессе производства полимеров, их устраняют также посредством переработки и изготовления новой продукции.
  2. Отходы общественного потребления – весь мусор, относящийся к повседневной жизни людей, который обычно выбрасывается вместе с пищевыми отходами. Введение привычки собирать мусор в отдельные пакеты и также раздельно его выбрасывать могло бы значительно облегчить решение проблемы по переработке.
  3. Отходы производственного потребления – такой вид являет в себе вторичные полимеры, пригодные для переработки ввиду низкого уровня загрязненности. К ним относят все упаковочные изделия, мешки, шины и прочее – все это списывается по причине деформации или выхода из строя. Их охотно принимают перерабатывающие предприятия.

Цепочка извлечения и переработки вторсырья

Извлечение и переработка полимерных отходов выполняется соответственно указанной технологической цепочке:

  1. Организация пунктов, которые принимают вторичное полимерное сырье. В этих пунктах выполняется первичная сортировка, а также прессование сырья.
  2. Выполнение сбора материала на полигонах легально или нелегально занимающимися переработкой вторичного сырья компаниями.
  3. Выход сырья на рынок после предварительной сортировки на специальных мусороперерабатывающих пунктах.
  4. Закупка перерабатывающими компаниями материала у крупных торговых комплексов. Такое вторсырье меньше загрязняется и подлежит незначительной сортировке.
  5. Сбор вторсырья благодаря внедрению программы, необходимой для выполнения раздельного сбора мусора. Программа выполняется на низком уровне из-за отсутствия активности граждан. Люди без определенного места жительства выполняют акты вандализма, которые заключаются в поломке контейнеров, предназначенных для раздельного сбора отходов.
  6. Предварительная переработка отходов полимеров.

Обработка полимеров начинается на перерабатывающем производстве. Она состоит из целого ряда действий:

  • Выполнение грубой сортировки для отходов смешанного вида.
  • Дальнейшее измельчение вторсырья.
  • Выполнение разделения смешанных отходов.
  • Мойка.
  • Сушка.
  • Процесс грануляции.

Далеко не все жители Российской Федерации осведомлены о пользе рециклинга. Полимерные материалы не только принесут небольшой доход, если сдавать их регулярно на перерабатывающие предприятия, но и спасут окружающую среду от опасных веществ, выделяемых в процессе разложения полимерных материалов.

Оборудование для переработки полимерных отходов

Весь комплекс для обработки необходимого сырья включает:

  1. Линию для мойки.
  2. Экструдер.
  3. Необходимые ленточные транспортеры.
  4. Шредеры – измельчают практически все разновидности полимерных изделий, относятся к первой ступени.
  5. Дробилку – их относят ко второй ступени измельчителей, применяются после использования шредера.
  6. Смесители и дозаторы.
  7. Агломераторы.
  8. Ситозаменители.
  9. Линии гранулирования или грануляторы.
  10. Машину постобработки готовой продукции.
  11. Сушилку.
  12. Дозирующее устройство.
  13. Холодильники.
  14. Пресс.
  15. Мойку.

В настоящее время особенно актуально производство дробленых полимерных материалов, так называемых «флэксов». Для их изготовления применяется современная установка – дробилка для полимеров. Большинство предпринимателей даже не задумывают о закупке оборудования для переработки, считая данную услугу дорогостоящей. Однако на деле оно окупается целиком примерно за 2-3 года использования.

Технология переработки вторсырья

Самая распространенная технология переработки отходов полимеров – экструзия. Этот метод заключается в непрерывном продавливании расплавленного сырья через специальную формирующую головку. С помощью выходного канала определяется профиль будущего изделия.

Благодаря выполнению переработки этим способом из вторсырья получают:

  • Шланги.
  • Трубы.
  • Сайдинг.
  • Изоляция для проводов.
  • Капилляры.
  • Многослойные погонажные изделия.

Посредством экструзии выполняется вторичное использование сырья полимеров, а также гранулирование. Грануляция полимеров позволяет эффективно использовать вторичное сырье в различных сферах деятельности человека. Отходы полимеров способствуют выходу на рынок большого количества новой продукции выполненной посредством утилизации вторсырья. Для осуществления экструзионного процесса используют специальное оборудование – червячный экструдер.

Технология переработки отходов полимеров выглядит следующим образом:

  • Расплавление полимерного материала в экструдере.
  • Пластицирование.
  • Нагнетание в головку.
  • Выход через формирующую головку.

Для переработки пластмасс в производстве используют разные виды экструзионного оборудования:

  1. Бесшнековые. Масса продавливается в головку при помощи диска особой формы.
  2. Дисковые. Используются при необходимости достижения улучшенного смешения составляющих компонентов смеси.
  3. Комбинированные экструдеры. Рабочее устройство сочетает шнековую и дисковую части механизма. Используется при создании изделий, требующих высокую точность геометрических размеров.

Применение отходов полимерных материалов в качестве вторичного сырья помогает не только уменьшить объемы складируемого мусора на полигонах, но и значительно сократить количество потребляемой электроэнергии и продуктов нефтяного производства, применяемых для изготовления полимерной продукции.

Для эффективного решения данного вопроса властям необходимо проинформировать граждан о пользе раздельного сбора мусора и переработки всех видов с целью дальнейшего производства продукции, необходимой для различных целей, в том числе и бытовых.



Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: